陳密,李星輝,鄭華國,孟頌東
中國科學院微生物研究所 中國科學院病原微生物與免疫學重點實驗室,北京 100101
高劑量熱休克蛋白gp96通過激活調(diào)節(jié)性T細胞預防1型糖尿病
陳密,李星輝,鄭華國,孟頌東
中國科學院微生物研究所 中國科學院病原微生物與免疫學重點實驗室,北京 100101
陳密, 李星輝, 鄭華國, 等. 高劑量熱休克蛋白gp96通過激活調(diào)節(jié)性T細胞預防1型糖尿病. 生物工程學報, 2016, 32(12): 1685-1693.
Chen M, Li XH, Zheng HG, et al. High-dose heat shock protein gp96 immunization prevents type 1 diabetes via inducing regulatory T cells. Chin J Biotech, 2016, 32(12): 1685-1693.
旨在以非肥胖糖尿病 (Non-obese diabetic, NOD) 小鼠為動物模型,研究高劑量昆蟲細胞表達的重組熱休克蛋白gp96 (Recombinant gp96, rgp96) 對1型糖尿病 (Type 1 diabetes, T1D) 的預防作用。以高劑量rgp96免疫NOD小鼠,用血糖儀監(jiān)測小鼠血糖值,用流式細胞術(shù)檢測小鼠脾臟CD4+CD25+Foxp3+調(diào)節(jié)性T細胞(Regulatory T cells, Tregs) 亞群頻率,然后用一系列體外實驗探究高劑量rgp96對Tregs的影響。結(jié)果顯示高劑量rgp96免疫有效地預防或延緩小鼠T1D發(fā)病,免疫誘導Tregs數(shù)量明顯增加。體外實驗發(fā)現(xiàn)rgp96蛋白促進Tregs增殖,誘導Foxp3表達上調(diào)和IL-10分泌增加。研究結(jié)果為開發(fā)基于rgp96的新型T1D預防和治療性疫苗提供了依據(jù)。
gp96,Tregs,1型糖尿病,免疫治療,疫苗
隨著現(xiàn)代生活水平的提高和生活方式、生活環(huán)境的改變,在全球范圍內(nèi),1型糖尿病 (Type 1 diabetes,T1D) 的患病率正呈現(xiàn)快速上升的趨勢。根據(jù)2011年國際糖尿病聯(lián)盟(International diabetes federation,IDF) 統(tǒng)計,在全球1.9億0?15歲的兒童中,T1D患者約有490 100名,每年新診斷約77 800名,年增加率約為3.0%[1]。
T1D是一種自身免疫性疾病 (Autoimmune disease,AID),由自身反應性T細胞持續(xù)活化并破壞胰島β細胞,使胰島素分泌功能受損而引發(fā)的代謝紊亂綜合征[2]。T1D的確切病因迄今尚未闡明,但自身免疫異常是其最主要的致病因素[3]。CD4+CD25+Foxp3+調(diào)節(jié)性T細胞 (Regulatory T cells,Tregs) 是一類免疫抑制性T淋巴細胞,它在防止自身免疫性疾病及維持自身免疫耐受中發(fā)揮重要作用[4]。有研究發(fā)現(xiàn),T1D患者體內(nèi)的CD4+CD25+Foxp3+Tregs出現(xiàn)數(shù)量減少或者調(diào)節(jié)能力減弱的現(xiàn)象[5];同樣地,針對非肥胖型糖尿病 (NOD) 小鼠的研究也發(fā)現(xiàn)了患病小鼠體內(nèi)該亞群T細胞水平的降低[6]。一些動物實驗和臨床研究結(jié)果顯示,體外擴增的多克隆或抗原特異性Tregs的過繼性轉(zhuǎn)移療法能夠有效地預防或緩解T1D[7-10]。這些結(jié)果說明了Tregs在T1D的發(fā)病及疾病進程中發(fā)揮重要作用。
Gp96 (GRP96) 是內(nèi)質(zhì)網(wǎng)熱休克蛋白 (Heat shock protein,HSP) 90家族的成員之一,與細胞質(zhì)HSP90高度同源。我們前期的研究發(fā)現(xiàn),低劑量的gp96免疫主要活化CD8+T細胞應答,而高劑量的gp96能夠通過Toll樣受體2和Toll樣受體4介導的NF-κB的激活而顯著地增強Tregs的增殖能力和抑制性功能[11-13]。Chandawarkar等的研究也發(fā)現(xiàn)高劑量gp96免疫能夠通過誘導具有免疫調(diào)節(jié)功能的CD4+T細胞的產(chǎn)生防止多種自體免疫疾病,包括T1D[14]。但這些研究所用的gp96均為天然提取,很難研發(fā)成疫苗或藥物。我們利用酵母菌和昆蟲細胞首次表達具有較高免疫活性的重組gp96 (Recombinant gp96,rgp96) 蛋白,在此基礎(chǔ)上,擬通過應用高劑量rgp96預先免疫NOD小鼠,了解其是否具有預防糖尿病發(fā)生的作用,并探討其可能的作用機制。研究結(jié)果為開發(fā)基于rgp96的新型T1D預防或治療性疫苗提供了依據(jù)。
1.1 動物
所有動物為NOD小鼠。NOD小鼠來源于北京中國科學院微生物研究所周旭宇研究員實驗室。在北京大學醫(yī)學院實驗動物中心SPF級環(huán)境下飼養(yǎng),繁殖出第一代,取雌性小鼠用于實驗。
1.2 rgp96和MSA的制備及Western blotting鑒定
利用昆蟲細胞表達系統(tǒng)表達純化重組熱休克蛋白gp96 (Recombinant gp96,rgp96) 和小鼠血清白蛋白 (Mouse serum albumin,MSA),獲得的目的蛋白通過10%的SDS-PAGE和Western blotting (Santa Cruz,CA,USA) 進行鑒定。純化和鑒定后的蛋白樣品用液相內(nèi)毒素清除劑 (購自北京天恩澤公司) 去除內(nèi)毒素,然后用鱟試劑、工作品及工作用水等試劑 (購自廈門市鱟試劑實驗廠有限公司) 檢測蛋白樣品中內(nèi)毒素含量,結(jié)果顯示蛋白樣品中內(nèi)毒素濃度低于10 EU/mg,可以用于免疫。
1.3 小鼠免疫和血糖測定
按照每組10只小鼠隨機分為3組:PBS組、MSA組和rgp96組 (100 μg/只)。在小鼠6、7、9周齡時皮下各免疫1次,共3次,從最后一次免疫后的第1周開始監(jiān)測小鼠血糖值,取小鼠尾靜脈血1滴,用血糖儀 (德國羅氏公司ACCU-CHEK?Performa) 參照說明書測定血糖值,并統(tǒng)計患病率。以血糖值〉13.3 mmol/L且持續(xù)2次以上診斷為T1D。
1.4 小鼠脾臟淋巴細胞的分離
用頸脫臼法處死小鼠,取出小鼠脾臟,根據(jù)Liu等[11]方法分離獲得小鼠脾臟淋巴細胞。
1.5 細胞內(nèi)因子染色
每只小鼠各取3×106的脾臟淋巴細胞,用PBS洗2次,用含5%BSA的PBS封閉30 min,加Percp-Cy5.5-anti-CD3、PE-anti-CD4、FITC-anti-CD25 (eBioscience),4 ℃避光孵育30 min,PBS清洗,每管加入250 μL固定/破膜劑 (eBioscience),4 ℃孵育20 min后用清洗劑 (eBioscience) 清洗2次,在50 μL體系中加入APC-anti-Foxp3 (eBioscience),4 ℃避光孵育30 min,清洗劑清洗2次,用流式細胞儀 (FACSCaliber,BectonDickinson,Mountain View,CA) 檢測Treg細胞。
1.6 體外Tregs增殖檢測
按CFSE細胞增殖試劑盒說明書標記小鼠脾臟淋巴細胞,將CFSE標記的脾臟淋巴細胞(3×105/孔) 加入至96-孔圓底培養(yǎng)板中,培養(yǎng)基內(nèi)分別加入1 μg/mL的anti-CD3和anti-CD28及50 IU/mL的IL-2,在5% CO237 ℃無菌條件下培養(yǎng)。培養(yǎng)24 h收集上清檢測細胞因子;培養(yǎng)72 h收集細胞檢測細胞體外增殖能力:按細胞內(nèi)因子染色方法標記Treg細胞 (不要用FITC通道的抗體,因為CFSE占用此通道);用流式細胞儀檢測Treg細胞的CFSE熒光衰減情況,即為Tregs增殖情況。
1.7 體外Tregs抑制功能實驗
用磁珠分選試劑盒 (Miltenyi Biotec,Auburn,CA) 分離得到Tregs和效應T細胞 (CD4+CD25-T細胞)。按CFSE細胞增殖試劑盒說明書標記CD4+CD25-T細胞,將CFSE標記的CD4+CD25-T細胞 (3×105/孔) 加入至96-孔圓底培養(yǎng)板中,將其單獨培養(yǎng)或加入1/3效應細胞數(shù)目的Tregs,培養(yǎng)基內(nèi)分別加入1 μg/mL的anti-CD3和anti-CD28及50 IU/mL的IL-2,在5% CO2、37 ℃無菌條件下培養(yǎng)3 d。收集上述細胞,按細胞內(nèi)因子染色方法標記效應T細胞 (不要用FITC通道的抗體,因為CFSE占用此通道);用流式細胞儀檢測效應T細胞的CFSE熒光衰減情況,計算Tregs對其增殖的抑制,抑制率=[CFSElow(Teff without Tregs)-CFSElow(Teff with Tregs)]/ CFSElow(Teff without Tregs)×100%。
1.8 細胞因子的ELISA測定
高劑量rgp96刺激24 h后收集Tregs培養(yǎng)上清液,用ELISA試劑盒 (eBioscience,San Diego,CA) 按照說明書檢測IL-10含量。
1.9 蛋白質(zhì)免疫印跡
蛋白免疫印記測定Tregs中Foxp3的水平。高劑量rgp96刺激24 h后收集細胞提取蛋白,10% SDS-PAGE電泳分離,轉(zhuǎn)印于PVDF膜,5%的脫脂牛奶封閉1 h,一抗 (11 000∶) 4 ℃孵育過夜,以PBST洗3 次,每次 10 min,辣根過氧化物酶標記的二抗 (12 000∶) 室溫孵育1 h,同樣步驟用PBST洗去二抗后加顯色液曝光顯影。
2.1 SDS-PAGE和Western blotting鑒定熱休克蛋白gp96和小鼠血清白蛋白MSA
本實驗所用的熱休克蛋白gp96和小鼠血清白蛋白MSA均為從昆蟲細胞表達系統(tǒng)表達純化的重組蛋白。純化的蛋白通過10%的SDS-PAGE膠分離,經(jīng)考馬斯亮藍染色鑒定,對染色條帶進行掃描分析gp96純度在95%以上,采用Western blotting鑒定為目的蛋白gp96和MSA (圖1)。
圖1 人工表達重組gp96和MSA的純化與鑒定Fig. 1 Purification and identification of recombinant gp96 and MSA. Purified recombinant gp96 (A) and MSA (B) expressed in the Bac-to-Bac?baculovirus expression system was analyzed on a 10% SDS-PAGE gel and visualized with coomassie staining (left lane) or immunoblotted with an anti-gp96 or anti-MSA antibody (right lane).
2.2 高劑量rgp96免疫顯著降低NOD小鼠1型糖尿病發(fā)生
首先比較不同rgp96蛋白免疫劑量對NOD小鼠Tregs的誘導情況,分別在6、7和9周齡時免疫雌性NOD小鼠 (圖2A),結(jié)果顯示采用100 μg/次可誘導高比例的Tregs (圖2B),推測疫苗的EC50應該在60 μg/次左右,這與我們前期的試驗結(jié)果相吻合[11]。
我們用高劑量的rgp96 (100 μg/次) 免疫,從免疫后第1周 (小鼠10周齡) 開始,用血糖儀測量小鼠的血糖值,每周1次,連續(xù)測量11周,結(jié)果顯示,用高劑量rgp96免疫的小鼠的血糖值基本保持不變且維持在正常范圍內(nèi),而對照組(注射PBS或MSA) 小鼠的血糖值顯著升高,在13周齡時約為免疫組小鼠血糖值的3倍(P〈0.01) (圖2C)。此外,我們統(tǒng)計了小鼠的患病率 (血糖值大于13.3 mmol/L),結(jié)果顯示免疫組小鼠的患病率明顯低于對照組患病率,在14周齡時對照組小鼠全部發(fā)病,而免疫組只有40%的小鼠發(fā)病,該發(fā)病率一直延續(xù)到本試驗觀察期結(jié)束(20周齡)。免疫組小鼠的T1D發(fā)病時間約在12周齡,與對照組小鼠 (約10周齡) 相比明顯延緩 (圖2D)。
圖2 高劑量rgp96免疫顯著降低小鼠1型糖尿病患病率Fig. 2 Immunization with high-dose rgp96 prevents the onset of T1D in NOD mice. Schematic representation of the immunization schedule (A). Female NOD mice were immunized with the indicated amounts of rgp96 (B), or PBS, MSA or rgp96 (100 μg/time) (C) for three times at 6, 7 and 9 weeks of age, respectively. FACS analysis of the frequency of CD4+CD25+Foxp3+Tregs in the spleen of mice at week 10 (B). Blood glucose were measured weekly for eleven weeks after the last immunization (C). Diabetes incidence is shown (D). Mice were determined diabetic with two consecutive readings of blood glucose 〉13.3 mmol/L. Data show the±s of ten mice. Student's t-test was used to determine P-values. ** P〈 0.01 compared to PBS- or MSA-immunized mice.
2.3 高劑量rgp96免疫誘導Tregs產(chǎn)生
我們之前的研究發(fā)現(xiàn)高劑量天然提取的gp96免疫可以誘導Tregs產(chǎn)生,因此推測高劑量人工表達重組gp96免疫通過誘導Tregs抑制小鼠自身免疫應答,從而預防1型糖尿病。
NOD小鼠分別在第6、7、9周接受rgp96免疫,在第10周處死小鼠,通過流式細胞術(shù)檢測小鼠脾臟中Treg細胞的變化,結(jié)果顯示,用高劑量rgp96免疫的小鼠脾臟中Treg細胞的頻率明顯高于對照組小鼠 (PBS組對比免疫組,4.487±0.461 9 vs 8.760±0.390 9;MSA組對比免疫組,4.643±0.327 3 vs 8.760±0.390 9) (P〈0.01) (圖3)。
2.4 高劑量rgp96增強Tregs的增殖和抑制功能,上調(diào)Foxp3表達和IL-10分泌
進一步查明rgp96對Tregs的增殖和功能的影響。分離NOD小鼠脾臟淋巴細胞,用CFSE染色方法研究高濃度rgp96刺激對Tregs增殖能力的影響,結(jié)果顯示,相比PBS處理,rgp96孵育顯著提高Tregs的增殖能力(P〈0.05) (圖4A)。采用磁珠分選CD4+CD25+Tregs和CD4+CD25-T細胞,用100 μg/mL rgp96體外刺激Tregs 24 h,用CFSE染色的CD4+CD25-T細胞作為效應細胞 (Teff) 與預刺激的Tregs以3∶1的比例混合,在anti-CD3、anti-CD28和IL-2存在的條件下培養(yǎng)72 h,通過流式細胞術(shù)檢測Teff的增殖情況(圖4B)??梢钥吹?,高濃度rgp96刺激的Tregs對Teff增殖的抑制能力明顯高于未刺激的Tregs (P〈0.01) (圖4C)。同時,高濃度rgp96刺激顯著提高Tregs分泌IL-10的水平 (圖4D) 及Foxp3的表達 (圖4E)。
圖3 高劑量rgp96免疫誘導Tregs產(chǎn)生Fig. 3 High-dose rgp96 immunization induces Tregs in mice. Female NOD mice were immunized with PBS, MSA or rgp96 (100 μg/time) for three times. Mice were sacrificed at age week 10. Flow cytometric analysis was performed to determine the frequency of CD4+CD25+Foxp3+Tregs in the spleen of mice. Data show the±s of ten mice. Student's t-test was used to determine P-values. ** P〈0.01. Data are representative of two independent experiments.
圖4 高劑量rgp96增強Tregs的增殖和抑制功能,上調(diào)Foxp3表達和IL-10分泌Fig. 4 High-dose rgp96 promotes Tregs inhibitory function and proliferation, and up-regulates Foxp3 expression and IL-10 secretion. Mice spleenocytes (A-C) or Treg cells (D-E) were incubated with 100 μg/mL rgp96 or PBS in vitro in the present of 1 μg/mL anti-CD3, anti-CD28 Abs and 50 IU/mL IL-2. (A) Proliferation of Tregs was determined by CSFE staining 3 d later. (B) A total of 3×105CSFE-labeled CD4+CD25-Teff cells were co-cultured with Tregs at a ratio of 3:1 for 3 d. Teff cells cultured without Tregs served as a negative control. The CFSE-labelled Teff cell division cycle was measured by FACS. (C) The suppression rate for Teff proliferation was calculated. (D) The IL-10 levels in the supernatants of Tregs were measured by ELISA. (E) The Foxp3 expression of Tregs was detected by Western blotting. Student's t-test was used to determine P-values. ** P〈 0.01. Results are representative of three independent experiments, and FACS analyses were performed for at least five times in each experiment.
熱休克蛋白gp96誘導天然性免疫和獲得性免疫的功能已經(jīng)在多種動物模型中得到驗證,其作為免疫佐劑治療腫瘤和感染性疾病已應用于臨床試驗。其作用機理包括與APC的相互作用、TLR的轉(zhuǎn)錄后調(diào)控、抗原交叉呈遞以及激活CTL[15]。然而關(guān)于gp96用于自體免疫疾病預防或治療的研究卻很少被報道。本研究檢測了高劑量rgp96免疫對T1D的預防作用,發(fā)現(xiàn)在NOD小鼠模型中,高劑量rgp96免疫能夠有效地預防或者延緩NOD小鼠T1D的發(fā)生,高劑量rgp96顯著提高抑制性T細胞Tregs數(shù)目和抑制功能,上調(diào)其標志性轉(zhuǎn)錄因子Foxp3的水平并增強主要抑制性細胞因子IL-10的表達,提示高劑量的rgp96通過上調(diào)Tregs數(shù)量并增強其抑制功能,從而抑制導致小鼠糖尿病的自身免疫過度活化。
盡管一些報道表明Tregs與T1D的疾病進程相關(guān)[16],對于Tregs在T1D相關(guān)的病理學中的功能研究才剛剛開始。Tregs的頻率降低或功能受損會導致T1D的發(fā)生[17-18],抗胸腺細胞球蛋白 (Antithymocyte globulin,ATG) 通過誘導Tregs產(chǎn)生能夠有效預防或緩解T1D[19-20]。這些研究均表明Tregs對于預防和治療T1D的潛在價值。
NOD小鼠是模擬人類的自發(fā)出現(xiàn)由T淋巴細胞介導的胰島β細胞破壞而發(fā)生T1D的理想動物模型[21],被廣泛用于T1D相關(guān)的研究之中。本研究中,我們在NOD小鼠模型中檢測rgp96免疫對T1D的預防作用。結(jié)果顯示,高劑量rgp96可有效預防或延緩T1D的發(fā)生,鑒于gp96在臨床上已經(jīng)用于腫瘤等疾病的治療,因此采用rgp96誘導Tregs對于預防和治療T1D是一種安全有效的方法;同時,相對于體外大量培養(yǎng)Tregs治療糖尿病需要高成本[10],采用高劑量rgp96免疫的策略成本相對低廉。
本研究發(fā)現(xiàn)采用100 μg的單次免疫劑量可在小鼠體內(nèi)誘導高水平的Tregs,由于gp96自體腫瘤治療性疫苗在小鼠和腫瘤患者的合適免疫劑量分別為10?20 μg/次和25 μg/次[22-23],我們推測將來臨床試驗中150?300 μg/次的免疫劑量就可能在人體中誘導出高比例的Tregs,這需要進一步試驗驗證。
我們之前的研究發(fā)現(xiàn),天然提取gp96可直接與Tregs表面TLR2和TLR4相互作用,進而激活NF-κB信號通路,促進Foxp3、IL-10及TGF-β1的表達,從而增強Tregs的增殖能力和抑制性功能[11-12]。本研究采用昆蟲細胞表達的rgp96,高劑量免疫同樣能活化Tregs,證明人工表達的重組gp96與天然蛋白具有同樣的免疫學功能,更重要的是通過NOD小鼠試驗發(fā)現(xiàn)高劑量重組gp96免疫對1型糖尿病有顯著的預防效果,為開發(fā)基于重組gp96的新型糖尿病預防性和治療性疫苗提供了依據(jù)。
[1] Chinese Diabetes Society. China guidelines for diagnosis and treatment of type 1 diabetes. Clin Diabetes, 2013, 7(3): 6-27 (in Chinese).中華醫(yī)學會糖尿病學分會. 中國1型糖尿病診治指南. 糖尿病臨床, 2013, 7(3): 6-27.
[2] McDevitt HO, Unanue ER. Autoimmune diabetes mellitus—much progress, but many challenges. Adv Immunol, 2008, 100: 1-12.
[3] Bach JF, Chatenoud L. A historical view from thirty eventful years of immunotherapy in autoimmune diabetes. Semin Immunol, 2011, 23(3): 174-181.
[4] Peterson RA. Regulatory T-cells: diverse phenotypesintegral to immune homeostasis and suppression. Toxicol Pathol, 2012, 40(2): 186-204.
[5] Lindley S, Dayan CM, Bishop A, et al. Defective suppressor function in CD4+CD25+T-cells from patients with type 1 diabetes. Diabetes, 2005, 54(1): 92-99.
[6] Kukreja A, Cost G, Marker J, et al. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Investig, 2002, 109(1): 131-140.
[7] Bluestone JA, Tang QZ. Therapeutic vaccination using CD4+CD25+antigen-specific regulatory T cells. Proc Natl Acad Sci USA, 2004, 101(Suppl 2): 14622-14626.
[8] Bluestone JA, Trotta E, Xu DQ. The therapeutic potential of regulatory T cells for the treatment of autoimmune disease. Expert Opin Ther Targets, 2015, 19(8): 1091-1103.
[9] Tang QZ, Henriksen KJ, Bi MY, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med, 2004, 199(11): 1455-1465.
[10] Bluestone JA, Buckner JH, Fitch M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med, 2015, 7(315): 315ra189.
[11] Liu Z, Li XH, Qiu LP, et al. Treg suppress CTL responses upon immunization with HSP gp96. Eur J Immunol, 2009, 39(11): 3110-3120.
[12] Li XH, Liu Z, Yan XL, et al. Induction of regulatory T cells by high-dose gp96 suppresses murine liver immune hyperactivation. PLoS ONE, 2013, 8(7): e68997.
[13] Yan XL, Zhang XJ, Wang YZ, et al. Regulatory T cell depletion synergizes with gp96 mediated cellular responses and antitumor activity. Cancer Immunol Immunother, 2011, 60(12): 1763-1774.
[14] Chandawarkar RY, Wagh MS, Kovalchin JT, et al. Immune modulation with high-dose heat shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol, 2004, 16(4): 615-624.
[15] Randazzo M, Terness P, Opelz G, et al. Active-specific immunotherapy of human cancers with the heat shock protein Gp96-revisited. Int J Cancer, 2012, 130(10): 2219-2231.
[16] Zóka A, Barna G, Somogyi A, et al. Extension of the CD4+Foxp3+CD25?/lowregulatory T-cell subpopulation in type 1 diabetes mellitus. Autoimmunity, 2014, 48(5): 289-297.
[17] Passerini L, Di Nunzio S, Gregori S, et al. Functional type 1 regulatory T cells develop regardless of FoxP3 mutations in patients with IPEX syndrome. Eur J Immunol, 2011, 41(4): 1120-1131.
[18] Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+immunoregulatory T cells that control autoimmune diabetes. Immunity, 2000, 12(4): 431-440.
[19] Ogawa N, Minamimura K, Kodaka T, et al. Short administration of polyclonal anti-T cell antibody (ALS) in NOD mice with extensive insulitis prevents subsequent development of autoimmune diabetes. J Autoimmun, 2006, 26(4): 225-231.
[20] Simon G, Parker M, Ramiya V, et al. Murine antithymocyte globulin therapy alters disease progression in NOD mice by a time dependent induction of immunoregulation. Diabetes, 2008, 57(2): 405-414.
[21] Kikutani H, Makino S. The murine autoimmune diabetes model: NOD and related strains. Adv Immunol, 1992, 51: 285-322.
[22] Testori A, Richards J, Whitman E, et al. Phase III comparison of vitespen, an autologous tumorderived heat shock protein gp96 peptide complex vaccine, with physician's choice of treatment for stage IV melanoma: the C-100-21 study group. J Clin Oncol, 2008, 26(6): 955-962.
[23] Crane CA, Han SJ, Ahn B, et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 kDa chaperone protein. Clin Cancer Res, 2013, 19(1): 205-214.
(本文責編 陳宏宇)
High-dose heat shock protein gp96 immunization prevents type 1 diabetes via inducing regulatory T cells
Mi Chen, Xinghui Li, Huaguo Zheng, and Songdong Meng
CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
Type 1 diabetes (T1D), the most prevalent human autoimmune disease, occurs in genetically susceptible individuals. Regulatory T cells (Tregs) are defective in T1D setting. Therefore, efforts to repair or restore Tregs in T1D may prevent or reverse this autoimmune disease. Here, we studied the potential role of rgp96 in preventing T1D, using non-obese diabetic (NOD) mice as an animal model. High-dose rgp96 immunization elicited efficient protection of mice against T1D, as evidenced by stable blood glucose, decreased disease incidence. Significantly increased CD4+CD25+Foxp3+Tregs were observed in immunized mice. In vitro co-culture experiments demonstrated that rgp96 stimulation enhanced Treg proliferation and suppressive function by up-regulation of Foxp3 and IL-10. Our work shows that activation of Tregs by high-dose rgp96 immunization protects against T1D via inducing regulatory T cells and provides preventive and therapeutic potential for the development of an rgp96-based vaccine against T1D.
gp96, Tregs, type 1 diabetes, immunotherapy, vaccine
Songdong Meng. Tel: +86-10-64807350; E-mail: mengsd@im.ac.cn
Received:February 20, 2016;Accepted:April 6, 2016
Supported by:National Natural Science Foundation of China (Nos. 31230026, 81321063, 81471960), Shenzhen Science and Technology Innovation Committee (Nos. JSGG20140516112337659, CYZZ20130826112642412).
國家自然科學基金 (Nos. 31230026, 81321063, 81471960),深圳市科技創(chuàng)新委員會項目 (Nos. JSGG20140516112337659, CYZZ20130826112642412) 資助。