楊震,彭選明,張逸妍,張源海,張勇
1 湖南省農(nóng)業(yè)科學(xué)院 核農(nóng)學(xué)與航天育種研究所,湖南 長沙 410125
2 湖南省農(nóng)業(yè)生物輻照工程技術(shù)研究中心,湖南 長沙 410125
植物DNA甲基化及脅迫誘導(dǎo)的變異
楊震1,2,彭選明1,2,張逸妍1,2,張源海1,2,張勇1,2
1 湖南省農(nóng)業(yè)科學(xué)院 核農(nóng)學(xué)與航天育種研究所,湖南 長沙 410125
2 湖南省農(nóng)業(yè)生物輻照工程技術(shù)研究中心,湖南 長沙 410125
楊震, 彭選明, 張逸妍, 等. 植物DNA甲基化及脅迫誘導(dǎo)的變異. 生物工程學(xué)報, 2016, 32(12): 1642-1653.
Yang Z, Peng XM, Zhang YY, et al. Research progress and stress-induced variation of DNA methylation in plants. Chin J Biotech, 2016, 32(12): 1642-1653.
DNA中堿基的化學(xué)修飾近年來一直是生命科學(xué)領(lǐng)域研究的熱點(diǎn)之一。DNA甲基化是一種常見的表觀遺傳現(xiàn)象,它能在不改變DNA序列的前提下改變遺傳表型。各種脅迫因素能誘導(dǎo)植物DNA甲基化產(chǎn)生變異,但其應(yīng)答脅迫機(jī)制仍然未知。本文對植物DNA甲基化研究進(jìn)展進(jìn)行了綜述,結(jié)合本課題組的研究結(jié)果,對7Li離子束注入、60CO-γ射線誘變誘導(dǎo)產(chǎn)生的DNA甲基化變異進(jìn)行了報道,以期為DNA甲基化可能參與涉及植物的表型可塑性提供一定的依據(jù)。
DNA甲基化,脅迫誘導(dǎo),變異
DNA甲基化是一種常見的表觀遺傳修飾方式,在大多數(shù)真核生物和原核生物中,主要有3種類型的甲基化形式,即N6-甲基腺嘌呤、N4-甲基胞嘧啶和5-甲基胞嘧啶[1]。在真核生物體中,5-甲基胞嘧啶 (5-mC) 是DNA甲基化的主要存在形式,即特定的甲基轉(zhuǎn)移酶從供體S-腺苷-L-甲硫氨酸上轉(zhuǎn)移一個甲基基團(tuán)到嘧啶環(huán)的第5位C位置上[2-3],有時也被稱作第4種堿基[4]。在真核生物植物、真菌和動物中DNA甲基化主要發(fā)生在基因組中的重復(fù)序列和轉(zhuǎn)座子,部分出現(xiàn)在主要引起轉(zhuǎn)錄抑制和基因表達(dá)沉默的5'端調(diào)控區(qū)[5-7]。DNA甲基化相對穩(wěn)定,且在DNA復(fù)制過程中甲基化狀態(tài)能被維持[8],在植物體中這種相對穩(wěn)定的甲基化狀態(tài)對轉(zhuǎn)座子自身移動引起的突變和染色質(zhì)畸變能起到防御作用[9],因而在動植物發(fā)育過程中起重要的調(diào)控作用。此外,胞嘧啶甲基化在原核和真核生物中扮演不同的生物角色,當(dāng)細(xì)菌進(jìn)入宿主細(xì)胞內(nèi),胞嘧啶甲基化的方式能起到防止被宿主細(xì)胞內(nèi)限制性內(nèi)切酶酶解的作用,而在大多數(shù)真核生物體中,胞嘧啶甲基化方式通過改變基因組結(jié)構(gòu)和組蛋白修飾的形式影響基因的表達(dá)調(diào)控[10]。
哺乳動物中,DNA甲基化模式在世代之間需要消除和重建,即在完成受精后不久發(fā)生全基因組范圍的DNA去甲基化,隨后在生長發(fā)育過程中通過特定的甲基化轉(zhuǎn)移酶又重新建立甲基化狀態(tài)[11]。由于植物體沒有單獨(dú)的生殖細(xì)胞系,因此在DNA甲基化突變體中即使DNA甲基化機(jī)能被恢復(fù),引起的表觀遺傳的改變也能在植物發(fā)育和后幾代中穩(wěn)定遺傳[12]。
哺乳動物中,目前主要有4種DNA甲基轉(zhuǎn)移酶 (DNA methyltransferases;Dnmts),根據(jù)其自身結(jié)構(gòu)和在甲基化過程中功能的差異分為3大類:分別以Dnmt1和Dnmt3為代表,在細(xì)胞分化的DNA復(fù)制期間,Dnmt1主要參與DNA甲基化狀態(tài)的維持,也是非CpG位點(diǎn)從頭甲基化所必需,并與甲基化狀態(tài)的延伸有關(guān);Dnmt3包括Dnmt3a、Dnmt3b、Dnmt3L等,Dnmt3a和Dnmt3b是負(fù)責(zé)從頭合成的DNA甲基化的酶[13],Dnmt3L自身無催化活性,主要對Dnmt3a和Dnmt3b起調(diào)控作用[14-15]。而Dnmt2的歸屬和功能起初尚不十分明確,后來研究者發(fā)現(xiàn)Dnmt2是一種tRNA甲基轉(zhuǎn)移酶,而非DNA甲基轉(zhuǎn)移酶,被重新命名為tRNA天門冬氨酸甲基轉(zhuǎn)移酶[16]。在植物中,DNA甲基轉(zhuǎn)移酶介導(dǎo)的DNA甲基化主要發(fā)生在對稱的CG、CHG和非對稱的CHH位點(diǎn) (H代表任意的A、T或C)[10-17]。植物體中主要發(fā)現(xiàn)的有2種維持甲基轉(zhuǎn)移酶和1種從頭重新甲基轉(zhuǎn)移酶,包括MET1、CMT3和DRM2[18-20]。MET1與哺乳動物中的Dnmt1同源,負(fù)責(zé)CG雙核苷酸位點(diǎn)甲基化的維持[21]。CMT3是植物中特有的一種DNA甲基轉(zhuǎn)移酶,主要維持植物體中CHG位點(diǎn)的甲基化狀態(tài)[19]。在DNA姊妹鏈復(fù)制期間,由于CG和CHG位點(diǎn)的對稱性,兩者位點(diǎn)的甲基化模式能被有活性的MET1、CMT3兩種甲基轉(zhuǎn)移酶轉(zhuǎn)移和維持,而CMT3和DRM2參與催化非對稱CHH位點(diǎn)的重新從頭甲基化的過程,其中DRM2與哺乳動物中的重新從頭甲基轉(zhuǎn)移酶Dnmt3a/3b系同源物[22-23]。近年來也有研究者在植物體中發(fā)現(xiàn)一種具有催化活性的突變DNA甲基轉(zhuǎn)移酶DRM3,在RNA介導(dǎo)的甲基化 (RNA-directed DNA methylation;RdDM) 途徑中參與刺激DRM2甲基轉(zhuǎn)移酶的活性而發(fā)揮重要作用[24]。
哺乳動物中,DNA甲基化主要出現(xiàn)在對稱的CG雙核苷酸位點(diǎn),整個基因組被甲基化的CG位點(diǎn)大約占70%-80%[25],在胚胎干細(xì)胞中出現(xiàn)少量的非CG位點(diǎn)的甲基化[8,26],而其余未甲基化的CG雙核甘酸主要聚簇在基因的啟動子附近,即CpG島[27-28]。在植物中,整個基因組序列內(nèi)的胞嘧啶堿基通常都可以發(fā)生DNA甲基化:對稱的CG和CHG位點(diǎn) (H代表除G以外的任意3種堿基),非對稱的CHH位點(diǎn)[16]。CG位點(diǎn)的胞嘧啶甲基化狀態(tài)相對最為穩(wěn)定[29]。在模式植物擬南芥基因組中,CG、CHG和CHH位點(diǎn)胞嘧啶甲基化含量大約分別為24%、6.7%和1.7%[30]。與動物基因組不同,植物基因組中的DNA甲基化主要出現(xiàn)在轉(zhuǎn)錄子和DNA重復(fù)序列[31]。
DNA甲基化序列或區(qū)域在動植物基因組上的位置是特定而非隨機(jī)的,在異染色質(zhì)區(qū)域含有大量的甲基化胞嘧啶,且常常富集在重復(fù)DNAs上,如在重復(fù)DNAs中,著絲粒的180 bp重復(fù)序列和rDNAs處的CpG位點(diǎn)通常被甲基化,甲基化胞嘧啶在染色質(zhì)中心大量存在,而在染色體臂上稀疏分布[32]。Doerfler等[31]、Zilberman等[33]使用Tilling array技術(shù)對高等模式真核生物體擬南芥繪制出第一張DNA甲基化和小RNAs的表觀基因組圖,表明在擬南芥基因組的異染色質(zhì)的轉(zhuǎn)座元件和重復(fù)序列區(qū)堿基上存在高密度的DNA甲基化 (超過90%被甲基化),研究也顯示約30%的轉(zhuǎn)錄基因序列被甲基化,進(jìn)一步通過擬南芥表觀基因組的研究,使用重亞硫酸序列轉(zhuǎn)化的方法在單堿基分辨率的水平下發(fā)現(xiàn)甲基化主要發(fā)生在基因編碼區(qū)的CG位點(diǎn),然而,這些甲基化的功能還是未知的[30,34]。通過比較出現(xiàn)在轉(zhuǎn)錄編碼區(qū)CG位點(diǎn)5mC的數(shù)據(jù),發(fā)現(xiàn)轉(zhuǎn)錄編碼區(qū)內(nèi)以適當(dāng)量水平表達(dá)的基因往往更容易被甲基化,然而以極端量 (過高水平和過低水平) 表達(dá)的基因通常是較少出現(xiàn)甲基化現(xiàn)象[30,34]。啟動子區(qū)的5mC含量相當(dāng)?shù)?(擬南芥中小于5%),且常具有基因表達(dá)的組織特異性,擬南芥和水稻胚乳的甲基化測定表明,轉(zhuǎn)錄起始位點(diǎn)位置CG位點(diǎn)的甲基化水平的降低導(dǎo)致胚乳特定基因的表達(dá)[35-37]。雖然基因編碼轉(zhuǎn)錄區(qū)5mC的生物學(xué)功能目前尚不清楚,但很有可能抑制基因組中啟動子的異常轉(zhuǎn)錄[33,38]。異常轉(zhuǎn)錄有時出現(xiàn)在基因表達(dá)區(qū)是由于RNA聚合酶Ⅱ (RNAPⅡ) 的延伸傳輸期間使染色體斷裂,并允許前起始復(fù)合物聚集在非正確啟動子旁,引起異常轉(zhuǎn)錄能通過sRNA途徑導(dǎo)致同源染色體DNA甲基化[29,33,38],它們的產(chǎn)物能激起5mC在轉(zhuǎn)錄編碼區(qū)的聚集,進(jìn)一步損害畸變轉(zhuǎn)錄物結(jié)構(gòu)的循環(huán)。轉(zhuǎn)錄基因區(qū)過強(qiáng)或過弱的轉(zhuǎn)錄不需要轉(zhuǎn)錄編碼區(qū)5mC,由于RNAPII的過快或過慢的延伸速率,降低了前起始復(fù)合物的結(jié)合機(jī)率。轉(zhuǎn)錄編碼區(qū)5mC也可能與外顯子和內(nèi)含子的邊界區(qū)有一定關(guān)系。Matzke等[39]通過對植物擬南芥全基因組中核小體的定位和單堿基分辨率的DNA甲基化分布圖分析發(fā)現(xiàn),由于DNA甲基轉(zhuǎn)移酶優(yōu)先以與核小體結(jié)合的DNA為目標(biāo),因而核小體位置能影響基因組中的DNA甲基化。
RNA介導(dǎo)的DNA甲基化 (RNA-directed DNA methylation,RdDM) 是植物中特有的一種重新從頭甲基化途徑,小分子RNAs靶定從頭甲基轉(zhuǎn)移酶DRM2到同源染色體的基因組位點(diǎn)建立DNA甲基化[40],它涉及轉(zhuǎn)基因沉默、轉(zhuǎn)座子抑制、基因組印記和副突變等表觀遺傳現(xiàn)象[29,41-43]。RdDM是植物體一種保守的基因序列從頭甲基化機(jī)制,這種現(xiàn)象首次在含類病毒的轉(zhuǎn)基因煙草中被發(fā)現(xiàn),Wassenegger等[44]利用農(nóng)桿菌介導(dǎo)的葉圓盤轉(zhuǎn)化法將類病毒cDNA序列導(dǎo)入煙草基因組中,當(dāng)類病毒再次感染煙草并進(jìn)行復(fù)制的時候,煙草基因組中的cDNA序列(與病毒RNA同源) 產(chǎn)生了甲基化,而cDNA 序列兩側(cè)的T-DNA序列和煙草基因組DNA并沒有被甲基化,在轉(zhuǎn)基因植物整個生長發(fā)育時期,重組類病毒基因序列的甲基化過程伴隨著RNA類病毒的復(fù)制,即小分子RNAs靶標(biāo)同源基因組序列的DNA胞嘧啶甲基化。在模式植物擬南芥中,DNA甲基化高度富集在著絲粒區(qū)域和基因組的重復(fù)序列中,大約30%的DNA甲基化位點(diǎn)富含大量的小干擾RNA (Small interfering RNA;siRNAs),也表明siRNAs在DNA甲基化過程中的重要性[33-34]。Wierzbicki等[45]對擬南芥利用全基因組掃描的疊瓦芯片技術(shù)研究發(fā)現(xiàn)siRNAs和長的非編碼的RNAs均參與基因組的DNA從頭甲基化過程。RdDM主要涉及RNA干擾機(jī)制 (Dicer和Argonaute蛋白家族成員)和DRM2的從頭甲基化,2種在植物體中特有的RNA聚合酶Pol Ⅳ、Pol Ⅴ、2個染色質(zhì)重塑因子和一些近期研究發(fā)現(xiàn)的未知蛋白參與RdDM過程[46-47]。
RdDM也被認(rèn)為是一種轉(zhuǎn)錄水平的基因組沉默機(jī)制,已經(jīng)通過正向遺傳學(xué)篩查和親和提純法進(jìn)行了研究,多亞基蛋白復(fù)合體Pol Ⅳ、Pol Ⅴ與依賴DNA介導(dǎo)的RNA聚合酶Ⅱ (RNA Pol)Ⅱ 相似,兩者彼此有各自特定的亞基并分享共同的亞基,且與RNA PolⅡ分享其他亞基[48-49],兩者在從頭甲基化和轉(zhuǎn)錄水平基因沉默過程中發(fā)揮不同的功能[50-53]。Pol Ⅳ(NRPD1和NRPD2亞基) 利用DNA上的RdDM靶向位點(diǎn)轉(zhuǎn)座子和重復(fù)序列為模板合成單鏈核糖核酸 (Single-stranded ribonucleic acid;ssRNA)轉(zhuǎn)錄物,染色質(zhì)重塑因子CLASSY1 (CLSY1) 可能參與招募Pol Ⅳ結(jié)合到染色質(zhì)上和輔助ssRNA轉(zhuǎn)錄物的產(chǎn)生。ssRNA轉(zhuǎn)錄物通過依賴于RNA的RNA聚合酶RDR2合成雙鏈RNA (dsRNA)。dsRNA被DICER-LIKE 3蛋白DCL3剪輯成24-nt的初始siRNAs (24-nt siRNAs)。成熟的siRNAs需要一個保守的依賴S-腺苷-L-甲硫氨酸RNA甲基化轉(zhuǎn)移酶HUAENHANCER1 (HEN1) 使初始siRNAs產(chǎn)物核苷酸3′-端的2′-羥基基團(tuán)甲基化[45,54-55]。Argonaute蛋白家族的AGO4通過堿基配對結(jié)合siRNAs將其定位到卡哈爾體 (Cajal bodies) 中,這個過程的功能目前還是未知。AGO4同Pol Ⅴ的2個亞基 (NRPE1和NRPE2) 及結(jié)構(gòu)域重排甲基轉(zhuǎn)移酶DRM2處在一個特定的核心重點(diǎn)區(qū),AGO4-NRPE1復(fù)合體可能涉及活化RdDM途徑位點(diǎn)的作用,Pol Ⅴ參與整個基因組基因間非編碼區(qū)的轉(zhuǎn)錄,NRPE1結(jié)合到染色質(zhì)上需要另一種染色質(zhì)重塑因子DRD1和一種染色體結(jié)構(gòu)維持域蛋白DMS3,基因間非編碼 (Intergenic noncoding;IGN) 轉(zhuǎn)錄物作為一種支架結(jié)構(gòu)招募結(jié)合NRPE1和SPT5L的GW/WG基序列的AGO4結(jié)合到成熟siRNAs轉(zhuǎn)錄產(chǎn)物上[52,56]。識別AGO4-siRNAs復(fù)合體的RNA結(jié)合蛋白IDN2,協(xié)助重新從頭甲基轉(zhuǎn)移酶DRM2靶定到產(chǎn)生24-nt siRNAs和IGN轉(zhuǎn)錄物的基因組位點(diǎn),DNA甲基化結(jié)合蛋白SUVH9、SUVH2參與招募和固定DRM2到基因組該位點(diǎn),DRM2催化胞嘧啶的從頭甲基化,從而調(diào)控和影響基因的表達(dá)[45,52,57-60]。
4.1 CG位點(diǎn)甲基化的維持
動物細(xì)胞中,CG位點(diǎn)胞嘧啶甲基化主要通過DNA甲基化轉(zhuǎn)移酶Dnmt1進(jìn)行維持[10]。有絲分裂間期S階段,DNA甲基化轉(zhuǎn)移酶Dnmt1首先以半甲基化DNA鏈為酶作用底物,同DNA復(fù)制因子中的增殖細(xì)胞核抗原 (PCNA) 結(jié)合在一起,恢復(fù)新合成DNA鏈從半甲基化到全甲基化狀態(tài)[61-62],從而通過維持型甲基化酶使先前存在母細(xì)胞中的甲基化方式能夠在DNA復(fù)制過程中連續(xù)多代保留[63-64]。在植物中,通過轉(zhuǎn)反義MET1基因或者M(jìn)ET1基因突變導(dǎo)致CG位點(diǎn)甲基化的減少[17,65-66],且MET1或DDM1突變體引起的CG位點(diǎn)甲基化的缺失或減少不能回復(fù),并且這種低甲基化水平的狀態(tài)能保持多代遺傳[65-67]。雖然無明確的生物化學(xué)數(shù)據(jù)表明植物MET1酶有一個維持DNA甲基化活性功能,但遺傳證據(jù)表明MET1是Dnmt1的正向同源物,MET1在植物生長發(fā)育過程中對于維持CG位點(diǎn)甲基化是必需的[66,68-69],且同Dnmt1在維持DNA甲基化過程中的方式具有相似性[70]。
圖1 RNA介導(dǎo)的DNA甲基化示意圖[29]Fig. 1 Model for RNA-directed DNA methylation[29].
擬南芥基因組中大約1/3基因的編碼區(qū)中包含CG甲基化位點(diǎn),這種甲基化狀態(tài)依靠MET1來維持[30]。與轉(zhuǎn)座子中的甲基化能引起基因沉默、抑制基因的表達(dá)不同,轉(zhuǎn)錄區(qū)域中一些甲基化基因 (Body-methylated genes) 并不受甲基化影響,但是某些甲基化位點(diǎn)的改變能影響組織中基因的表達(dá),隨著環(huán)境和種群的不同表現(xiàn)出特異性差異基因[31],如met1突變體中body-methylated genes表達(dá)水平上升[8],且body-methylated genes表達(dá)水平的高低趨向于缺乏body甲基化,表明轉(zhuǎn)錄和body甲基化兩者之間互相影響。這種轉(zhuǎn)錄區(qū)域基因中CG位點(diǎn)甲基化的這種作用方式在其他無脊椎動物中也有報道,說明它可能是真核生物中的一種普遍特性[28]。最初研究認(rèn)為擬南芥body-methylated genes中CG位點(diǎn)甲基化可能抑制來自于隱藏在啟動子中的反義轉(zhuǎn)錄子產(chǎn)物,而對met1突變體的研究發(fā)現(xiàn),其反義轉(zhuǎn)錄子的增加很少,且和body-methylated genes無關(guān)[31]。
4.2 CHG/CHH位點(diǎn)甲基化的維持
植物基因組中存在對稱的CHG和非對稱的CHH位點(diǎn)的甲基化,擬南芥中cmt3的突變和負(fù)責(zé)H3K9雙甲基化的組蛋白甲基轉(zhuǎn)移酶SUVH4缺失能引起植物基因組中CHG位點(diǎn),尤其是重復(fù)序列和轉(zhuǎn)座子序列中CHG位點(diǎn)甲基化的明顯減少[71-73],表明CMT3主要負(fù)責(zé)CHG位點(diǎn)的甲基化[19],也說明組蛋白H3K9的甲基化修飾能影響CHG位點(diǎn)的甲基化,同時另2種H3K9雙甲基化的組蛋白甲基轉(zhuǎn)移酶SUVH5、SUVH6也同樣影響全基因組CHG位點(diǎn)的甲基化水平[74-75]。SUVH4具有SRA域結(jié)構(gòu),能特定地包裹CHG甲基化,與此同時CMT3具有綁定組蛋白H3尾部的染色質(zhì)域結(jié)構(gòu)[76],DNA和組蛋白甲基化這種結(jié)構(gòu)上的相互銜接說明甲基化修飾可能涉及組蛋白和DNA甲基轉(zhuǎn)移酶兩個蛋白之間的相互作用[27],然而目前對CMT3和SUVH4兩種蛋白直接相互作用如何維持CHG位點(diǎn)胞嘧啶甲基化機(jī)理還不是很清楚。非對稱的CHH位點(diǎn)甲基化主要依賴于DRM2和RdDM的不斷從頭甲基化過程來維持。也有研究顯示CMT3和DRM2參與某些CHH位點(diǎn)胞嘧啶甲基化[22]。與維持CG、CHG位點(diǎn)甲基化類似,RdDM需要SRA域蛋白,SUVH9和SUVH2具有SRA域蛋白更容易結(jié)合到CHH、CG甲基化位點(diǎn),SUVH9和SUVH2在RdDM途經(jīng)后開始作用,被認(rèn)為可能發(fā)揮一種保留DRM2靶結(jié)合此位點(diǎn)進(jìn)行甲基化的功能[77]。
根據(jù)檢測樣本不同,分為DNA和mRNA,現(xiàn)有方法大部分都是針對基因組DNA進(jìn)行檢測。根據(jù)研究水平,主要分為3大類,即:基因組甲基化水平的分析,候選基因甲基化的分析,以及基因組層次的DNA甲基化模式與甲基化譜的分析。
甲基化DNA免疫沉淀法 (MeDIP) 是基于特異抗體對全基因組5meC DNA片段的富集,這種方法相對便宜并廣泛用于全基因組甲基化的檢測,但分辨率有限,往往不能反映真實(shí)的甲基化水平?;贖paⅡ和MspⅡ甲基化敏感限制性酶切法通常被使用來檢測甲基化的方式(即:MSAP法),這種方法的主要缺點(diǎn)是分辨率的數(shù)據(jù)依賴于限制性酶切位點(diǎn)在全基因組的分布。當(dāng)前最好的對于檢測全基因組甲基化信息的手段是基于高通量測序的重亞硫酸鹽轉(zhuǎn)化DNA,然而這種方法對于大基因組來說費(fèi)用非常昂貴。
6.1 誘變脅迫誘導(dǎo)的DNA甲基化變異
胞嘧啶甲基化能增加基因組重排,各種DNA損傷因子,包括離子輻射能影響基因組DNA甲基化方式,從而可能導(dǎo)致基因組失穩(wěn)效應(yīng)[78-79]。在動物中,許多證據(jù)表明直接輻射和輻射旁效應(yīng)均能導(dǎo)致DNA甲基化改變的表觀遺傳現(xiàn)象,且體內(nèi)實(shí)驗(yàn)表明輻射誘導(dǎo)的DNA甲基化水平的變化具有組織和性別特異性[80-83]。本課題組采用高能7Li離子束注入小麥品種京411干種子,在M1代幼苗時期出現(xiàn)葉脈失綠 (MS)和葉脈開裂 (MD) 2種誘發(fā)畸變體。通過MSAP技術(shù)對2種畸變體的基因組進(jìn)行DNA甲基化變異分析。發(fā)現(xiàn)2種畸變體的甲基化水平 (49.01%、49.18%)與野生型比較 (43.74%) 均有所升高,野生型及2種畸變類型的基因組DNA胞嘧啶甲基化的全甲基化率均高于半甲基化率。甲基化模式變異方面,與野生型相比,2種畸變體中單態(tài)性的甲基化條帶比率分別為58.94% (MD)和56.43% (MS),MD中甲基化增加帶型與去甲基化帶型分別為25.55%和15.49%,MS中甲基化增加帶型與去甲基化帶型分別為20.61%和22.94%。利用MSAP技術(shù)對60CO-γ射線誘變小麥產(chǎn)生的M3代株高 (高稈和矮稈) 穩(wěn)定突變體進(jìn)行檢測DNA甲基化模式的改變。結(jié)果表明,與對照植株相比,γ輻射誘導(dǎo)小麥的M3代矮稈突變體中發(fā)生在CG、CHG位點(diǎn)的甲基化率(CG/CHG hyper-) 均高于相應(yīng)位點(diǎn)的去甲基化率 (CG/CHG hypo-),從而導(dǎo)致整體矮稈植株的基因組的甲基化率 (hyper-) 高于去甲基化率(hypo-),高稈突變體中則呈現(xiàn)相反,且變異的幅度也不相同。矮稈基因組中CG位點(diǎn)發(fā)生甲基化變異的幅度高于CHG位點(diǎn),但差異不明顯,而高稈突變體中DNA甲基化變異發(fā)生在CG位點(diǎn)的相對變異率要遠(yuǎn)高于發(fā)生在CHG位點(diǎn)的變異,通過對甲基化位點(diǎn)的甲基化狀態(tài)和模式的變異分析,有助于更好地理解誘發(fā)畸變體、穩(wěn)定突變體表型和DNA甲基化之間的關(guān)聯(lián),為DNA甲基化可能參與涉及植物的表型可塑性提供一定的依據(jù)。本課題組下一步研究思路是對誘變脅迫后畸變體、穩(wěn)定突變體中產(chǎn)生的大量差異甲基化修飾的CCGG/CCGG片段序列進(jìn)行分離、測序,和已知功能基因比對才能了解基因組中這些發(fā)生了DNA甲基化變化的位點(diǎn)具體涉及到哪些基因,有何生物功能,以及更深入地理解誘變脅迫基因組DNA的甲基化及逆境適應(yīng)的機(jī)制。
6.2 其他脅迫與DNA甲基化
DNA甲基化對環(huán)境脅迫的影響非常敏感,生物體基因組甲基化的改變能形成一種可遺傳的脅迫適應(yīng)性,即使這種隔代遺傳效應(yīng)在后代中是非必需的[84]。這種能被暫時遺傳到下一代中的DNA甲基化形式也能引起很大的表觀遺傳多樣性,特別是表觀遺傳差異很高的植物群體,如果生活在截然不同棲息地,它們中的一些物種能利用表觀遺傳的改變來適應(yīng)不同的環(huán)境[85]。耐鹽堿方面:Catarina等[86]利用MSAP檢測生活在河邊(RS) 和鹽沼澤附近 (SM) 兩種不同環(huán)境下L. racemosa植物群體發(fā)現(xiàn):盡管不同環(huán)境下的L. racemosa植物群體表現(xiàn)出明顯的形態(tài)差異(株高、葉型),基因組結(jié)構(gòu)未發(fā)生變化,但出現(xiàn)了豐富的DNA甲基化差異,表明表觀遺傳變異有利于自然界植物群體的個體適應(yīng)不同的棲息環(huán)境。植物抗性方面:水稻品種Wase Aikoku 3在幼苗期時不抗枯萎病Xanthomonas oryzae pv. oryzae而在成株期則表現(xiàn)為抗性,人工接種幼苗期和成株期的水稻,利用MSAP方法檢測到在成株期的水稻苗比幼苗存在更多高度甲基化的多態(tài)性位點(diǎn)[87],這些多態(tài)性的甲基化位點(diǎn)很可能影響了水稻的抗性。Akimoto等[88]利用去甲基化試劑5-氮脫氧胞嘧啶誘導(dǎo)水稻line-2株系產(chǎn)生抗枯萎病能力,并利用MSAP技術(shù)篩選line-2和野生型水稻的多態(tài)性片段,得到一個Xa21G克隆體,發(fā)現(xiàn)與水稻的抗枯萎病基因Xa21很相似。line-2中Xa21G的啟動子沒有被甲基化,而野生型中則被完全甲基化,這引起了line-2中Xa21G的高度表達(dá)。因此,可以通過降低Xa21G啟動子的甲基化水平提高該基因的表達(dá)從而達(dá)到抗枯萎病的效果。
植物界中存在大量的遺傳變異,這些變異是自然突變和自然選擇的結(jié)果,也是植物種群賴以生存和進(jìn)化的動力。大量實(shí)驗(yàn)表明,自然環(huán)境中的各種生物與非生物因子對植物產(chǎn)生的脅迫效應(yīng)是產(chǎn)生表觀遺傳變異的一個重要來源。輻射誘變能促進(jìn)植物體細(xì)胞內(nèi)同源染色體重組,創(chuàng)制農(nóng)作物新材料,因此也是產(chǎn)生新的遺傳變異的重要途徑。DNA甲基化是不基于DNA序列差異的變異,被稱為表觀遺傳變異(Epigenetic variation),植物誘發(fā)突變過程可以產(chǎn)生大量的表觀遺傳變異,這種表觀遺傳變異主要是編碼基因和轉(zhuǎn)座子DNA甲基化水平和模式的改變,其與之相關(guān)的組蛋白修飾和染色質(zhì)結(jié)構(gòu)也隨之發(fā)生變化。這些表觀遺傳變異能產(chǎn)生基因表達(dá)的改變并由此產(chǎn)生新表型,從而豐富和擴(kuò)大植物遺傳資源的生物多樣性,這些不能用經(jīng)典遺傳學(xué)理論解釋的表觀遺傳變異在植物育種上可能有重要的利用價值。
[1] Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem, 2002, 3(4): 274-293.
[2] Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci, 2004, 61(19/20): 2571-2587.
[3] Wada Y. Physiological functions of plant DNA methyltransferases. Plant Biotech, 2005, 22(2): 71-80.
[4] Johnson EL. Effects of X-rays upon growth, development, and oxidizing enzymes of Helianthus annuus. Bot Gaz, 1926, 82(4): 373-402.
[5] Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet, 1997, 13(8): 335-340.
[6] Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 2006, 31(2): 89-97.
[7] Martienssen RA, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science, 2001, 293(5532): 1070-1074.
[8] Bird A. DNA methylation patterns and epigenetic memory. Genes Dev, 2002, 16(1): 6-21
[9] Robertson KD. DNA methylation and human disease. Nat Rev Genet, 2005, 6(8): 597-610.
[10] Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 2005, 74(1): 481-514.
[11] Guo M, Rupe MA, Yang XF, et al. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet, 2006, 113(5): 831-845.
[12] Reinders J, Wulff BBH, Mirouze M, et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev, 2009, 23(8): 939-950.
[13] Chen TP, Li E. Structure and function of eukaryotic DNA methyltransferases. Curr Topics Dev Biol, 2004, 60: 55-89.
[14] Bourc'his D, Xu GL, Lin CS, et al. Dnmt3L and the establishment of maternal genomic imprints. Science, 2001, 294(5551): 2536-2539.
[15] Hata K, Okano M, Lei H, et al. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development, 2002, 129(8): 1983-1993.
[16] Goll MG, Kirpekar F, Maggert KA, et al. Methylation of tRNAAspby the DNA methyltransferase homolog Dnmt2. Science, 2006, 311(5759): 395-398.
[17] Henderson IR, Jacobsen SE. Epigenetic inheritance in plants. Nature, 2007, 447(7143): 418-424.
[18] Ronemus MJ, Galbiati M, Ticknor C, et al. Demethylation-induced developmental pleiotropy in Arabidopsis. Science, 1996, 273(5275): 654-657.
[19] Lindroth AM, Cao XF, Jackson JP, et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science, 2001, 292(5524): 2077-2080.
[20] Cao XF, Jacobsen SE. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci USA, 2002, 99(4): 16491-16498.
[21] Jones L, Ratcliff F, Baulcombe DC. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr Biol, 2001, 11(10): 747-757.
[22] Cao XF, Aufsatz W, Zilberman D, et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr Biol, 2003, 13(24): 2212-2217.
[23] Chan SWL, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet, 2005, 6(5): 351-360.
[24] Henderson IR, Deleris A, Wong W, et al. The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genet, 2010, 6(10): e1001182.
[25] Wu CT, Morris JR. Genes, genetics, and epigenetics: a correspondence. Science, 2001, 293(5532): 1103-1105.
[26] Ramsahoye BH, Biniszkiewicz D, Lyko F, et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA, 2000, 97(10): 5237-5242.
[27] Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet, 2009, 10(5): 295-304.
[28] Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 2008, 9(6): 465-476.
[29] Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet, 2010, 11(3): 204-220.
[30] Cokus SJ, Feng SH, Zhang XY, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 2008, 452(7184): 215-219.
[31] Zhang XY, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell, 2006, 126(6): 1189-1201.
[32] Doerfler W. DNA methylation and gene activity. Annu Rev Biochem, 1983, 52(1): 93-124.
[33] Zilberman D, Gehring M, Tran RK, et al. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet, 2007, 39(1): 61-69.
[34] Lister R, O'Malley RC, Tonti-Filippini J, et al.Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 2008, 133(3): 523-536.
[35] Gehring M, Bubb KL, Henikoff S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science, 2009, 324(5933): 1447-1451.
[36] Hsieh TF, Ibarra CA, Silva P, et al. Genome-wide demethylation of Arabidopsis endosperm. Science, 2009, 324(5933): 1451-1454.
[37] Zemach A, Kim MY, Silva P, et al. Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci USA, 2010, 107(43): 18729-18734.
[38] Tran RK, Henikoff JG, Zilberman D, et al. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr Biol, 2005, 15(2): 154-159.
[39] Chodavarapu RK, Feng SH, Bernatavichute YV, et al. Relationship between nucleosome positioning and DNA methylation. Nature, 2010, 466(7304): 388-392.
[40] Matzke M, Kanno T, Daxinger L, et al. RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol, 2009, 21(3): 367-376.
[41] Xie ZX, Johansen LK, Gustafson AM, et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol, 2004, 2(5): e104.
[42] Herr AJ, Jensen MB, Dalmay T, et al. RNA polymerase IV directs silencing of endogenous DNA. Science, 2005, 308(5718): 118-120.
[43] Zaratiegui M, Irvine DV, Martienssen RA. Noncoding RNAs and gene silencing. Cell, 2007, 128(4): 763-776.
[44] Wassenegger M, Heimes S, Riedel L, et al. RNA-directed de novo methylation of genomic sequences in plants. Cell, 1994, 76(3): 567-576.
[45] Wierzbicki AT, Haag JR, Pikaard CS. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell, 2008, 135(4): 635-648.
[46] Huettel B, Kanno T, Daxinger L, et al. RNA-directed DNA methylation mediated by DRD1 and Pol IVb: a versatile pathway for transcriptional gene silencing in plants. Biochim Biophys Acta, 2007, 1769(5/6): 358-374.
[47] Pikaard CS, Haag JR, Ream T, et al. Roles of RNA polymerase IV in gene silencing. Trends Plant Sci, 2008, 13(7): 390-397.
[48] Ream TS, Haag JR, Wierzbicki AT, et al. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol Cell, 2008, 33(2): 192-203.
[49] Huang LF, Jones AME, Searle I, et al. An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat Struct Mol Biol, 2009, 16(1): 91-93.
[50] Kanno T, Huettel B, Mette MF, et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet, 2005, 37(7): 761-765.
[51] Onodera Y, Haag JR, Ream T, et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell, 2005, 120(5): 613-622.
[52] He XJ, Su YF, Pontes O, et al. NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation. Genes Dev, 2009, 23(3): 318-330.
[53] Lahmy S, Pontier D, Cavel E, et al. PolV (PolIVb) function in RNA-directed DNA methylation requires the conserved active site and an additional plant-specific subunit. Proc Natl Acad Sci USA, 2009, 106(3): 941-946.
[54] Yu HC, Zhao J, Xu J, et al. Detection of changes in DNA methylation induced by low-energy ion implantation in Arabidopsis thaliana. Radiat Res, 2011, 175(5): 599-609.
[55] Yang ZY, Ebright YW, Yu B, et al. HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3'terminal nucleotide. Nucleic Acids Res, 2006, 34(2): 667-675.
[56] Wierzbicki AT, Ream TS, Haag JR, et al. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet, 2009, 41(5): 630-634.
[57] Zheng XW, Zhu JH, Kapoor A, et al. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J, 2007, 26(6): 1691-1701.
[58] Zilberman M, Tavares H, el-Guebaly N. Gender similarities and differences: the prevalence and course of alcohol- and other substance-related disorders. J Addict Dis, 2003, 22(4): 61-74.
[59] Ausin I, Mockler TC, Chory J, et al. IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana. Nat Struct Mol Biol, 2009, 16(12): 1325-1327.
[60] Zheng ZM, Xing Y, He XJ, et al. An SGS3-like protein functions in RNA-directed DNA methylation and transcriptional gene silencing in Arabidopsis. Plant J, 2010, 62(1): 92-99.
[61] Chuang LSH, Ian HI, Koh TW, et al. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science, 1997, 277(5334): 1996-2000.
[62] Iida T, Ishihara H. Study of the mechanical interaction between an electromagnetic field and a nanoscopic thin film near electronic resonance. Opt Lett, 2002, 27(9): 754-756.
[63] Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science, 1975, 187(4173): 226-232.
[64] Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Genome Res, 1975, 14(1): 9-25.
[65] Kankel MW, Ramsey DE, Stokes TL, et al. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics, 2003, 163(3): 1109-1122.
[66] Saze H, Mittelsten ScheidO, Paszkowski J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet, 2003, 34(1): 65-69.
[67] Kakutani T, Munakata K, Richards EJ, et al. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics, 1999, 151(2): 831-838.
[68] Takeda SI, Funaki S, Yumiba T, et al. Gastropleural fistula due to gastric perforation after lobectomy for lung cancer. Interact Cardiovasc Thorac Surg, 2005, 4(5): 420-422.
[69] Jullien PE, Kinoshita T, Ohad N, et al. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell, 2006, 18(6): 1360-1372.
[70] Hirochika H, Okamoto H, Kakutani T. Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell, 2000, 12(3): 357-368.
[71] Jackson JP, Lindroth AM, Cao XF, et al. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature, 2002, 416(6880): 556-560.
[72] Malagnac F, Bartee L, Bender J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J, 2002, 21(24): 6842-6852.
[73] Jackson JP, Johnson L, Jasencakova Z, et al. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma, 2004, 112(6): 308-315.
[74] Ebbs ML, Bartee L, Bender J. H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases. Mol Cell Biol, 2005, 25(23): 10507-10515.
[75] Ebbs ML, Bender J. Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell, 2006, 18(5): 1166-1176.
[76] Lindroth AM, Shultis D, Jasencakova Z, et al. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction withCHROMOMETHYLASE3. EMBO J, 2004, 23(21): 4286-4296.
[77] Johnson LM, Law JA, Khattar A, et al. SRA-domain proteins required for DRM2-mediated de novo DNA methylation. PLoS Genet, 2008, 4(11): e1000280.
[78] Pogribny I, Raiche J, Slovack M, et al. Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun, 2004, 320(4): 1253-1261.
[79] Koturbash I, Pogribny I, Kovalchuk O. Stable loss of global DNA methylation in the radiation-target tissue-a possible mechanism contributing to radiation carcinogenesis? Biochem Biophys Res Commun, 2005, 337(2): 526-533.
[80] Kalinich JF, Catravas GN, Snyder SL. The effect of γ-radiation on DNA methylation. Radiat Res, 1989, 117(2): 185-197.
[81] Tawa R, Kimura Y, Komura JI, et al. Effects of X-ray irradiation on genomic DNA methylation levels in mouse tissues. J Radiat Res, 1998, 39(4): 271-278.
[82] Kovalchuk O, Burke P, Arkhipov A, et al. Genome hypermethylation in Pinus silvestris of Chernobyl—a mechanism for radiation adaptation? Mutat Res, 2003, 529(1/2): 13-20.
[83] Raiche J, Rodriguez-Juarez R, Pogribny I, et al. Sex- and tissue-specific expression of maintenance and de novo DNA methyltransferases upon low dose X-irradiation in mice. Biochem Biophys Res Commun, 2004, 325(1): 39-47.
[84] Boyko A, Blevins T, Yao YL, et al. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS ONE, 2010, 5(3): e9514.
[85] Medeiros AM, Barbosa JE, Medeiros PR, et al. Salinity and freshwater discharge determine rotifer distribution at the Mossoró River Estuary (Semiarid Region of Brazil). Braz J Biol, 2010, 70(3): 551-557.
[86] Lira-Medeiros CF, Parisod C, Fernandes RA, et al. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE, 2010, 5(4): e10326.
[87] Sha AH, Lin XH, Huang JB, et al. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Mol Genet Genomics, 2005, 273(6): 484-490.
[88] Akimoto K, Katakami H, Kim HJ, et al. Epigenetic inheritance in rice plants. Ann Bot (Lond), 2007, 100(2): 205-217.
(本文責(zé)編 郝麗芳)
Research progress and stress-induced variation of DNA methylation in plants
Zhen Yang1,2, Xuanming Peng1,2, Yiyan Zhang1,2, Yuanhai Zhang1,2, and Yong Zhang1,2
1 Institute of Nuclear Agricultural Sciences and Space Mutagenesis Breeding, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
2 Hunan Province Engineering Technology Research Center for Agricultural Bio-irradiation, Changsha 410125, Hunan, China
Chemical modification of DNA bases in recent years has been one of the hot areas of life science research.DNA methylation is a common epigenetic phenomenon and can change the genetic performance without changing the DNA sequence. Various stress factors can induce the variation of DNA methylation in plants, but the response mechanism is still unknown. In this paper, the progress of DNA methylation in plants was reviewed. In combination with the research conclusions of our own research group, the DNA methylation variation induced by 7Li ion beam and gamma ray was reported to provide a basis for DNA methylation, which may be involved in the phenotypic plasticity of plants.
DNA methylation, stress-induced, variation
Zhen Yang. Tel/Fax: +86-731-84691562; E-mail: yz473@163.com
Received:June 11, 2016;Accepted:September 14, 2016
Supported by:National Natural Science Foundation of China (No. 11205055), National Key Research and Development Program of China (No. 2016YFD0102103), Key Technologies Research and Development Program of China during the Twelfth Five-year Plan Period (No. 2014BAA03B04), Key Technologies Research and Development Program of Hunan, China (No. 2015NK3044).
國家自然科學(xué)基金 (No. 11205055),國家重點(diǎn)研發(fā)計劃 (No. 2016YFD0102103),“十二五”國家科技支撐計劃 (No. 2014BAA03B04),湖南省科技支撐計劃 (No. 2015NK3044) 資助。
時間:2016-09-23
http://www.cnki.net/kcms/detail/11.1998.Q.20160923.1416.002.html