国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

谷氨酰胺酶與腫瘤的關(guān)系研究進(jìn)展

2017-01-13 18:24黎兵華丁義濤余德才
關(guān)鍵詞:谷氨酰胺谷氨酸亞型

黎兵華,丁義濤,余德才

(南京大學(xué)醫(yī)學(xué)院附屬鼓樓醫(yī)院肝膽外科,江蘇南京210008)

·專家述評(píng)·

谷氨酰胺酶與腫瘤的關(guān)系研究進(jìn)展

黎兵華,丁義濤,余德才

(南京大學(xué)醫(yī)學(xué)院附屬鼓樓醫(yī)院肝膽外科,江蘇南京210008)

0 引言

代謝重編程是腫瘤的重要標(biāo)志[1],腫瘤通過代謝重編程以滿足快速增殖的能量需求和物質(zhì)合成需求.經(jīng)典的腫瘤代謝重編程有兩個(gè)特點(diǎn),其一是葡萄糖的有氧酵解;其二是依賴谷氨酰胺回補(bǔ)三羧酸循環(huán).谷氨酰胺不僅能作為碳源回補(bǔ)三羧酸循環(huán),還可為蛋白質(zhì)、氨基己糖和核苷酸等生物大分子的合成提供氮源,此外還是谷胱甘肽的前體之一,是機(jī)體對(duì)抗氧化應(yīng)激維持氧化還原穩(wěn)態(tài)的重要途徑[2].谷氨酰胺酶(glutanimase,GLS)催化谷氨酰胺脫氨基生成谷氨酸的反應(yīng),是谷氨酰胺酵解的限速酶,把持著谷氨酰胺分解代謝的入口,機(jī)體對(duì)谷氨酰胺代謝的調(diào)控主要通過GLS實(shí)現(xiàn).本文概述了GLS的基礎(chǔ)和生理,GLS與腫瘤關(guān)系研究進(jìn)展,并對(duì)GLS在腫瘤臨床診治過程中的應(yīng)用作了展望.

1 GLS基礎(chǔ)與生理

GLS分為GLS1和GLS2,它們由位于不同染色體上的兩個(gè)獨(dú)立基因編碼.GLS1基因位于2號(hào)染色體,又稱為腎型GLS(kidney-type glutaminase);GLS2基因位于12號(hào)染色體,又稱為肝型GLS(liver-type glutaminase)[3].GLS1基因由19個(gè)外顯子組成,GLS1前體mRNA經(jīng)過組織特異性剪接產(chǎn)生三種剪接變異體KGA、GAC和GAM,GAM不具有催化活性[4],后文不再討論.KGA的mRNA由1~14和16~19共18個(gè)外顯子組成,GAC由1~15外顯子組成.KGA和GAC的5’端序列完全相同,它們的差別存在于3’端[4].KGA和GAC亞型的選擇性剪接受可變聚腺苷酸化(alternative polyadenylation,APA)調(diào)節(jié)子CFIm25的調(diào)控[5-6].GLS2基因由18個(gè)外顯子組成.GLS2有較長的GAB和較短的LGA兩種剪接變異體,前者包括GLS2基因的全長,后者只有2~18外顯子[7].

GLS1和GLS2各亞型的分布具有組織特異性,不同的GLS亞型組織分布不同.KGA存在于除肝臟外的所有組織,在腎、腦、腸上皮、淋巴細(xì)胞含量豐富;GAC主要存在于心肌和胰腺組織中.GLS2一直被認(rèn)為只在成人肝臟中表達(dá),直到有研究在腦、胰腺和乳腺癌細(xì)胞等肝外組織發(fā)現(xiàn)LGA[8].有研究[9]報(bào)道在部分腫瘤細(xì)胞中,GLS1和GLS2可同時(shí)表達(dá),且細(xì)胞增殖快時(shí),GLS1的表達(dá)量增加,而GLS2似乎與細(xì)胞的靜息狀態(tài)有關(guān).

GLS催化谷氨酰胺生成谷氨酸的反應(yīng),具有廣泛的生理功能.KGA在腎臟和腦中表達(dá)量豐富,在腎臟中催化谷氨酰胺脫氨反應(yīng),維持腎臟酸堿平衡,在腦中合成神經(jīng)遞質(zhì)——γ-氨基丁酸(γ-aminobutyric acid,GABA).GAC主要分布于線粒體,催化谷氨酰胺生成谷氨酸,后者再生成 α-KG,回補(bǔ)三羧酸循環(huán)[4].有研究[10]發(fā)現(xiàn),GLS1還能催化谷氨酸鹽生成GABA的反應(yīng),推測其可能具有兩個(gè)活性位點(diǎn).GLS2主要存在于成人肝臟,與尿素循環(huán)、糖異生和對(duì)抗抗氧化應(yīng)激相關(guān)[11].肝臟同時(shí)表達(dá)GLS2和谷氨酰胺合成酶(glutamate synthetase,GS).正常情況下,人體沒有谷氨酰胺和谷氨酸的凈吸收,人體谷氨酰胺池中的谷氨酰胺主要來源于從頭合成.谷氨酰胺合成酶的活性幾乎不發(fā)生變化,對(duì)谷氨酰胺穩(wěn)態(tài)的調(diào)控幾乎都是通過調(diào)節(jié)GLS2來實(shí)現(xiàn)的.在糖尿病、高蛋白飲食和饑餓條件下,小鼠GLS2表達(dá)量上升[12].因此GLS2在維持體內(nèi)谷氨酰胺穩(wěn)態(tài)過程中發(fā)揮主要作用.

2 GLS與腫瘤代謝

2.1 腫瘤組織GLS的表達(dá)模式 研究GLS在腫瘤組織中的表達(dá)模式有助于理解其在腫瘤代謝中的功能.腫瘤細(xì)胞GLS1的表達(dá)量上調(diào)在肝癌[13]、小細(xì)胞肺癌[14]、結(jié)直腸癌[15]、甲狀腺癌[16]和黑色素瘤[17]均有報(bào)道.我們前期的研究也發(fā)現(xiàn)在肝癌組織中GLS1表達(dá)量上調(diào),而GLS2表達(dá)量下調(diào),在肝癌進(jìn)展過程中GLS2向GLS1表達(dá)轉(zhuǎn)變[18].而有研究[19]發(fā)現(xiàn)在MYCN擴(kuò)增的膠質(zhì)母細(xì)胞瘤中具有截然相反的GLS表達(dá)模式,其GLS2表達(dá)量上調(diào),而GLS1表達(dá)量下調(diào).不同組織類型的腫瘤,甚至同一腫瘤的不同亞型,GLS的表達(dá)模式也不盡相同.研究[20]發(fā)現(xiàn)相比于其它分子亞型的乳腺癌,HER2型乳腺癌基質(zhì)細(xì)胞GLS1表達(dá)量最高.GLS1不同亞型在腫瘤中的表達(dá)情況也不盡相同,目前的研究傾向于認(rèn)為GAC是主要亞型,在神經(jīng)膠質(zhì)瘤中,GAC的表達(dá)量最高[21],非小細(xì)胞肺癌[14]和乳腺癌[22]中GLS1的GAC亞型發(fā)揮主要作用.以上研究充分體現(xiàn)了腫瘤組織中GLS表達(dá)模式的復(fù)雜性.

2.2 腫瘤細(xì)胞GLS的功能 Martin-Rufian等[23]比較了野生型和敲除GLS1的小鼠乳腺癌上皮細(xì)胞系的基因表達(dá)差異,發(fā)現(xiàn)四個(gè)基因表達(dá)量下調(diào),這四個(gè)基因都是生長和增殖相關(guān)基因,提示GLS1與細(xì)胞增殖有關(guān).在膠質(zhì)瘤中敲除GLS1或者過表達(dá)GLS2具有相似的抗腫瘤增生效應(yīng),都會(huì)降低GSH依賴性的抗氧化應(yīng)激能力[24].在膠質(zhì)母細(xì)胞瘤細(xì)胞中,敲除GLS1能夠降低腫瘤細(xì)胞的生存和增殖能力,同時(shí)加強(qiáng)GLS2過表達(dá)帶來的抗增殖效應(yīng),證明GLS1具有“促癌效應(yīng)”,而GLS2具有“抗癌效應(yīng)”[25].新近研究[26]發(fā)現(xiàn)GLS2的C端可以直接與癌基因Rac1結(jié)合,抑制Rac1的激活,從而抑制肝癌的轉(zhuǎn)移,GLS2這種效應(yīng)不依賴于GLS的活性,提示GLS2不僅是一種酶,還是一個(gè)信號(hào)分子,可與其它蛋白相互作用,發(fā)揮蛋白調(diào)控的功能.該研究結(jié)果為GLS2的抑癌功能提供了直接證據(jù)支持.雖然也有報(bào)道使用GLS2特異性抑制劑抑制GLS2活性或用siRNA敲除GLS2均能抑制腫瘤細(xì)胞系的生長[27-28],提示GLS2可能具有促癌作用,但目前的研究傾向于認(rèn)為GLS1與細(xì)胞增殖有關(guān),發(fā)揮促癌作用,而GLS2與細(xì)胞的靜息狀態(tài)相關(guān),發(fā)揮抗癌作用.在腫瘤細(xì)胞中抑制GLS1表達(dá)或過表達(dá)GLS2均可產(chǎn)生抗腫瘤效應(yīng).

3 GLS與腫瘤的臨床過程

3.1 GLS與腫瘤的發(fā)生 Wang等[29]發(fā)現(xiàn)在乳腺癌和淋巴瘤兩種細(xì)胞模型中,GLS1特異性抑制劑968可以阻止細(xì)胞發(fā)生致癌性轉(zhuǎn)化,并進(jìn)一步證實(shí)GLS1受促癌轉(zhuǎn)錄因子c-Jun調(diào)控,在體外證實(shí)了GLS1具有促癌效應(yīng)[30].Xiang等[13]發(fā)現(xiàn)在MYC誘導(dǎo)的小鼠肝癌模型中,Gls1+/-小鼠腫瘤負(fù)荷明顯小于Gls1+/+小鼠,敲除一個(gè)GLS1等位基因能夠減少肝癌的發(fā)生.在用嗎啉代敲減GLS1的細(xì)胞模型和異體移植腫瘤模型中敲減GLS1后,腫瘤的發(fā)生率明顯降低.在Kras誘導(dǎo)的腫瘤模型中,敲除GLS1能夠減少腫瘤的生長[31].這些研究從側(cè)面證實(shí)GLS1可能與腫瘤發(fā)生存在關(guān)系,不過尚無研究證實(shí)過表達(dá)GLS1能直接導(dǎo)致腫瘤的發(fā)生.

3.2 GLS與腫瘤的進(jìn)展和轉(zhuǎn)移 研究[22]發(fā)現(xiàn),在乳腺癌中GLS1的兩種亞型KGA和GAC表達(dá)量都升高,且升高的水平和腫瘤的惡性程度相關(guān).免疫組化結(jié)果顯示,隨著惡性程度的升高,乳腺葉狀腫瘤中GLS1表達(dá)量升高[32].結(jié)直腸癌組織中的GLS1表達(dá)量顯著上調(diào),且GLS1的表達(dá)量和結(jié)直腸癌的TNM分期有關(guān),T3/T4期表達(dá)量顯著高于T1/T2期,遠(yuǎn)處轉(zhuǎn)移的結(jié)直腸癌GLS1表達(dá)量高于非遠(yuǎn)處轉(zhuǎn)移腫瘤[33].類似現(xiàn)象在口腔鱗狀細(xì)胞癌中也有發(fā)現(xiàn),相比正??谇火つ?,口腔鱗狀細(xì)胞癌GLS1高表達(dá),且表達(dá)量隨著腫瘤惡化程度的升高而升高[34].這些研究表明,在乳腺癌、結(jié)直腸癌和口腔鱗狀上皮癌中,GLS1的表達(dá)量和腫瘤的進(jìn)展呈正相關(guān),GLS1的表達(dá)情況可能可以反映腫瘤的進(jìn)展.

GLS與腫瘤的轉(zhuǎn)移密切相關(guān).敲除艾氏腹水腫瘤細(xì)胞(Ehrlich ascites tumor cell,EATC)中的KGA后,腫瘤對(duì)宿主的免疫逃避能力明顯降低[35],且發(fā)生上皮間質(zhì)表型轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)的非小細(xì)胞肺癌對(duì)GLS抑制劑更加敏感[36].Snail是EMT重要的轉(zhuǎn)錄因子,GLS2可以抑制Snail進(jìn)而抑制腫瘤的轉(zhuǎn)移[37-38].體外研究[26]證實(shí),GLS1促進(jìn)肝癌細(xì)胞的遷移和侵襲,而GLS2發(fā)揮相反的作用.上調(diào)GLS1是EMT的重要環(huán)節(jié),靶向GLS1可以抑制腫瘤的轉(zhuǎn)移[39].研究發(fā)現(xiàn)卵巢癌對(duì)谷氨酰胺依賴性與腫瘤的侵襲性密切相關(guān),低侵襲性的卵巢癌多是谷氨酰胺非依賴性的,而高侵襲性的卵巢癌高度依賴谷氨酰胺.谷氨酰胺可通過激活STAT3促進(jìn)卵巢癌的轉(zhuǎn)移,使用siRNA敲除GLS1可以減少卵巢癌細(xì)胞向周圍組織浸潤[40].在惡性膠質(zhì)瘤細(xì)胞中過表達(dá)GLS2,腫瘤細(xì)胞的生存能力、增殖能力和遷移能力都顯著降低[41].因此,GLS1有助于腫瘤的進(jìn)展和轉(zhuǎn)移,而GLS2發(fā)揮相反的作用.

3.3 GLS與腫瘤的診斷和分型 Budczies等[42]發(fā)現(xiàn)腫瘤組織和正常組織中谷氨酸/谷氨酰胺比(glutamateto-glutamine ratio,GGR)有較大差異,正常乳腺細(xì)胞谷氨酸和谷氨酰胺呈正相關(guān),乳腺癌組織中呈負(fù)相關(guān),谷氨酸/谷氨酰胺比可能為乳腺癌提供了一種新的診斷方法[42].我們前期的研究發(fā)現(xiàn)GLS1可作為肝癌診斷的一個(gè)敏感而特異的指標(biāo)[18].GLS2在惡性膠質(zhì)瘤細(xì)胞中沒有表達(dá),而在正常細(xì)胞和腦轉(zhuǎn)移癌中表達(dá)量都很高.因此,GLS2可作為原位檢測惡性膠質(zhì)瘤的一個(gè)標(biāo)志[43].不同亞型的乳腺癌對(duì)谷氨酰胺的依賴性不一樣[44],GLS表達(dá)情況也不同[45],谷氨酰胺依賴的腫瘤高表達(dá)GLS1.研究[46-47]發(fā)現(xiàn)在非小細(xì)胞肺癌中,丙酮酸羧化酶(pyruvate carboxylase,PC)可把丙酮酸轉(zhuǎn)化為三羧酸循環(huán)的中間產(chǎn)物草酰乙酸(oxaloacetic acid,OAA),為三羧酸循環(huán)提供碳源.這些腫瘤中GLS1的表達(dá)不上調(diào),提示GLS1可能是潛在的腫瘤代謝分型指標(biāo).還需要更多基礎(chǔ)和臨床研究發(fā)掘GLS在腫瘤臨床診斷和分型中的應(yīng)用價(jià)值.

3.4 GLS與腫瘤的治療 GLS與腫瘤對(duì)化療藥物的耐藥性有關(guān).研究[48]發(fā)現(xiàn),過表達(dá)GLS1會(huì)增加乳腺癌細(xì)胞對(duì)紫杉醇的耐藥性.敲除GLS1可以增加腫瘤癌細(xì)胞對(duì)化療藥物的敏感性[49-50].有研究[51]用全基因組關(guān)聯(lián)研究(genome wide association study,GWAS)的方法確定了一個(gè)包含GLS1在內(nèi)的、由8個(gè)基因組成的基因標(biāo)志,這個(gè)標(biāo)志可用于預(yù)測肺癌和乳腺癌患者化療的敏感性.GLS1特異性抑制劑968可以逆轉(zhuǎn)NSCLC細(xì)胞系對(duì)吉非替尼和厄洛替尼的耐藥性[52].過表達(dá)GLS2的膠質(zhì)母細(xì)胞瘤細(xì)胞系下調(diào)DNA修復(fù)蛋白MGMT的表達(dá),對(duì)烷化劑化療更加敏感[53].因此,推測GLS1可以增加腫瘤細(xì)胞對(duì)化療藥物的耐藥性,而GLS2可增加腫瘤對(duì)化療藥物的敏感性.

因?yàn)槟[瘤細(xì)胞的生存依賴谷氨酰胺,剝奪谷氨酰胺為腫瘤的代謝治療提供了新的策略.許多腫瘤中上調(diào)GLS1的表達(dá),下調(diào)GLS2的表達(dá).因此,GLS1是腫瘤代謝治療的潛在靶點(diǎn),研發(fā)GLS1特異性抑制劑是當(dāng)前研究的熱點(diǎn)[54].在肝癌[13]、乳腺癌[55]、白血病[56-57]、膠質(zhì)瘤[58]、黑色素瘤[59]和慢性骨髓增生性腫瘤[60]中均發(fā)現(xiàn)敲除GLS1或使用GLS1抑制劑能抑制腫瘤細(xì)胞的生長.GLS1的構(gòu)象抑制劑CB-839在三陰性乳腺癌(triple negative breast cancer,TNBC)的體外和體內(nèi)模型都能夠抑制谷氨酰胺的代謝,對(duì)TNBC具有治療作用[55],在2014年初已進(jìn)入Ⅰ期臨床研究.

聯(lián)合使用GLS1抑制劑和其它抗代謝藥物取得了顯著的抗腫瘤效果.研究發(fā)現(xiàn)聯(lián)合GLS1抑制劑和mTOR抑制劑可以取得很好的治療效果[61].聯(lián)合使用己糖激酶2、GLS、脂肪酸合酶的特異性抑制劑,同時(shí)抑制腫瘤細(xì)胞的糖酵解、谷氨酰胺酵解和脂肪酸從頭合成過程,能夠發(fā)揮協(xié)同的抗腫瘤作用,顯著抑制腫瘤的生長,并且這種三聯(lián)治療對(duì)正常細(xì)胞毒性很小,健康小鼠能夠耐受[62].胰腺癌中,聯(lián)合使用包含GLS1抑制劑BPTES的納米顆粒和二甲雙胍能夠發(fā)揮較好的聯(lián)用效果[63].肺癌中,GLS1抑制劑BPTES和5-FU能夠發(fā)揮協(xié)同的抗腫瘤作用[64].肝癌中,GLS1抑制劑968能夠增強(qiáng)雙氫青蒿素介導(dǎo)的抗癌作用[65].卵巢癌腫瘤基質(zhì)細(xì)胞可以利用乳酸、天冬氨酸等原料合成谷氨酰胺供腫瘤細(xì)胞使用.同時(shí)靶向腫瘤細(xì)胞的GLS1和腫瘤基質(zhì)細(xì)胞的谷氨酰胺合成酶能取得很好的治療效果[66].在多發(fā)性骨髓瘤中,聯(lián)合使用GLS1抑制劑CB-839和蛋白酶體抑制劑可以取得很好的協(xié)同作用[67].可見GLS1抑制劑是一種很有前景的腫瘤代謝治療藥物,聯(lián)合使用GLS1抑制劑和其它抗代謝藥物能夠取得更好的抗癌效果.有研究[19]報(bào)道在MYCN擴(kuò)增的膠質(zhì)母細(xì)胞瘤GLS2表達(dá)量上調(diào),體外和體內(nèi)的研究證實(shí)抑制GLS2可以抑制該類型腫瘤的生長.因目前尚無特異性靶向GLS2的藥物,GLS2能否作為該類型腫瘤的治療靶點(diǎn)還需進(jìn)一步研究.

3.5 GLS與腫瘤的預(yù)后 高表達(dá)GLS1的腫瘤進(jìn)展快,易轉(zhuǎn)移.理論上推測,表達(dá)GLS1的腫瘤患者預(yù)后較差.有文獻(xiàn)報(bào)道GLS1表達(dá)量是三陰性乳腺癌的獨(dú)立預(yù)后因素[66].我們?cè)诟伟┲械难芯繛镚LS與腫瘤預(yù)后關(guān)系提供了直接證據(jù).研究[18]發(fā)現(xiàn) GLS1和GLS2的表達(dá)量與肝癌患者的預(yù)后密切相關(guān),GLS1水平高、GLS2水平低的患者預(yù)后最差.我們建立了GLS1/GLS2評(píng)分系統(tǒng)評(píng)估肝癌患者的預(yù)后,評(píng)估該評(píng)分系統(tǒng)預(yù)測肝癌患者預(yù)后的敏感性和特異性的回顧性和前瞻性多中心的臨床研究正在進(jìn)行中.

4 總結(jié)和展望

谷氨酰胺依賴是腫瘤細(xì)胞的重要代謝特點(diǎn),GLS是谷氨酰胺最重要的代謝酶,研究GLS對(duì)理解腫瘤代謝重編程及研發(fā)抗腫瘤代謝的藥物都具有特殊意義.目前研究發(fā)現(xiàn)GLS與腫瘤的發(fā)生、進(jìn)展和轉(zhuǎn)移存在聯(lián)系,可能在部分腫瘤中具有臨床診斷、分型和預(yù)后評(píng)估的價(jià)值.GLS1是腫瘤代謝治療的潛在靶點(diǎn),尋找GLS1的特異性抑制劑是腫瘤代謝的研究熱點(diǎn).GLS作為一種代謝酶,目前的相關(guān)性研究和功能研究初步表明GLS與腫瘤的發(fā)生發(fā)展有關(guān),GLS1具有“促癌效應(yīng)”,而GLS2具有“抗癌效應(yīng)”.代謝酶具有非代謝功能已經(jīng)在多個(gè)代謝酶中得到證實(shí),已有研究證實(shí)GLS2可以發(fā)揮蛋白調(diào)控功能.GLS1是否具有非酶活功能是亟待研究的內(nèi)容.這些研究將充實(shí)GLS1和腫瘤發(fā)生、進(jìn)展和轉(zhuǎn)移之間的關(guān)系.此外還需更多的工作研究GLS在腫瘤臨床診斷、分型和預(yù)后評(píng)估的應(yīng)用價(jià)值.

GLS相關(guān)研究還存在一系列難題,需要大量的基礎(chǔ)和臨床研究予以解決.不過GLS已為腫瘤研究提供了一條充滿前景的道路,為腫瘤的代謝干預(yù)開辟了新途徑.

[1]Hanahan D, Weinberg RA.Hallmarks of cancer: the next generation[J].Cell,2011,144(5):646-674.

[2]Hensley CT, Wasti AT, DeBerardinis RJ.Glutamine and cancer:cell biology, physiology, and clinical opportunities[J].J Clin Invest,2013,123(9):3678-3684.

[3]Aledo JC, Gómez-Fabre PM, Olalla L, et al.Identification of two human glutaminase loci and tissue-specific expression of the two related genes[J].Mamm Genome,2000,11(12):1107-1110.

[4]Elgadi KM, Meguid RA, Qian M, et al.Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing[J].Physiol Genomics,1999,1(2):51-62.

[5]Masamha CP, Xia Z, Peart N, et al.CFIm25 regulates glutaminase alternative terminal exon definition to modulate miR-23 function[J].RNA,2016,22(6):830-838.

[6]Redis RS, Vela LE, Lu W, et al.Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2[J].Mol Cell,2016,61(4):520-534.

[7]Martín-Rufián M, Tosina M, Campos-Sandoval JA, et al.Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism[J].PLoS One,2012,7(6):e38380.

[8]Gómez-Fabre PM, Aledo JC, Del Castillo-Olivares A, et al.Molecular cloning,sequencing and expression studies of the human breast cancer cell glutaminase[J].Biochem J,2000,345 Pt 2:365-375.

[9]Pérez-Gómez C, Campos-Sandoval JA, Alonso FJ, et al.Co-expression of glutaminase K and L isoenzymes in human tumour cells[J].Biochem J,2005,386(Pt 3):535-542.

[10]Nanga RP,DeBrosse C,Singh A, et al.Glutaminase catalyzes reaction of glutamate to GABA[J].Biochem Biophys Res Commun,2014,448(4):361-364.

[11]Hu W, Zhang C, Wu R, et al.Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function[J].Proc Natl Acad Sci U S A,2010,107(16):7455-7460.

[12]Watford M,Chellaraj V,Ismat A,et al.Hepatic glutamine metabolism[J].Nutrition,2002,18(4):301-303.

[13]Xiang Y, Stine ZE, Xia J, et al.Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis[J].J Clin Invest,2015,125(6):2293-2306.

[14]van den Heuvel AP, Jing J, Wooster RF, et al.Analysis of glutamine dependency in non-small cell lung cancer:GLS1 splice variant GAC is essential for cancer cell growth[J].Cancer Biol Ther,2012,13(12):1185-1194.

[15]Turner A, McGivan JD.Glutaminase isoform expression in cell lines derived from human colorectal adenomas and carcinomas[J].Biochem J,2003,370(Pt 2):403-408.

[16]Kim HM, Lee YK, Koo JS.Expression of glutamine metabolism-related proteins in thyroid cancer[J].Oncotarget,2016,7(33):53628-53641.

[17]Zacharias DP,Lima MM,Souza AL Jr,et al.Human cutaneous melanoma expresses a significant phosphate-dependent glutaminase activity:a comparison with the surrounding skin of the same patient[J].Cell Biochem Funct,2003,21(1):81-84.

[18]Yu D,Shi X, Meng G,et al.Kidney-type glutaminase(GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma[J].Oncotarget,2015,6(10):7619-7631.

[19]Xiao D, Ren P,Su H,et al.Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2[J].Oncotarget,2015, 6(38):40655-40666.

[20]Kim S, Kim DH,Jung WH, et al.Expression of glutamine metabolismrelated proteins according to molecular subtype of breast cancer[J].Endocr Relat Cancer,2013,20(3):339-348.

[21]Szeliga M,Matyja E,Obara M,et al.Relative expression of mRNAS coding for glutaminase isoforms in CNS tissues and CNS tumors[J].Neurochem Res,2008,33(5):808-813.

[22]Cassago A, Ferreira AP, Ferreira IM, et al.Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism[J].Proc Natl Acad Sci U S A,2012,109(4):1092-1097.

[23]Martin-Rufian M,Segura JA,Lobo C, et al.Identification of genes downregulated in tumor cells expressing antisense glutaminase mRNA by differential display[J].Cancer Biol Ther,2006,5(1):54-58.

[24]Martin-Rufian M, Nascimento-Gomes R, Higuero A, et al.Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells[J].J Mol Med (Berl),2014,92(3):277-290.

[25]Szeliga M, Bogacińska-Karas'M, Róz?ycka A, et al.Silencing of GLS and overexpression of GLS2 genes cooperate in decreasing the proliferation and viability of glioblastoma cells[J].Tumour Biol,2014,35(3):1855-1862.

[26]Zhang C, Liu J, Zhao Y, et al.Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis[J].Elife,2016,5:e10727.

[27]Lee YZ, Yang CW, Chang HY, et al.Discovery of selective inhibitors of Glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells[ J].Oncotarget, 2014,5(15):6087-6101.

[28]Xu P, Oosterveer MH, Stein S, et al.LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer[J].Genes Dev,2016,30(11):1255-1260.

[29]Wang JB, Erickson JW, Fuji R, et al.Targeting mitochondrial glutaminase activity inhibits oncogenic transformation[J].Cancer Cell,2010,18(3):207-219.

[30]Lukey MJ, Greene KS, Erickson JW, et al.The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy[J].Nat Commun,2016,7:11321.

[31]Weinberg F, Hamanaka R, Wheaton WW, et al.Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity[J].Proc Natl Acad Sci U S A,2010,107(19):8788-8793.

[32]Kim S, Jung WH, Koo JS.The expression of glutamine-metabolismrelated proteins in breast phyllodes tumors[J].Tumour Biol,2013,34(5):2683-2689.

[33]Huang F, Zhang Q, Ma H, et al.Expression of glutaminase is upregulated in colorectal cancer and of clinical significance[J].Int J Clin Exp Pathol,2014,7(3):1093-1100.

[34]Cetindis M, Biegner T, Munz A, et al.Glutaminolysis and carcinogenesis of oral squamous cell carcinoma[J].Eur Arch Otorhinolaryngol,2016,273(2):495-503.

[35]Segura JA,Ruiz-Bellido MA,Arenas M,et al.Ehrlich ascites tumor cells expressing anti-sense glutaminase mRNA lose their capacity to evade the mouse immune system[J].Int J Cancer,2001,91(3):379-384.

[36]Ulanet DB, Couto K, Jha A, et al.Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition[J].PLoS One,2014,9(12):e115144.

[37]Haraguchi M, Indo HP, Iwasaki Y, et al.Snail modulates cell metabolism in MDCK cells[J].Biochem Biophys Res Commun,2013,432(4):618-625.

[38]Kuo TC, Chen CK, Hua KT, et al.Glutaminase 2 stabilizes Dicer to repress Snail and metastasis in hepatocellular carcinoma cells[J].Cancer Lett,2016,383(2):282-294.

[39]Lee SY,Jeon HM,Ju MK,et al.Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch[J].Oncotarget,2016,7(7):7925-7939.

[40]Yang L, Moss T, Mangala LS, et al.Metabolic shifts toward glutamine regulate tumor growth,invasion and bioenergetics in ovarian cancer[J].Mol Syst Biol,2014,10:728.

[41]Szeliga M,Obara-Michlewska M,Matyja E, et al.Transfection with liver-type glutaminase cDNA alters gene expression and reduces survival, migration and proliferation of T98G glioma cells[J].Glia,2009,57(9):1014-1023.

[42]Budczies J, Pfitzner BM, Gy?rffy B, et al.Glutamate enrichment as new diagnostic opportunity in breast cancer[J].Int J Cancer,2015,136(7):1619-1628.

[43]Szeliga M,Sidoryk M,Matyja E,et al.Lack of expression of the liver-type glutaminase (LGA) mRNA in human malignant gliomas[J].Neurosci Lett,2005,374(3):171-173.

[44]Budczies J, Brockm?ller SF, Müller BM, et al.Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer:alterations in glutamine and beta-alanine metabolism[J].J Proteomics,2013,94:279-288.

[45]Kung HN, Marks JR, Chi JT.Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia[J].PLoS Genet,2011,7(8):e1002229.

[46]Sellers K,F(xiàn)ox MP,Bousamra M,et al.Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation[J].J Clin Invest,2015,125(2):687-698.

[47]Cheng T, Sudderth J, Yang C, et al.Pyruvate carboxylase is required for glutamine-independent growth of tumor cells[J].Proc Natl Acad Sci U S A,2011,108(21):8674-8679.

[48]Fu A, Yu Z, Song Y, et al.Silencing of glutaminase 1 resensitizes Taxol-resistant breast cancer cells to Taxol[J].Mol Med Rep,2015,11(6):4727-4733.

[49]Alonso FJ, Segura JA, Lora J, et al.Sensitisation of Ehrlich ascitic tumour cells to methotrexate by inhibiting glutaminase[J].Anticancer Res,2005,25(5):3315-3320.

[50]Lu WQ, Hu YY, Lin XP, et al.Knockdown of PKM2 and GLS1 expression can significantly reverse oxaliplatin-resistance in colorectal cancer cells[J].Oncotarget,2017.

[51]Hsu YC, Chen HY, Yuan S, et al.Genome-wide analysis of threeway interplay among gene expression,cancer cell invasion and anticancer compound sensitivity[J].BMC Med,2013,11:106.

[52]Xie C, Jin J, Bao X, et al.Inhibition of mitochondrial glutaminase activity reverses acquired erlotinib resistance in non-small cell lung cancer[J].Oncotarget,2016,7(1):610-621.

[53]Szeliga M,Zgrzywa A,Obara-Michlewska M,et al.Transfection of a human glioblastoma cell line with liver-type glutaminase(LGA)down-regulates the expression of DNA-repair gene MGMT and sensitizes the cells to alkylating agents[J].J Neurochem,2012,123(3):428-436.

[54]McDermott LA, Iyer P, Vernetti L, et al.Design and evaluation of novel glutaminase inhibitors[J].Bioorg Med Chem,2016,24(8):1819-1839.

[55]Gross MI, Demo SD, Dennison JB, et al.Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer[ J].Mol Cancer Ther,2014,13(4):890-901.

[56]Emadi A, Jun SA, Tsukamoto T, et al.Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations[J].Exp Hematol,2014,42(4):247-251.

[57]Jacque N, Ronchetti AM, Larrue C, et al.Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition[J].Blood,2015,126(11):1346-1356.

[58]Seltzer MJ, Bennett BD, Joshi AD, et al.Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1[J].Cancer Res,2010,70(22):8981-8987.

[59]Hernandez-Davies JE, Tran TQ, Reid MA, et al.Vemurafenib resistance reprograms melanoma cells towards glutamine dependence[J].J TranslMed,2015,13:210.

[60]Zhan H,Ciano K,Dong K,et al.Targeting glutamine metabolism in myeloproliferative neoplasms[J].Blood Cells Mol Dis, 2015,55(3):241-247.

[61]Tanaka K, Sasayama T, Irino Y, et al.Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment[J].J Clin Invest,2015,125(4):1591-1602.

[62]Cervantes-Madrid D, Due?as-González A.Antitumor effects of a drug combination targeting glycolysis,glutaminolysis and de novo synthesis of fatty acids[J].Oncol Rep,2015,34(3):1533-1542.

[63]Elgogary A,Xu Q,Poore B,et al.Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer[J].Proc Natl Acad Sci U S A,2016,113(36):E5328-E5336.

[64]Lee JS, Kang JH, Lee SH, et al.Glutaminase 1 inhibition reduces thymidine synthesis in NSCLC[J].Biochem Biophys Res Commun,2016,477(3):374-382.

[65]Wang D,Meng G,Zheng M,et al.The glutaminase-1 inhibitor 968 enhances dihydroartemisinin-mediated antitumor efficacy in hepatocellular carcinoma cells[J].PloS One,2016,11(11):e0166423.

[66]Kim JY, Heo SH, Choi SK, et al.Glutaminase expression is a poor prognostic factorin node-positive triple-negative breastcancer patients with a high level of tumor-infiltrating lymphocytes[J].Virchows Arch,2017,470(4):381-389.

[67]Thompson RM, Dytfeld D, Reyes L, et al.Glutaminase inhibitor CB-839 synergizes with carfilzomib in resistant multiple myeloma cells[J].Oncotarget,2017.

Research progress on relationship between glutaminase and tumor

LI Bing-Hua,DING Yi-Tao,YU De-Cai
Department of Hepatobiliary Surgery,Drum Tower Hospital,Medical School of Nanjing University,Nanjing 210008,China

Glutamine addiction is one of the metabolic hallmarks of tumor cells.Glutaminase(GLS)catalyzes the first step of glutaminolysis by converting glutamine to glutamate and ammonia.There are two isozymes of GLS,a kidney-type glutaminase(GLS1)and a liver-type glutaminase(GLS2).GLS1 is upregulated in most tumor tissues,while GLS2 is downregulated.GLS1 functions as a tumor-promotor,while GLS2 acts as a tumor-suppressor.GLS plays an important role in the development and progression of multiple tumors.GLS is of much clinical significance in the diagnosis and prognosis evaluation of tumor.GLS1 is a potentially important target for cancer metabolic therapeutics,and the specific inhibitors of GLS1 are promising to become the novel anti-cancer drugs.This review summarized the progress of the basic and clinical research of GLS,and focused on the evaluation of the potential value of glutaminase in the clinical diagnosis and treatment.

glutaminase;tumor metabolism;glutamine;metabolism therapy

谷氨酰胺依賴是腫瘤細(xì)胞的重要代謝特點(diǎn),谷氨酰胺酶(GLS)催化谷氨酰胺生成谷氨酸的反應(yīng),是谷氨酰胺酵解的第一個(gè)代謝酶.GLS可分為腎型谷氨酰胺酶(GLS1)和肝型谷氨酰胺酶(GLS2).大多數(shù)腫瘤中GLS1高表達(dá),GLS2低表達(dá).GLS1具有“促癌效應(yīng)”,而GLS2具有“抗癌效應(yīng)”.GLS在多種腫瘤的發(fā)生發(fā)展過程中起重要作用.GLS對(duì)腫瘤的診斷、進(jìn)展及預(yù)后評(píng)估均具有十分重要的意義.GLS1是腫瘤代謝治療的潛在靶點(diǎn),其特異性抑制劑有望成為新型的抗腫瘤代謝藥物.本文綜述了GLS的基礎(chǔ)和臨床研究進(jìn)展,并著重闡述了GLS在臨床診療中的應(yīng)用價(jià)值.

谷氨酰胺酶;腫瘤代謝;谷氨酰胺;代謝治療

R73

A

2095-6894(2017)12-01-06

2017-04-26;接受日期:2017-05-10

國家自然科學(xué)基金(81372455,81372294);江蘇省十三五強(qiáng)衛(wèi)工程重點(diǎn)人才

黎兵華.博士.E-mail:lbhnju@163.com

余德才.博士,副教授,博士生導(dǎo)師.研究方向:肝癌、腫瘤代謝.E-mail:dryudecai@qq.com

猜你喜歡
谷氨酰胺谷氨酸亞型
谷氨酰胺代謝與卵巢癌相關(guān)研究進(jìn)展*
N-氨甲酰谷氨酸對(duì)灘羊乏情期誘導(dǎo)同期發(fā)情效果的影響
尖銳濕疣患者感染HPV亞型的研究及臨床分析
谷氨酰胺治療新生兒壞死性小腸結(jié)腸炎機(jī)制的研究進(jìn)展
谷氨酰胺對(duì)腸道損傷藥理作用研究
H4 亞型和N2 亞型禽流感病毒二重RT-PCR 檢測方法的建立
Acknowledgment to reviewers—November 2018 to September 2019
H10亞型和N8亞型禽流感病毒三重RT-PCR檢測方法的建立
擴(kuò)散性抑制及缺血過程中Ca2+與谷氨酸的同時(shí)在體電化學(xué)分析
腦缺血后谷氨酸通路及其調(diào)控的研究進(jìn)展