潘艷娜,李慧玉,郝新奇(鄭州大學(xué)化學(xué)與分子工程學(xué)院,河南 鄭州45000;上海電力學(xué)院數(shù)理學(xué)院,上海00090)
Sirtuins蛋白與腫瘤關(guān)系的研究進(jìn)展
潘艷娜1,2,李慧玉2,郝新奇1(1鄭州大學(xué)化學(xué)與分子工程學(xué)院,河南 鄭州450001;2上海電力學(xué)院數(shù)理學(xué)院,上海200090)
Sirtuins是一類依賴于煙酰胺腺嘌呤二核苷酸NAD+的蛋白去乙?;福甋irtuin蛋白家族通過(guò)與多種底物進(jìn)行去乙酰化作用(包括組蛋白、轉(zhuǎn)錄因子和代謝酶)來(lái)調(diào)節(jié)轉(zhuǎn)錄、細(xì)胞存活、DNA損傷和修復(fù)以及壽命等多種生物過(guò)程.本文將分別對(duì)sirtuin家族成員作一介紹,總結(jié)有關(guān)sirtuins對(duì)于癌癥在生物方面的主要發(fā)現(xiàn),并從基因研究層面討論sirtuins與腫瘤的關(guān)系.
Sirtuins;HDAC;去乙?;荒[瘤;抑制劑
表觀遺傳學(xué)是研究基因的核苷酸序列不發(fā)生改變的情況下,基因表達(dá)的可遺傳的改變,包括DNA修飾、蛋白質(zhì)翻譯后修飾等[1].常見的蛋白質(zhì)翻譯后修飾過(guò)程有磷酸化、乙?;?、甲基化、泛素化等.近年來(lái),人們對(duì)蛋白質(zhì)翻譯后修飾乙酰過(guò)程中經(jīng)典的Ⅰ類和Ⅱ類組蛋白去乙?;福╤istone deacetylase,HDAC)的研究較為透徹,已成為抗腫瘤藥物設(shè)計(jì)的熱門靶標(biāo),已有多個(gè)HDACs抑制劑被美國(guó)FDA批準(zhǔn)上市用于腫瘤的治療[2],我國(guó)首個(gè)HDAC抑制劑西達(dá)本胺于2014年12月底被CFDA批準(zhǔn)上市.
Sirtuins是一類依賴于NAD+和核心區(qū)域高度保守的蛋白去乙?;负虯DP核糖基轉(zhuǎn)移酶[3],在組蛋白的乙酰化/去乙?;虮磉_(dá)調(diào)控中起重要作用.哺乳動(dòng)物中主要有七種sirtuins蛋白,即SIRT1-7,可與p53、FOXO、PGC-1α、NF-κB、Ku70等蛋白相互作用,參與細(xì)胞的應(yīng)激反應(yīng)系統(tǒng),調(diào)節(jié)基因表達(dá)、DNA損傷修復(fù)、代謝和存活等多種生物過(guò)程[4-5].具有調(diào)節(jié) sirtuins活性能力的小分子被認(rèn)為具有治療包括癌癥、帕金森、肥胖、糖尿病及其它衰老相關(guān)疾病的潛力[6].
過(guò)去十幾年的研究揭示出sirtuins在腫瘤發(fā)生發(fā)展中具有雙重作用,即同時(shí)具有腫瘤抑制和腫瘤促進(jìn)的作用,這些研究促進(jìn)了對(duì)sirtuins和小分子抑制劑作用機(jī)制的認(rèn)識(shí),有利于進(jìn)一步確立sirtuins作為治療靶標(biāo)的有效性.本文將從基因研究層面綜述SIRT1-7與腫瘤的關(guān)系.
1.1 SIRT1的腫瘤抑制作用SIRT1是迄今為止sirtuins家族成員中最為重要,且研究最為廣泛的一員.對(duì)SIRT1轉(zhuǎn)基因小鼠的研究顯示,SIRT1過(guò)表達(dá)能夠抑制胃腸道腫瘤[7]、惡性腫瘤、原發(fā)性腫瘤,以及肝癌[8]的發(fā)病率.SIRT1的腫瘤抑制作用可能來(lái)自其通過(guò)調(diào)節(jié)染色質(zhì)和DNA修復(fù)而穩(wěn)定基因組的能力.Wang等[9]研究發(fā)現(xiàn),與對(duì)照組相比,SIRT1+/-p53+/-小鼠在不同的組織中易產(chǎn)生腫瘤細(xì)胞.SIRT1的腫瘤抑制作用也可能是由于其具有通過(guò)組蛋白的去乙?;瘉?lái)抑制促瘤基因轉(zhuǎn)錄的能力[5].BRCA1與SIRT1啟動(dòng)子結(jié)合并增加SIRT1表達(dá),反過(guò)來(lái)會(huì)通過(guò)H3K9的去乙酰化抑制存活蛋白.因此,BRCA1的切除或突變導(dǎo)致存活蛋白水平的增加,并通過(guò)抑制SIRT1的表達(dá)來(lái)促進(jìn)腫瘤生長(zhǎng)[10].SIRT1的腫瘤抑制作用還可能來(lái)自于其去乙?;褪Щ钅承┠[瘤促進(jìn)轉(zhuǎn)錄因子的能力,比如HIF-1α和NF-κB.在小鼠異種移植模型中通過(guò)去乙?;褪Щ頗IF-1α,SIRT1的過(guò)表達(dá)可以抑制纖維肉瘤HT1080腫瘤的生長(zhǎng)和血管再生[11].SIRT1可將NF-κB的RelA/p65亞單元中的310位賴氨酸殘基去乙?;?,并抑制它的轉(zhuǎn)錄活性,使其對(duì)TNF-α所誘導(dǎo)的凋亡敏感性增加[12].
1.2 SIRT1的腫瘤促進(jìn)作用SIRT1在體內(nèi)的致癌活性可從小鼠基因組的角度研究[13].Leko等[14]的研究表明在患有腸道腫瘤的APC(+/min)小鼠模型中,SIRT1的腸上皮細(xì)胞特異性失活會(huì)減少腫瘤的數(shù)量和大?。谛∈竽P椭械囊豁?xiàng)研究中顯示,SIRT1的敲除會(huì)抑制小鼠骨髓細(xì)胞BCRABL的轉(zhuǎn)錄和慢性骨髓性白血?。╟hronic myelocytic leukimia,CML)的發(fā)展[10].此外,在多種癌細(xì)胞中抑制或減少SIRT1可抑制癌細(xì)胞增殖[15].Pten+/-小鼠的SIRT1過(guò)表達(dá)會(huì)導(dǎo)致甲狀腺和前列腺腫瘤的發(fā)生,基于對(duì)mRNA分析發(fā)現(xiàn),當(dāng)SIRT1過(guò)表達(dá)時(shí),c-MYC的水平增加[16].
SIRT1能夠通過(guò)去乙?;鸵种苝53的功能來(lái)促進(jìn)細(xì)胞存活[17].該研究支持了SIRT1的致癌作用是通過(guò)抑制腫瘤調(diào)節(jié)而抑制細(xì)胞死亡的[18].SIRT1通過(guò)將p53中賴氨酸的382位殘基去乙酰化對(duì)轉(zhuǎn)錄激活進(jìn)行負(fù)調(diào)節(jié)[17].過(guò)表達(dá)的SIRT1通過(guò)DNA損傷和氧化應(yīng)激使p53依賴的細(xì)胞凋亡顯著降低.Bizzarri等[19]發(fā)現(xiàn)SIRT1是褪黑激素在癌細(xì)胞中凋亡的主要原因.根據(jù)這一理論發(fā)現(xiàn)p53乙?;胶头核氐鞍走B接酶MDM2水平大大降低和下調(diào),而相反的是,p300在褪黑激素中培養(yǎng)的MCF-7乳腺癌細(xì)胞則過(guò)表達(dá)[20],這與褪黑素對(duì)肺癌細(xì)胞的抑制結(jié)果一致[21].
FOXO轉(zhuǎn)錄因子是腫瘤抑制重要的家庭成員,參與調(diào)節(jié)細(xì)胞周期控制、凋亡和DNA修復(fù)的基因表達(dá).SIRT1可以通過(guò)FOXO家族成員的去乙?;瘉?lái)調(diào)節(jié)各種細(xì)胞過(guò)程.例如SIRT1將FOXO1去乙?;⒁种艶OXO1介導(dǎo)的前列腺癌細(xì)胞凋亡[22].SIRT1的FOXO1激活與人乳腺癌MCF-7細(xì)胞的他莫昔芬耐藥密切相關(guān)[23].此外,SIRT1介導(dǎo)的FOXO3a去乙?;兄谄浞核鼗徒到猓?4].SIRT1雖能抑制FOXO3誘導(dǎo)的細(xì)胞死亡,但也會(huì)使FOXO3介導(dǎo)的細(xì)胞周期和抗氧化應(yīng)激能力增加[5],這些都表明 SIRT1對(duì)FOXO的調(diào)節(jié)過(guò)程比較復(fù)雜.
SIRT1在DNA修復(fù)和基因組穩(wěn)定中的作用也可以解釋SIRT1的腫瘤促進(jìn)作用.Wang等[25]課題組研究表明 SIRT1有助于 CML細(xì)胞中耐藥性的突變.SIRT1通過(guò)調(diào)節(jié)KU70和NBS1這些過(guò)程中的關(guān)鍵組分來(lái)改變同源重組和易錯(cuò)的非同源末端連接的DNA修復(fù)過(guò)程.SIRT1增強(qiáng)錯(cuò)誤DNA損傷修復(fù),導(dǎo)致CML耐藥而引起的基因突變[25].SIRT1也可以通過(guò)調(diào)節(jié)表觀遺傳標(biāo)記促進(jìn)癌癥發(fā)展.SIRT1和Suv39h1在核糖體DNA中建立沉默染色質(zhì)基因,抑制rRNA轉(zhuǎn)錄,從而保護(hù)細(xì)胞免受能量剝奪依賴性的細(xì)胞凋亡[26].SIRT1與DNMT1,DNMT3B和PcG蛋白形成多梳抑制復(fù)合物4[27],在由可能引起癌癥風(fēng)險(xiǎn)的狀態(tài)下,多梳抑制復(fù)合物4的誘導(dǎo)形成和再定位可導(dǎo)致癌癥特異性異常DNA甲基化和轉(zhuǎn)錄沉默[27].而且,通過(guò)去乙?;疕3K9和調(diào)節(jié)H3K9me3甲基轉(zhuǎn)移酶Suv39h1的活性和穩(wěn)定性,SIRT1可促進(jìn)H3K9me3以及沉默染色質(zhì)的形成[28].
SIRT1和c-MYC形成陽(yáng)性的反饋回路,即c-MYC可以增加SIRT1的表達(dá),SIRT1反過(guò)來(lái)使c-MYC乙?;?,穩(wěn)定并增強(qiáng)c-MYC的轉(zhuǎn)錄活性.這種SIRT1-c-MYC陽(yáng)性反饋環(huán)路的激活通過(guò)抑制凋亡和衰老促進(jìn)c-MYC誘導(dǎo)的細(xì)胞增殖[29].在神經(jīng)母細(xì)胞瘤中,N-MYC使 SIRT1上調(diào),反過(guò)來(lái)通過(guò)參與 MKP3和ERK正反饋環(huán)路促進(jìn)腫瘤形成.用SIRT1抑制劑cambinol預(yù)防性治療可減少TH-MYCN轉(zhuǎn)基因小鼠的腫瘤發(fā)生[30].然而,SIRT1和c-MYC之間的負(fù)反饋環(huán)也被報(bào)道會(huì)抑制癌細(xì)胞增殖[31].
針對(duì)小鼠的SIRT2敲除實(shí)驗(yàn)表明,SIRT2具有腫瘤抑制作用.SIRT2敲除的小鼠比野生型小鼠長(zhǎng)有更多的腫瘤.這種影響是在細(xì)胞周期中通過(guò)SIRT2對(duì)APC/C的乙?;{(diào)節(jié)實(shí)現(xiàn)的[32].該假設(shè)說(shuō)明SIRT2對(duì)細(xì)胞周期有重要的作用,因此如果沒(méi)有SIRT2,細(xì)胞就會(huì)異常分裂而導(dǎo)致腫瘤產(chǎn)生.但是在另一項(xiàng)研究[33]中并未發(fā)現(xiàn)SIRT2-/-小鼠會(huì)增加自發(fā)性腫瘤形成,與野生型細(xì)胞相比,SIRT2-/-細(xì)胞增加了DNA的損傷和異常細(xì)胞周期的進(jìn)展.在達(dá)到一歲的小鼠敲除實(shí)驗(yàn)研究中發(fā)現(xiàn),雖然沒(méi)有觀察到自發(fā)性腫瘤增加的發(fā)生,但在誘導(dǎo)皮膚腫瘤模型中觀察到腫瘤發(fā)生增加[33].Lin等[34]研究認(rèn)為SIRT2可以去乙?;⒋龠M(jìn)ATP-檸檬酸裂解酶的降解,ATP-檸檬酸裂解酶的降解對(duì)脂質(zhì)生物合成非常重要,并能促進(jìn)腫瘤生長(zhǎng).SIRT2的抑制促進(jìn)了ATP-檸檬酸裂解酶的穩(wěn)定性并可促進(jìn)腫瘤生長(zhǎng).此外,SIRT2可以通過(guò)表觀遺傳沉默腫瘤抑制因子控制組蛋白乙酰化而發(fā)揮腫瘤促進(jìn)作用,如乳腺癌細(xì)胞中的ARRDC3[35].
與SIRT2的腫瘤抑制作用相反,在許多癌細(xì)胞中,已經(jīng)被證明SIRT2的敲低或藥理學(xué)抑制可以抑制癌細(xì)胞的增殖和生長(zhǎng)[36].抑制SIRT2腫瘤抑制蛋白的水平增加,如p53和p21[37].通過(guò)調(diào)節(jié)p53的乙?;絹?lái)增加p53,但對(duì)于如何增加p21,機(jī)制尚不清楚.SIRT2抑制或降低可以干擾癌細(xì)胞的代謝,例如,Warburg效應(yīng).LDH-A在許多癌細(xì)胞中過(guò)表達(dá),是癌細(xì)胞中乳酸產(chǎn)生量增加的原因,而SIRT2可以去乙酰化并激活LDH-A[38].因此抑制SIRT2可以潛在地抑制癌細(xì)胞中乳酸的產(chǎn)生并破壞癌細(xì)胞代謝[38].
對(duì)于抑制或敲低SIRT2可以抵抗惡性細(xì)胞增生,研究人員提出了幾種可能的機(jī)制.一種機(jī)制是SIRT2有助于穩(wěn)定或激活癌基因蛋白,如MYC,K-RAS和FOXO.因此,抑制SIRT2將使這些癌蛋白失去穩(wěn)定性或失活,從而抑制腫瘤.據(jù)報(bào)道,K-RAS在許多癌癥中可引起激活突變,并促進(jìn)其活動(dòng)和癌細(xì)胞生長(zhǎng),而SIRT2可以使K-RAS去乙?;?9].Liu等[40]課題組研究報(bào)道在神經(jīng)母細(xì)胞瘤和胰腺癌細(xì)胞中,抑制或敲低SIRT2可以使c-MYC和N-MYC癌蛋白下調(diào),這是通過(guò)抑制SIRT2而影響泛素連接酶NEDD4的轉(zhuǎn)錄來(lái)實(shí)現(xiàn)的.SIRT2也已被報(bào)道去乙?;⒔档虵OXO1的水平/活性[41],F(xiàn)OXO1可以通過(guò)激活自噬而增加細(xì)胞死亡.因此,SIRT2抑制可以通過(guò)增加FOXO1活性來(lái)促進(jìn)細(xì)胞死亡[42].此外,SIRT2與AKT的結(jié)合對(duì)胰島素的活化至關(guān)重要,這顯示抑制SIRT2對(duì)癌癥的治療具有重要的作用[43].
SIRT3主要存在于線粒體,可以調(diào)節(jié)許多線粒體蛋白的活性。SIRT3-/-小鼠或細(xì)胞可以減少ATP產(chǎn)生和增加ROS水平[5],因此SIRT3的主要功能可能是促進(jìn)線粒體代謝并抑制活性氧(reactive oxygen species,ROS)的產(chǎn)生.
Finley等[44]研究報(bào)道SIRT3-/-小鼠超過(guò)24個(gè)月后會(huì)生長(zhǎng)乳腺腫瘤,而SIRT3+/+小鼠則沒(méi)有,這類似于癌細(xì)胞中的Warburg效應(yīng),SIRT3-/-MEF細(xì)胞的ROS水平增加和糖酵解功能增強(qiáng).相應(yīng)地,SIRT3-/-MEF細(xì)胞比SIRT3+/+細(xì)胞增殖更快,這種效應(yīng)是由于ROS的增加和脯氨酸羥化酶活性的減少引起的,從而導(dǎo)致缺乏 SIRT3時(shí) HIF-1α 的水平增加[44-45].SIRT3-/-MEF細(xì)胞中ROS水平升高與線粒體DNA損傷的增加緊密相關(guān)[46].SIRT3敲除本身不會(huì)轉(zhuǎn)化MEF細(xì)胞,但當(dāng)另一個(gè)致癌基因,Ras或Myc過(guò)表達(dá)時(shí)就容易轉(zhuǎn)化MEF細(xì)胞.與此相反,SIRT3+/+MEF細(xì)胞不能通過(guò)Ras或Myc的過(guò)表達(dá)而被轉(zhuǎn)化[46].在人類癌細(xì)胞中,SIRT3的過(guò)表達(dá)逆轉(zhuǎn)Warburg效應(yīng)并減少細(xì)胞增殖[44].
Ozden等[47]指出SIRT3可以脫乙?;?,其可以增加線粒體生物能量和糖酵解,從而增加丙酮酸脫氫酶癌細(xì)胞的活性.此外,SIRT3結(jié)合并將線粒體丙酮酸載體1(MPC1)去乙?;鰪?qiáng)其功能,從而抑制結(jié)腸癌細(xì)胞生長(zhǎng)[48].SIRT3部分通過(guò)親環(huán)蛋白D的脫乙?;团c之相伴的從線粒體中解離來(lái)的己糖激酶Ⅱ來(lái)促進(jìn)氧化磷酸化(與 Warburg效應(yīng)相反)[49].通過(guò)對(duì)心臟肥厚的研究提出SIRT3腫瘤抑制作用的另一種可能的分子機(jī)制[50].SIRT3顯示通過(guò)激活FOXO3a能夠抑制心臟肥大[51],而FOXO3a可增加MnSOD的水平同時(shí)降低ROS的水平[50].ROS可以激活RAS,進(jìn)而通過(guò)激活MAPK和AKT途徑來(lái)促進(jìn)細(xì)胞生長(zhǎng)和增殖[50].SIRT3可以使F-box蛋白Skp2去乙?;?,并使其變得不穩(wěn)定,而Skp2是一種通過(guò)多種腫瘤抑制因子的泛素化和降解來(lái)促進(jìn)腫瘤發(fā)生的蛋白質(zhì)[52].
SIRT3也被報(bào)道存在于細(xì)胞核中.細(xì)胞核中的SIRT3抑制核編碼的線粒體和一些應(yīng)激相關(guān)基因表達(dá),包括Zfat和Wapal,ZFAT和WAPAL具有抗凋亡和致癌功能.通過(guò)抑制它們的表達(dá),SIRT3可以抑制腫瘤形成[53].相比之下,SIRT3也可以結(jié)合并使KU70去乙酰化,保護(hù)細(xì)胞免受心肌細(xì)胞中細(xì)胞死亡的應(yīng)激壓力[54].
SIRT4分布于線粒體中,具有ADP核糖基轉(zhuǎn)移酶活性,脂酰胺酶和生物素酶活性[55].SIRT4可抑制GDH,從而抑制氨基酸誘導(dǎo)胰腺β細(xì)胞胰島素的分泌[56],這可能有助于SIRT4的腫瘤抑制作用.SIRT4在許多癌癥中有所下調(diào),抑制SIRT4使mTORC1上調(diào),谷氨酰胺代謝以及細(xì)胞增殖[57].SIRT4已被證明通過(guò)調(diào)節(jié)谷氨酰胺代謝作為腫瘤抑制因子,提示在谷氨酰胺依賴性腫瘤中具有你潛在的治療用途,如β細(xì)胞淋巴瘤[58].另外,C末端結(jié)合蛋白SIRT4的抑制和GDH的酶修飾已被證明可促進(jìn)乳腺癌細(xì)胞中的谷氨酸分解[59].除了抑制谷氨酰胺代謝,SIRT4與DNA損傷和修復(fù)也有關(guān)系[60].在同種異體移植腫瘤形成測(cè)試中,轉(zhuǎn)化的SIRT4-/-MEF細(xì)胞比轉(zhuǎn)化的SIRT4+/+MEF細(xì)胞形成更大的腫瘤[60].18~26個(gè)月齡的SIRT4-/-小鼠比SIRT4+/+小鼠長(zhǎng)出更多的肺腫瘤[60].
SIRT5是另一種存在于線粒體的Sirtuins家族蛋白.蛋白質(zhì)組學(xué)研究表明當(dāng)敲除SIRT5時(shí),可以增加數(shù)百種蛋白質(zhì)的琥珀酰化水平,顯示SIRT5參與調(diào)節(jié)多種代謝途徑[61].此外,SIRT5介導(dǎo)FOXO3的去乙酰化在保護(hù)香煙提取物誘導(dǎo)凋亡的肺上皮細(xì)胞中起著至關(guān)重要的作用[62].
SIRT6去乙?;孜锇ńM蛋白 H3K56[5]和H3K9[63].SIRT6通過(guò)去乙酰化H3與不同的轉(zhuǎn)錄因子相聯(lián)系,如HIF-1α和MYC,SIRT6抑制這些轉(zhuǎn)錄因子靶基因的轉(zhuǎn)錄[64].SIRT6的去除長(zhǎng)鏈脂肪?;幕钚员热ヒ阴;幕钚砸邤?shù)百倍,并且該去長(zhǎng)鏈脂?;钚阅軌虼龠M(jìn)TNFα分泌[65].SIRT6的脫乙酰酶活性可以在特定條件下被刺激,例如細(xì)胞核小體[66]和游離脂肪酸[67]可以增加SIRT6在體外的去乙酰活性,顯示出SIRT6的去長(zhǎng)鏈脂?;腿ヒ阴;钚远伎梢员徽{(diào)節(jié).
SIRT6能夠促進(jìn)DNA修復(fù)和基因組穩(wěn)定性并抑制腫瘤的發(fā)生[68].永生化的SIRT6-/-MEF細(xì)胞比永生化的SIRT6+/+MEF更具致瘤作用[64],主要是由于通過(guò)對(duì)轉(zhuǎn)錄因子HIF-1α和MYC的作用引起代謝的重新編碼,而不是因?yàn)榛蚪M不穩(wěn)定或癌基因的激活[64].
SIRT7是一種核沉默調(diào)節(jié)蛋白,富含于核仁[69].SIRT7也是H3K18的特異性去乙?;福?0],它通過(guò)控制rRNA,tRNA和核糖體蛋白質(zhì)合成[71]來(lái)調(diào)節(jié)核糖體的生物過(guò)程.SIRT7mRNA在乳腺癌和甲狀腺癌中高表達(dá),顯示SIRT7可能參與癌癥的發(fā)生過(guò)程[72].SIRT7可以通過(guò)特定的轉(zhuǎn)錄因子招募,如ELK4[71]和MYC[73],并通過(guò)H3K18的去乙?;瘉?lái)抑制基因的表達(dá).SIRT7的敲低會(huì)抑制軟瓊脂上的纖維肉瘤細(xì)胞系HT1080和骨肉瘤細(xì)胞系U2OS腫瘤細(xì)胞的形成,并使小鼠異種移植模型中膠質(zhì)瘤細(xì)胞系U251的腫瘤減小[71].SIRT7敲低也抑制腺病毒E1A誘導(dǎo)的細(xì)胞轉(zhuǎn)化,這可能由某些增加的基因表達(dá)所調(diào)控,如NME1和通過(guò)H3K18乙?;暮颂求w蛋白基因[71].SIRT7在人類胃癌組織中具有高表達(dá)的能力,敲低SIRT7能夠抑制細(xì)胞增殖過(guò)程和體外克隆形成.皮下移植瘤實(shí)驗(yàn)同樣證明SIRT7表達(dá)降低能夠顯著抑制胃癌細(xì)胞生長(zhǎng),這種促癌作用主要是通過(guò)SIRT7的組蛋白去乙?;赣绊懢哂锌拱┳饔玫膍icroRNA-34a的表達(dá)來(lái)實(shí)現(xiàn)的[74].
前期研究表明sirtuins與腫瘤的發(fā)生和發(fā)展密切相關(guān),雖然在腫瘤治療方面表現(xiàn)出了一定的潛在應(yīng)用前景,但還需要通過(guò)深入研究以闡明sirtuins家族每一成員的生物功能.雖然目前HDAC抑制劑已經(jīng)上市,但是對(duì)于同屬去乙?;傅膕irtuins家族則沒(méi)有抑制劑上市.因此,針對(duì)sirtuins的結(jié)構(gòu)及功能的認(rèn)識(shí)還需要更全面和深入的研究.隨著人們對(duì)sirtuins結(jié)構(gòu)和功能的認(rèn)識(shí)加深,大量與sirtuins結(jié)構(gòu)及功能的信息被研究報(bào)道,這些研究結(jié)果正是創(chuàng)新藥物研發(fā)的重要基礎(chǔ),因此將來(lái)基于sirtuins結(jié)構(gòu)與功能的新藥發(fā)現(xiàn)策略將有可能推動(dòng)藥物研發(fā)的進(jìn)一步發(fā)展,從而為基于sirtuins為靶點(diǎn)的藥物研發(fā)打下堅(jiān)實(shí)的基礎(chǔ).
[1]Conway SJ,Woster PM,Greenlee WJ,et al.Epigenetics:Novel Therapeutics Targeting Epigenetics[J].J Med Chem,2016,59(4):1247-1248.
[2]Guha M.HDAC inhibitors still need a home run,despite recent approval[J].Nat Rev Drug Discov,2015,14(4):225-226.
[3]Finkel T,Deng CX,Mostoslavsky R.Recent progress in the biology and physiology of sirtuins[J].Nature,2009,460(7255):587-591.
[4]Mouchiroud L,Houtkooper RH,Moullan N,et al.The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling[J].Cell,2013,154(2):430-441.
[5]Carafa V,Rotili D,F(xiàn)orgione M,et al.Sirtuin functions and modulation:from chemistry to the clinic[J].Clin Epigenetics,2016,8:61.
[6]Yao Y,Yang Y,Zhu WG.Sirtuins:nodes connecting aging,metabolism and tumorigenesis[J].Curr Pharm Des,2014,20(11):1614-1624.
[7]Firestein R,Blander G,Michan S,et al.The SIRT1 deacetylase suppresses intestinal tumorigenesis andcolon cancer growth[J].PLoS ONE,2008,3(4):e2020.
[8]Herranz D,Mu?oz-Martin M,Ca?amero M,et al.Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer[J].Nat Commun,2010,1:3.
[9]Wang RH,Sengupta K,Li C,et al.Impaired DNA damage response,genome instability,and tumorigenesis in SIRT1 mutant mice[J].Cancer Cell,2008,14(4):312-323.
[10]Wang RH,Zheng Y,Kim HS,et al.Interplay among BRCA1,SIRT1,and Survivin during BRCA1-associated tumorigenesis[J].Mol Cell,2008,32(1):11-20.
[11]Yeung F,Hoberg JE,Ramsey CS,et al.Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase[J].EMBO J,2004,23(12):2369-2380.
[12]Lim JH,Lee YM,Chun YS,et al.Sirtuin 1 modulates cellular responses to hypoxia by deacetylatinghypoxia-inducible factor 1alpha[J].Mol Cell,2010,38(6):864-878.
[13]Roth M,Chen WY.Sorting out functions of sirtuins in cancer[J].Oncogene,2014,33(13):1609-1620.
[14]Leko V,Park GJ,Lao U,et al.Enterocyte-specific inactivation of SIRT1 reduces tumor load in the APC(+/min)mouse model[J].PLoS ONE,2013,8(6):e66283.
[15]Chen L.Medicinal chemistry of sirtuin inhibitors[J].Curr Med Chem,2011,18(13):1936-1946.
[16]Herranz D,Maraver A,Ca?amero M,et al.SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency[J].Oncogene,2013,32(34):4052-4056.
[17]Luo J,Nikolaev AY,Imai S,et al.Negative control of p53 by Sir2alpha promotes cell survival under stress[J].Cell,2001,107(2):137-148.
[18]Lin Z,F(xiàn)ang D.The Roles of SIRT1 in Cancer[J].Genes Cancer,2013,4(3-4):97-104.
[19]Bizzarri M,Proietti S,Cucina A,et al.Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer:a review[J].Expert Opin Ther Targets,2013,17(12):1483-1496.
[20]Proietti S,Cucina A,Dobrowolny G,et al.Melatonin down-regulates MDM2 gene expression and enhances p53 acetylation in MCF-7 cells[J].J Pineal Res,2014,57(1):120-129.
[21]Ma Z,Yang Y,F(xiàn)an C,et al.Melatonin as a potential anticarcinogen for non-small-cell lung cancer[J].Oncotarget,2016,7(29):46768-46784.
[22]Yang Y,Hou H,Haller EM,et al.Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation[J].EMBO J,2005,24(5):1021-1032.
[23]Choi HK,Cho KB,Phuong NT,et al.SIRT1-mediated FoxO1deacetylation is essential for multidrugresistance-associated protein 2 expression in tamoxifen-resistant breast cancer cells[J].Mol Pharm,2013,10(7):2517-2527.
[24]Wang F,Chan CH,Chen K,et al.Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation[J].Oncogene,2012,31(12):1546-1557.
[25]Wang Z,Yuan H,Roth M,et al.SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells[J].Oncogene,2013,32(5):589-598.
[26]Murayama A,Ohmori K,F(xiàn)ujimura A,et al.Epigenetic control of rDNA loci in response to intracellular energy status[J].Cell,2008,133(4):627-639.
[27]O’Hagan HM,Wang W,Sen S,et al.Oxidative damage targets complexes containing DNAmethyltransferases,SIRT1,and polycomb members to promoter CpG Islands[J].Cancer Cell,2011,20(5):606-619.
[28]Bosch-Presegué L,Raurell-Vila H,Marazuela-Duque A,et al.Stabilization of Suv39H1 by SirT1 is partof oxidative stress response and ensures genome protection[J].Mol Cell,2011,42(2):210-223.
[29]Menssen A,Hydbring P,Kapelle K,et al.The c-MYC oncoprotein,the NAMPT enzyme,the SIRT1-inhibitor DBC1,and the SIRT1 deacetylase form a positive feedback loop[J].Proc Natl Acad Sci USA,2012,109(4):E187-E196.
[30]Marshall GM,Liu PY,Gherardi S,et al.SIRT1 promotes N-Myc oncogenesis through a positivefeedback loop involving the effects of MKP3 and ERK on N-Myc protein stability[J].PLoS Genet,2011,7(6):e1002135.
[31]Yuan J,Minter-Dykhouse K,Lou Z.A c-Myc-SIRT1 feedback loop regulates cell growth and transformation[J].J Cell Biol,2009,185(2):203-211.
[32]Kim HS,Vassilopoulos A,Wang RH,et al.SIRT2 maintains genome integrity and suppressestumorigenesis through regulating APC/C activity[J].Cancer Cell,2011,20(4):487-499.
[33]Serrano L,Martínez-Redondo P,Marazuela-Duque A,et al.The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation[J].Genes Dev,2013,27(6):639-653.
[34]Lin R,Tao R,Gao X,et al.Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis andtumor growth[J].Mol Cell,2013,51(4):506-518.
[35]Soung YH,Pruitt K,Chung J.Epigenetic silencing of ARRDC3 expression in basal-like breast cancer cells[J].Sci Rep,2014,4:3846.
[36]Heltweg B,Gatbonton T,Schuler AD,et al.Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes[J].Cancer Res,2006,66(8):4368-4377.
[37]McCarthy AR,Sachweh MC,Higgins M,et al.Tenovin-D3,a novel small-molecule inhibitor of sirtuinSirT2,increases p21(CDKN1A)expression in a p53-independent manner[J].Mol Cancer Ther,2013,12(4):352-360.
[38]Zhao D,Zou SW,Liu Y,et al.Lysine-5 acetylation negatively regulates lactate dehydrogenase A and isdecreased in pancreatic cancer[J].Cancer Cell,2013,23(4):464-476.
[39]Yang MH,Laurent G,Bause AS,et al.HDAC6 and SIRT2 regulate the acetylation state and oncogenicactivity of mutant K-RAS[J].Mol Cancer Res,2013,11(9):1072-1077.
[40]Liu PY,Xu N,Malyukova A,et al.The histone deacetylase SIRT2 stabilizes Myc oncoproteins[J].Cell Death Differ,2013,20(3):503-514.
[41]Jing E,Gesta S,Kahn CR.SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation[J].Cell Metab,2007,6(2):105-114.
[42]Zhao Y,Yang J,Liao W,et al.Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity[J].Nat Cell Biol,2010,12(7):665-675.
[43]Ramakrishnan G,Davaakhuu G,Kaplun L,et al.Sirt2 deacetylase is a novel AKT binding partnercritical for AKT activation by insulin[J].J Biol Chem,2014,289(9):6054-6066.
[44]Finley LW,Carracedo A,Lee J,et al.SIRT3 opposes reprogramming of cancer cell metabolism throughHIF1α destabilization[J].Cancer Cell,2011,19(3):416-428.
[45]Bell EL,Emerling BM,Ricoult SJ,et al.SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production[J].Oncogene,2011,30(26):2986-2996.
[46]Kim HS,Patel K,Muldoon-Jacobs K,et al.SIRT3 is a mitochondria-localized tumor suppressorrequired for maintenance of mitochondrial integrity and metabolism during stress[J].Cancer Cell,2010,17(1):41-52.
[47]Ozden O,Park SH,Wagner BA,et al.SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells[J].Free Radic Biol Med,2014,76:163-172.
[48]Liang L,Li Q,Huang L,et al.Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity[J].Biochem Biophys Res Commun,2015,468(4):807-812.
[49] Shulga N,Wilson-Smith R,Pastorino JG.Retraction:Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinaseⅡfrom the mitochondria[J].J Cell Sci,2016,129(13):2684.
[50]Sundaresan NR,Gupta M,Kim G,et al.Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice[J].J Clin Invest,2009,119(9):2758-2771.
[51]Tseng AH,Shieh SS,Wang DL.SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage[J].Free Radic Biol Med,2013,63:222-234.
[52]Inuzuka H,Gao D,F(xiàn)inley LW,et al.Acetylation-dependent regulation of Skp2 function[J].Cell,2012,150(1):179-193.
[53]Iwahara T,Bonasio R,Narendra V,et al.SIRT3 functions in the nucleus in the control of stress-relatedgene expression[J].Mol Cell Biol,2012,32(24):5022-5034.
[54]Sundaresan NR,Samant SA,Pillai VB,et al.SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stressmediated cell death by deacetylation of Ku70[J].Mol Cell Biol,2008,28(20):6384-6401.
[55]Mathias RA,Greco TM,Oberstein A,et al.Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenasecomplex activity[J].Cell,2014,159(7):1615-1625.
[56]Haigis MC,Mostoslavsky R,Haigis KM,et al.SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells[J].Cell,2006,126(5):941-954.
[57]Csibi A,F(xiàn)endt SM,Li C,et al.The mTORC1 pathway stimulates glutamine metabolism and cellproliferation by repressing SIRT4[J].Cell,2013,153(4):840-854.
[58]Jeong SM,Lee A,Lee J,et al.SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma[J].J Biol Chem,2014,289(7):4135-4144.
[59]Wang L,Zhou H,Wang Y,et al.CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4[J].Cell Death Dis,2015,6:e1620.
[60]Jeong SM,Xiao C,F(xiàn)inley LW,et al.SIRT4 has tumor-suppressive activity and regulates the cellularmetabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism[J].Cancer Cell,2013,23(4):450-463.
[61]Park J,Chen Y,Tishkoff DX,et al.SIRT5-mediated lysine desuccinylation impacts diverse metabolicpathways[J].Mol Cell,2013,50(6):919-930.
[62]Wang Y,Zhu Y,Xing S,et al.SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3[J].Cell Stress Chaperones,2015,20(5):805-810.
[63]Michishita E,McCord RA,Berber E,et al.SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin[J].Nature,2008,452(7186):492-496.
[61]Park J,Chen Y,Tishkoff DX,et al.SIRT5-mediated lysine desuccinylation impacts diverse metabolicpathways[J].Mol Cell,2013,50(6):919-930.
[62]Wang Y,Zhu Y,Xing S,et al.SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3[J].Cell Stress Chaperones,2015,20(5):805-810.
[63]Michishita E,McCord RA,Berber E,et al.SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin[J].Nature,2008,452(7186):492-496.
[64] Sebastián C,Zwaans BM,Silberman DM,et al.The histone deacetylase SIRT6 is a tumor suppressorthat controls cancer metabolism[J].Cell,2012,151(6):1185-1199.
[65]Jiang H,Khan S,Wang Y,et al.SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine[J].Nature,2013,496(7443):110-113.
[66]Gil R,Barth S,Kanfi Y,et al.SIRT6 exhibits nucleosome-dependent deacetylase activity[J].Nucleic Acids Res,2013,41(18):8537-8545.
[67]Feldman JL,Baeza J,Denu JM.Activation of the protein deacetylase SIRT6 by long-chain fatty acidsand widespread deacylation by mammalian sirtuins[J].J Biol Chem,2013,288(43):31350-31356.
[68]Mostoslavsky R,Chua KF,Lombard DB,et al.Genomic instability and aging-like phenotype in the absence of mammalian SIRT6[J].Cell,2006,124(2):315-329.
[69]Michishita E,Park JY,Burneskis JM,et al.Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins[J].Mol Biol Cell,2005,16(10):4623-4635.
[70]Barber MF,Michishita-Kioi E,Xi Y,et al.SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation[J].Nature,2012,487(7405):114-118.
[71]Chen S,Seiler J,Santiago-Reichelt M,et al.Repression of RNA polymerase I upon stress is caused byinhibition of RNA-dependent deacetylation of PAF53 by SIRT7[J].Mol Cell,2013,52(3):303-313.
[72]Ashraf N,Zino S,Macintyre A,et al.Altered sirtuin expression is associated with node-positive breast cancer[J].Br J Cancer,2006,95(8):1056-1061.
[73]Shin J,He M,Liu Y,et al.SIRT7 represses Myc activity to suppress ER stress and prevent fatty liverdisease[J].Cell Rep,2013,5(3):654-665.
[74]Zhang S,Chen P,Huang Z,et al.Sirt7 promotes gastric cancer growth and inhibits apoptosis by epigenetically inhibiting miR-34a[J].Sci Rep,2015,5:9787.
Research progress of relationship between sirtuins family and cancer
PAN Yan-Na1,2,LI Hui-Yu2,HAO Xin-Qi11College of Chemistry and Molecular Engineering,Zhengzhou University,Zhengzhou 450001,China;2College of Mathematics and Physics,Shanghai University of Electric Power,Shanghai 200090,China
Sirtuins are a class of III histone deacetylase(HDAC)with nicotinamide adenine dinucleotide (NAD+)-dependent.By deacylating various substrate proteins,including histones,transcription factors,and metabolic enzymes, the sirtuin family of enzymes can regulate transcription,cell survival,DNA damage and repair,and longevity.This article will introduce the sirtuin family members respectively and summarize the major biological findings that connect sirtuins to cancer.The relationship between the sirtuins and cancer from the genetic studies will be discussed.
Sirtuins;HDAC;deacetylase;cancer;inhibitor
R392.12
A
2095-6894(2017)05-15-06
2017-04-16;接受日期:2017-05-03
鄭州大學(xué)優(yōu)秀青年教師發(fā)展基金(1421316036);上海市教育委員會(huì)創(chuàng)新基金(13ZZ129)
潘艷娜.碩士.研究方向:有機(jī)合成與不對(duì)稱催化.E-mail:panyannalw@163.com
郝新奇.博士,副教授.E-mail:xqhao@zzu.edu.cn