杜漸 綜述 譚廣 審校
(大連醫(yī)科大學(xué)附屬第一醫(yī)院 肝膽外科,遼寧 大連 116000)
膽管細(xì)胞癌(cholangiocarcinoma,CCA)是指起源于膽道系統(tǒng)的一類惡性腫瘤,可發(fā)生于從Hering管至膽總管之間的任何部位,根據(jù)解剖部位分為肝內(nèi)(intrahepatic cholangiocarcinoma,iCCA)、肝門(perihilar cholangiocarcinoma,pCCA)、肝外(distal cholangiocarcinoma,dCCA)3型。盡管三者有諸多相似之處,但在發(fā)病機(jī)理及預(yù)后上仍有很大差異[1]。iCCA是肝臟內(nèi)第二常見的原發(fā)性惡性腫瘤,占所有消化道腫瘤的3%,其流行病學(xué)具有地域性差異,世界范圍內(nèi)總體發(fā)病率較低(<6/10萬),但在我國(guó)則普遍高于此水平,如上海為7.55/10萬。近10年來,iCCA的發(fā)病率逐年遞增,而pCCA和dCCA則有所下降[2]。CCA發(fā)病隱匿,早期無任何癥狀,確診時(shí)往往已屬晚期,目前的診斷方法主要包括血清非特異性腫瘤標(biāo)志物、組織活檢以及影像學(xué)檢查等。由于CCA確診較晚,致使手術(shù)治療效果不佳,其對(duì)傳統(tǒng)化療亦不敏感,復(fù)發(fā)率較高[3]。若能更好地明確CCA的分子病理學(xué)機(jī)制,則對(duì)腫瘤的早期診斷、個(gè)體化治療及改善預(yù)后都至關(guān)重要。故而本文從基因異質(zhì)性、表觀遺傳學(xué)、內(nèi)分泌因子、信號(hào)傳導(dǎo)通路等以下幾個(gè)方面對(duì)CCA的分子病理學(xué)研究進(jìn)展進(jìn)行簡(jiǎn)要綜述。
CCA的異質(zhì)性不僅與腫瘤的解剖部位相關(guān),同時(shí)也取決于不同的危險(xiǎn)因素及分子病理學(xué)上的差異?,F(xiàn)已明確的對(duì)CCA發(fā)生起關(guān)鍵作用的基因突變有DNA修復(fù),如tumor protein 53(TP53)[4];W n t信號(hào)通路[5];絡(luò)氨酸激酶信號(hào)通路,如κ-ras、B-raf、Smad4、成纖維細(xì)胞生長(zhǎng)因子受體2(fibroblast growth factor receptor 2,F(xiàn)GFR2)[6]、蛋白絡(luò)氨酸磷酸激酶[7];表觀遺傳學(xué)改變,如異檸檬酸脫氫酶1(isocitrate dehydrogenase 1,IDH1)、IDH2[8];染色質(zhì)重塑,如mixed-lineage leukemia protein 3(MLL3)[9];SWI/SNF復(fù)合體,如protein polybromo-1(PBRM1);以及Notch信號(hào)通路等[10]。多因素分析表明,TP53和κ-ras突變可作為影響CCA預(yù)后的獨(dú)立危險(xiǎn)因素[11];PBRM1突變則與dCCA骨轉(zhuǎn)移及不良預(yù)后相關(guān)[12];而MLL3基因可激活G蛋白相關(guān)信號(hào)通路,與血吸蟲引起的CCA密切相關(guān)。最近研究[13]顯示CCA的端粒酶反轉(zhuǎn)錄酶基因發(fā)生改變,提示其與慢性肝炎相關(guān)。上述基因突變及信號(hào)通路為CCA的個(gè)體化治療提供了潛在治療靶點(diǎn)。
CCA的全基因組測(cè)序揭示了其更多的生物學(xué)特性。就iCCA而言,兩類獨(dú)特的基因類型已被闡明:一類為炎癥型,如IL-3、4、6、10等,主要活化炎癥通路;另一類為增殖型,如κ-ras、表皮生長(zhǎng)因子受體(epidermal growth factor receptor,EGFR)等,主要活化原癌基因,與患者不良預(yù)后密切相關(guān)[14]。目前,新一代測(cè)序技術(shù)對(duì)CCA內(nèi)的56個(gè)腫瘤相關(guān)基因進(jìn)行了檢測(cè),盡管CCA因解剖部位不同而基因各異,但普遍存在Ras等驅(qū)動(dòng)基因的突變[11];而Arai等[15]亦通過對(duì)CCA外顯子測(cè)序,發(fā)現(xiàn)了一個(gè)無Ras突變的獨(dú)特亞型。CCA的上述眾多亞型也許能夠解釋其生物學(xué)、危險(xiǎn)因素及預(yù)后的多樣性,但如何實(shí)現(xiàn)臨床轉(zhuǎn)化仍需更深入的研究。
CCA細(xì)胞內(nèi)已發(fā)現(xiàn)許多激酶受體FGFR2與其他基因的融合產(chǎn)物,而在肝癌中則無表達(dá),可作為潛在的特異性診斷標(biāo)志物。FGFR2融合基因產(chǎn)物包括FGFR2-BICC1、FGFR2-KIAA1598、FGFR2-TACC3、FGFR2-AHCYL1、FGFR2-MGEA5、FGFR2-KCTD1和FGFR2-TXLNA[16]。FGFR2-BICC1等選擇性融合基因能夠活化FGFR激酶,進(jìn)而改變腫瘤細(xì)胞形態(tài),促進(jìn)其增殖。PD173074與BGJ398或帕唑帕尼等FGFR激酶抑制劑能夠有效抑制FGFR2融合蛋白的致癌能力,表明FGFR激酶可作為CCA的潛在治療靶點(diǎn)。有研究[6]證實(shí),F(xiàn)GFR2-MGEA5與FGFR2-TACC3陽性的CCA患者使用普納替尼或帕唑帕尼可顯著獲益。最近,Sia等[17]使用RNA與外顯子聯(lián)合測(cè)序發(fā)現(xiàn)了一個(gè)嶄新的融合基因產(chǎn)物FGFR2-PPHLN1,同時(shí)證明該融合產(chǎn)物有可能成為CCA最有效的治療靶點(diǎn)。
表觀遺傳學(xué)的調(diào)控方式主要包括組蛋白修飾、DNA甲基化以及非編碼RNA,以表觀遺傳學(xué)為基礎(chǔ)的抗CCA研究仍十分有限[18-20]。在CCA的表觀遺傳學(xué)圖譜中,IDH1與IDH2基因頻繁發(fā)生突變[21]。研究[22-23]表明,IDH突變與CpG的高甲基化相關(guān),提示轉(zhuǎn)錄過程存在異常,進(jìn)而影響細(xì)胞分化過程。并且IDH突變能夠引起肝細(xì)胞核因子4α失調(diào),從而抑制肝細(xì)胞分化,促進(jìn)膽管癌的形成。
與正常組織相比,CCA組織內(nèi)DNA羥甲基化顯著減少,而Wnt通路的基因啟動(dòng)子則高甲基化[24]。大量研究已經(jīng)證實(shí),表觀遺傳學(xué)的改變發(fā)生于腫瘤生成早期,且與腫瘤進(jìn)展及微環(huán)境密切相關(guān),這為CCA的早期診斷提供了新的思路。Gradilone等[25]發(fā)現(xiàn)CCA中組蛋白去乙酰化酶6(histone deacetylase,HDAC6)過表達(dá),使細(xì)胞初生纖毛減少,促使其過度增殖;而HDAC6靶向抑制劑能夠修復(fù)初生纖毛,進(jìn)而抑制CCA細(xì)胞的生長(zhǎng),提示HDAC6靶向抑制劑可作為CCA的潛在治療手段之一。
研究[26]表明,CCA為雌激素敏感型腫瘤,雌激素受體(estrogen receptors,ER)α、β均陽性表達(dá)。ER-α活化能夠刺激CCA細(xì)胞增殖,但選擇性活化ER-β卻可以通過誘導(dǎo)凋亡達(dá)到抗腫瘤的效果。通常雌激素敏感型腫瘤在發(fā)展過程中ER-β逐漸丟失,但CCA在進(jìn)展期ER-β仍持續(xù)表達(dá),提示其可作為潛在的臨床治療靶點(diǎn)。研究證實(shí)應(yīng)用ER拮抗劑他莫西芬或ER-β選擇性激動(dòng)劑KB9520能夠抑制CCA增殖;并且雌激素亦能夠刺激IL-6和血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)的表達(dá),兩者對(duì)CCA的生物學(xué)功能均起到至關(guān)重要的調(diào)控作用[27]。
除雌激素外,某些內(nèi)分泌因子也能夠調(diào)節(jié)CCA細(xì)胞的生物學(xué)功能。如血管收縮素、多巴胺、瘦素、阿片肽等能夠促進(jìn)CCA細(xì)胞增殖。血管收縮素或內(nèi)源性內(nèi)啡肽能夠抑制膽管上皮細(xì)胞損傷后的過度增殖,但在CCA發(fā)展過程中這一功能逐漸喪失,轉(zhuǎn)而刺激腫瘤細(xì)胞的生長(zhǎng)和存活[28]。
神經(jīng)內(nèi)分泌因子如促胰液素、胃泌素、γ-氨基丁酸、內(nèi)皮素-1等能夠通過抑制CCA細(xì)胞增殖或促使其凋亡達(dá)到抗腫瘤的效果。雖然激活組胺H3、H4受體能夠抑制CCA細(xì)胞增殖,但組胺本身被認(rèn)為可通過自分泌促進(jìn)腫瘤細(xì)胞的增殖和存活,而組胺的這一作用是通過組胺H1介導(dǎo)的[29]。
免疫組化結(jié)果顯示EGFR在CCA標(biāo)本中過表達(dá)。EGFR通過激活膽管細(xì)胞內(nèi)MAPK-ERK信號(hào)通路誘導(dǎo)腫瘤的發(fā)生,使得該受體成為CCA的潛在治療靶點(diǎn)。進(jìn)一步研究發(fā)現(xiàn),CCA中EGFR基因的突變和擴(kuò)增率分別達(dá)到15%和5%[30]。
研究表明,肝細(xì)胞生長(zhǎng)因子受體(hepatic growth factor receptor,HGFR/c-Met)在CCA中過表達(dá),且與iCCA的不良預(yù)后相關(guān)。而HGF和EGF信號(hào)通路的活化與CCA的轉(zhuǎn)移潛能亦密切相關(guān)。同時(shí)EGFR活化會(huì)促進(jìn)CCA上皮細(xì)胞間充質(zhì)的轉(zhuǎn)化(epithelial-mesenchymal transition,EMT),導(dǎo)致腫瘤侵襲和低分化[31],HGF能夠通過激活A(yù)KT和ERK信號(hào)通路增強(qiáng)腫瘤細(xì)胞的侵襲能力。
眾所周知,膽汁淤積是CCA的危險(xiǎn)因素之一,膽汁酸能夠通過轉(zhuǎn)錄生長(zhǎng)因子α依賴的途徑激活EGFR,進(jìn)而刺激膽管細(xì)胞增殖。體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn)結(jié)合膽汁酸通過下調(diào)膽汁酸受體以及活化鞘氨醇-1磷酸受體2促進(jìn)CCA的生長(zhǎng)[32-33]。Lozano等[34]研究發(fā)現(xiàn)淤積的膽汁酸通過誘導(dǎo)膽管細(xì)胞的增殖和炎癥反應(yīng)致癌,而非直接誘導(dǎo)基因突變。
CAFs可能起源于肝臟內(nèi)活化的星形細(xì)胞或?qū)Ч苤車睦w維母細(xì)胞。CAFs內(nèi)α-平滑肌肌動(dòng)蛋白表達(dá)陽性,能夠促使CCA細(xì)胞增殖、遷移、侵襲及EMT,因此CCA組織中α-平滑肌肌動(dòng)蛋白高表達(dá)的患者預(yù)后不良[35]。目前已證實(shí)與CAFs相關(guān)的主要信號(hào)軸包括PDGF/PDGFR、SDF-1/CXCR4、HB/EGF/EGFR、CXCL5/CXCR2/IL-1β[36]。研究[37]表明,將肝臟星形細(xì)胞轉(zhuǎn)化為肌成纖維細(xì)胞能夠增強(qiáng)其凋亡易感性,削弱其與腫瘤細(xì)胞的相互作用。應(yīng)用navitoclax(Bcl-2,Bcl-XL,Bcl-w抑制劑)能夠促進(jìn)CCA荷瘤小鼠體內(nèi)CAFs的凋亡,并使細(xì)胞外間質(zhì)蛋白減少,進(jìn)而抑制腫瘤生長(zhǎng),延長(zhǎng)宿主生存期。上述結(jié)果證明了以腫瘤間質(zhì)中CAFs為靶點(diǎn)治療CCA的可行性。
Notch信號(hào)傳導(dǎo)通路在胚胎發(fā)育過程中發(fā)揮重要作用。近期研究發(fā)現(xiàn),炎癥反應(yīng)能夠通過誘導(dǎo)Notch通路失調(diào)導(dǎo)致iCCA的發(fā)生[10]。據(jù)報(bào)道[38],CCA內(nèi)Notch1以及Notch4通路可分別上調(diào)82.9%和56.1%。一項(xiàng)臨床前研究[39]顯示,誘導(dǎo)大鼠肝細(xì)胞內(nèi)Notch1過表達(dá)能夠?qū)е耰CCA的形成?;谏鲜鲅芯拷Y(jié)果,Notch通路可作為一個(gè)新的CCA治療靶點(diǎn)。
Wnt信號(hào)傳導(dǎo)通路是真核生物中普遍存在的高度保守的信號(hào)通路,在CCA細(xì)胞中高度活化,其下游靶基因Wnt7B和Wnt10A過度表達(dá)。研究[24]發(fā)現(xiàn)腫瘤周圍間質(zhì)中的炎性巨噬細(xì)胞對(duì)Wnt通路持續(xù)活化不可或缺。動(dòng)物實(shí)驗(yàn)證實(shí)隨著CCA的不斷進(jìn)展,Wnt通路亦不斷強(qiáng)化,應(yīng)用Wnt抑制劑(ICG001、C59)能夠有效抑制腫瘤生長(zhǎng)[5],因此Wnt信號(hào)通路可能成為比較重要的臨床治療手段之一。
目前臨床試驗(yàn)正在評(píng)估針對(duì)CCA不同信號(hào)通路的分子靶向藥物的療效,如絡(luò)氨酸激酶抑制劑艾洛替尼、貝伐單抗、西妥昔單抗等,但并無數(shù)據(jù)表明CCA患者的生存率能從中顯著獲益,故仍需大量的相關(guān)研究。最近一項(xiàng)研究[3]發(fā)現(xiàn)約40%的CCA患者存在可作為潛在治療靶點(diǎn)的基因改變。多項(xiàng)臨床前及I期臨床實(shí)驗(yàn)正在評(píng)估包括IDH、microRNA以及融合基因在內(nèi)的新靶點(diǎn)的治療效果[40-41]??傊?,CCA的個(gè)體化靶向治療仍需多學(xué)科聯(lián)合進(jìn)行深入研究。
CCA是一類高度異質(zhì)性的惡性腫瘤,受解剖部位、腫瘤微環(huán)境、干細(xì)胞、細(xì)胞間相互作用、基因及表觀遺傳學(xué)改變等多種因素的影響。近年來已將CCA按解剖位置、基因背景、病理學(xué)、危險(xiǎn)因素和遺傳信息的不同進(jìn)行詳細(xì)分類。但未來仍需大量研究工作對(duì)已知內(nèi)容加以更新,并找尋CCA各亞型的特異性分子標(biāo)記物,并以此為基礎(chǔ)研究針對(duì)不同亞型的特異性靶向治療??傊?,個(gè)體化靶向治療的基礎(chǔ)研究及臨床轉(zhuǎn)化是CCA未來研究的重點(diǎn)。隨著分子生物學(xué)技術(shù)的發(fā)展,CCA分子病理學(xué)的研究必將逐步深入,有望為臨床治療帶來關(guān)鍵性的突破。
[1]杭軼,楊小勇,李文美,等.肝內(nèi)膽管癌與肝細(xì)胞癌臨床特征的比較研究[J].中國(guó)普通外科雜志,2015,24(2):175–179.doi:10.3978/j.issn.1005–6947.2015.02.004.Hang Y,Yang XY,Li WM,et al.Comparative study of clinical features between intrahepatic cholangiocarcinoma and hepatocellular carcinoma[J].Chinese Journal of General Surgery,2015,24(2):175–179.doi:10.3978/j.issn.1005–6947.2015.02.004.
[2]Global Burden of Disease Cancer Collaboration,Fitzmaurice C,Dicker D,et al.The Global Burden of Cancer 2013[J].JAMA Oncol,2015,1(4):505–527.doi: 10.1001/jamaoncol.2015.0735.
[3]Bridgewater J,Galle PR,Khan SA,et al.Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma[J].Hepatol,2014,60(6):1268–1289.doi: 10.1016/j.jhep.2014.01.021.
[4]Jiao Y,Pawlik TM,Anders RA,et al.Exome sequencing identifies frequent inactivating mutations in BAP1,ARID1A and PBRM1 in intrahepatic cholangiocarcinomas[J].Nat Genet,2013,45(12):1470–1473.doi: 10.1038/ng.2813.
[5]Boulter L,Guest RV,Kendall TJ,et al.Wnt signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited[J].Clin Invest,2015,125(3):1269–1285.doi: 10.1172/JCI76452.
[6]Borad MJ,Champion MD,Egan JB,et al.Integrated genomic characterization reveals novel,therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma[J].PLoS Genet,2014,10(2):e1004135.doi:10.1371/journal.pgen.1004135.
[7]Gao Q,Zhao YJ,Wang XY,et al.Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients[J].Gastroenterology,2014,146(5):1397–1407.doi: 10.1053/j.gastro.2014.01.062.
[8]Fujimoto A,Furuta M,Shiraishi Y,et al.Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity[J].Nat Commun,2015,6:6120.doi: 10.1038/ncomms7120.
[9]Ong CK,Subimerb C,Pairojkul C,et al.Exome sequencing of liver fluke-associated cholangiocarcinoma[J].Nat Genet,2012,44(6):690–693.doi: 10.1038/ng.2273.
[10]Zou S,Li J,Zhou H,et al.Mutational landscape of intrahepatic cholangiocarcinoma[J].Nat Commun,2014,5:5696.doi: 10.1038/ncomms6696.
[11]Simbolo M,Fassan M,Ruzzenente A,et al.Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups[J].Oncotarget,2014,5(9):2839–2852.
[12]Churi CR,Shroff R,Wang Y,et al.Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications[J].PLoS One,2014,9(12): e115383.doi: 10.1371/journal.pone.0115383.
[13]Nakamura H,Arai Y,Totoki Y,et al.Genomic spectra of biliary tract cancer[J].Nat Genet,2015,47(9):1003–1010.doi: 10.1038/ng.3375.
[14]Sia D,Hoshida Y,Villanueva A,et al.Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes[J].Gastroenterology,2013,144(4):829–840.doi:10.1053/j.gastro.2013.01.001.
[15]Arai Y,Totoki Y,Hosoda F,et al.Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma[J].Hepatology,2014,59(4):1427–1434.doi:10.1002/hep.26890.
[16]Ross JS,Wang K,Gay L,et al.New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing[J].Oncologist,2014,19(3):235–242.doi: 10.1634/theoncologist.2013–0352.
[17]Sia D,Losic B,Moeini A,et al.Massive parallel sequencing uncovers actionable FGFR2–PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma[J].Nat Commun,2015,6:6087.doi: 10.1038/ncomms7087.
[18]Udali S,Guarini P,Moruzzi S,et al.Global DNA methylation and hydroxymethylation differ in hepatocellular carcinoma and cholangiocarcinoma and relate to survival rate[J].Hepatology,2015,62(2):496–504.doi: 10.1002/hep.27823.
[19]Chiang NJ,Shan YS,Hung WC,et al.Epigenetic regulation in the carcinogenesis of cholangiocarcinoma[J].Int J Biochem Cell Biol,2015,67:110–114.doi: 10.1016/j.biocel.2015.06.012.
[20]Andresen K,Boberg KM,Vedeld HM,et al.Four DNA methylation biomarkers in biliary brush samples accurately identify the presence of cholangiocarcinoma[J].Hepatology,2015,61(5):1651–1659.doi:10.1002/hep.27707.
[21]Wang P,Dong Q,Zhang C,et al.Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas[J].Oncogene,2013,32(25):3091–3100.doi: 10.1038/onc.2012.315.
[22]Saha SK,Parachoniak CA,Ghanta KS,et al.Mutant IDH inhibits HNF 4α to block hepatocyte differentiation and promote biliary cancer[J].Nature,2014,513(7516):110–114.doi: 10.1038/NATURE13441.
[23]Sica A,Invernizzi P,Mantovani A.Macrophage plasticity and polarization in liver homeostasis and pathology[J].Hepatology,2014,59(5):2034–2042.doi: 10.1002/hep.26754.
[24]Goeppert B,Konermann C,Schmidt CR,et al.Global alterations of DNA methylation in cholangiocarcinoma target the Wnt signaling pathway[J].Hepatology,2014,59(2):544–554.doi: 10.1002/hep.26721.
[25]Gradilone S,Radtke BN,Bogert PS,et al.HDAC6 inhibition restores ciliary expression and decreases tumor growth[J].Cancer Res,2013,73(7):2259–2270.doi: 10.1158/0008–5472.CAN–12–2938.
[26]Marzioni M,Torrice A,Saccomanno S,et al.An oestrogen receptor β-selective agonist exerts anti-neoplastic effects in experimental intrahepatic cholangiocarcinoma[J].Dig Liver Dis,2012,44(2):134–142.doi: 10.1016/j.dld.2011.06.014.
[27]Isse K,Specht SM,Lunz JG 3rd,et al.Estrogen stimulates female biliary epithelial cell interleukin 6 expression in mice and humans[J].Hepatology,2010,51(3):869–880.doi: 10.1002/hep.23386.
[28]Coufal M,Invernizzi P,Gaudio E,et al.Increased local dopamine secretion has growth-promoting effects in cholangiocarcinoma[J].Int J Cancer,2010,126(9):2112–2122.doi: 10.1002/ijc.24909.
[29]Francis H,DeMorrow S,Venter J,et al.Inhibition of histidine decarboxylase ablates the autocrine tumorigenic effects of histamine in human cholangiocarcinoma[J].Gut,2012,61(5):753–764.doi:10.1136/gutjnl–2011–300007.
[30]Harder J,Waiz O,Otto F,et al.EGFR and HER2 expression in advanced biliary tract cancer[J].World J Gastroenterol,2009,15(36):4511–4517.
[31]Clapéron A,Mergey M,Nguyen Ho-Bouldoires TH,et al.EGF/EGFR axis contributes to the progression of cholangiocarcinoma through the induction of an epithelial–mesenchymal transition[J].J Hepatol,2014,61(2):325–332.doi: 10.1016/j.jhep.2014.03.033.
[32]Maroni L,Alpini G,Marzioni M.Cholangiocarcinoma development: the resurgence of bile acids[J].Hepatology,2014,60(3):795–797.doi: 10.1002/hep.27223.
[33]Liu R,Zhao R,Zhou X,et al.Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1 phosphate receptor 2[J].Hepatology,2014,60(3):908–918.doi: 10.1002/hep.27085.
[34]Lozano E,Sanchez-Vicente L,Monte MJ,et al.Cocarcinogenic effects of intrahepatic bile acid accumulation in cholangiocarcinoma development[J].Mol Cancer Res,2014,12(1):91–100.doi:10.1158/1541–7786.MCR–13–0503.
[35]陳雷,尚培中.膽管癌患者癌組織與血清中XIAP、SMAC水平的變化及其臨床意義[J].中國(guó)普通外科雜志,2016,25(9):1296–1301.doi:10.3978/j.issn.1005–6947.2016.09.012.Chen L,Shang PZ.Changes in XIAP and SMAC levels in tumor tissue and serum of patients with cholangiocarcinoma and their clinical significance[J].Chinese Journal of General Surgery,2016,25(9):1296–1301.doi:10.3978/j.issn.1005–6947.2016.09.012.
[36]Kim Y,Kim MO,Shin JS,et al.Hedgehog signaling between cancer cells and hepatic stellate cells in promoting cholangiocarcinoma[J].Ann Surg Oncol,2014,21(8):2684–2698.doi: 10.1245/s10434–014–3531–y.
[37]Mertens JC,Fingas CD,Christensen JD,et al.Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma[J].Cancer Res,2013,73(2):897–907.doi: 10.1158/0008–5472.CAN–12–2130.
[38]Wu WR,Shi XD,Zhang R,et al.Clinicopathological significance of aberrant Notch receptors in intrahepatic cholangiocarcinoma[J].Int J Clin Exp Pathol,2014,7(6):3272–3279.
[39]Zender S,Nickeleit I,Wuestefeld T,et al.A critical role for notch signaling in the formation of cholangiocellular carcinomas[J].Cancer Cell,2016,30(2):353–356.doi: 10.1016/j.ccell.2016.07.005.
[40]Rizvi S,Borad MJ,Patel T,et al.Cholangiocarcinoma: molecular pathways and therapeutic opportunities[J].Semin Liver Dis,2014,34(4):456–464.doi: 10.1055/s–0034–1394144.
[41]Rizvi S,Gores GJ.Molecular pathogenesis of cholangiocarcinoma[J].Dig Dis,2014,32(5):564–569.doi:10.1159/000360502.