胡宇飛,余得昭,過(guò)龍根,謝 平
(1:中國(guó)科學(xué)院水生生物研究所東湖湖泊生態(tài)系統(tǒng)試驗(yàn)站,武漢 430072)(2:中國(guó)科學(xué)院大學(xué),北京 100049)
武漢東湖水體異味物質(zhì)及其與水環(huán)境因子相互關(guān)系
胡宇飛1,2,余得昭1,2,過(guò)龍根1,謝 平1
(1:中國(guó)科學(xué)院水生生物研究所東湖湖泊生態(tài)系統(tǒng)試驗(yàn)站,武漢 430072)(2:中國(guó)科學(xué)院大學(xué),北京 100049)
根據(jù)2014年1-12月東湖3個(gè)湖區(qū)(水果湖、郭鄭湖及湯菱湖)中9種溶解態(tài)異味物質(zhì)(DMS、DMDS、DMTS、β-cyclocitral、β-ionone、MIB、GEO、IBMP和IPMP)的月間采樣結(jié)果,對(duì)異味化合物濃度之間的相關(guān)性及其與東湖水體中主要環(huán)境因子的相關(guān)關(guān)系進(jìn)行了分析. 研究發(fā)現(xiàn)9種異味物質(zhì)濃度整體水平在夏、秋季相對(duì)冬、春季較高,其中DMS、DMTS、β-cyclocitral、β-ionone的月平均濃度較高,且在夏季均超出嗅味閾值,其他幾種異味物質(zhì)濃度檢出較低,對(duì)東湖的異味強(qiáng)度影響較小. 低濃度β-cyclocitral及β-ionone具有煙草或芳香味,DMS與DMTS具有腐臭味,因此DMS及DMTS為東湖異味的主要致嗅物質(zhì). 從異味物質(zhì)空間分布來(lái)看,郭鄭湖區(qū)的DMS、DMDS、β-cyclocitral及β-ionone年平均濃度均低于其他兩個(gè)湖區(qū),綜合該湖區(qū)中相對(duì)較低的年平均總氮(TN)和葉綠素a(Chl.a)濃度以及受人類活動(dòng)影響程度較低的情況,該湖區(qū)的異味問(wèn)題要輕于水果湖及湯菱湖區(qū). 此外,研究發(fā)現(xiàn)DMTS、β-cyclocitral和β-ionone濃度與Chl.a濃度均呈顯著正相關(guān),DMDS及DMTS濃度與TN濃度呈顯著正相關(guān),DMS及β-cyclocitral濃度與溶解氧濃度呈顯著負(fù)相關(guān),表明由于大量藻類快速腐敗導(dǎo)致的水體含氧量下降可能會(huì)對(duì)水體異味產(chǎn)生重要影響. 為防止東湖水體惡臭的發(fā)生,對(duì)藻類進(jìn)行控制尤為重要.
東湖;異味物質(zhì);環(huán)境因子;相互關(guān)系
湖泊是重要的飲用水及水產(chǎn)品源地. 近年來(lái)的湖泊水體富營(yíng)養(yǎng)化引起的藍(lán)藻水華或形成的優(yōu)勢(shì)種群的藻類導(dǎo)致的水體異味污染對(duì)湖泊生態(tài)及人類生活有嚴(yán)重的危害. 水體中高含量異味物質(zhì)的存在不僅嚴(yán)重影響水質(zhì),而且還可進(jìn)一步積累于水生生物體內(nèi),帶來(lái)一系列水產(chǎn)品異味問(wèn)題. 如在1970s末,北歐挪威Mjosa湖中大量顫藻“水華”引起的難聞霉味影響了當(dāng)?shù)丶s20萬(wàn)人的正常供水[1];1969年在芬蘭Oulu海域,由于魚肉中難聞的霉味致使當(dāng)?shù)貪O民失去主要經(jīng)濟(jì)收入[2];類似事件在其他國(guó)家也經(jīng)常發(fā)生. 在眾多水體異味的報(bào)道中,GEO(geosmin,土臭素)和MIB(2-methylisoborneol,二甲基異莰醇)兩種土霉味化合物在藻類次生代謝產(chǎn)物中最為常見(jiàn). 近年來(lái),對(duì)β-cyclocitral(β-環(huán)檸檬醛)、β-ionone(β-紫羅蘭酮)、IPMP(2-isopropyl-3-methoxy pyrazine,2-異丙基-3-甲氧基吡嗪)及IBMP(2-isobutyl-3-methoxy pyrazine,2-異丁基-3-甲氧基吡嗪)的研究也逐漸增多[3-5]. 揮發(fā)性有機(jī)硫化物也會(huì)導(dǎo)致水體產(chǎn)生異味,Bechard等[6]在調(diào)查湖泊的富營(yíng)養(yǎng)化時(shí)發(fā)現(xiàn)在綠藻水華腐爛過(guò)程中產(chǎn)生了大量的DMS(甲硫醚)、DMDS(二甲基二硫醚)和DMTS(二甲基三硫醚). 以上9種主要異味物質(zhì)與水環(huán)境因子之間有著密切的聯(lián)系,且現(xiàn)在經(jīng)常被用來(lái)判斷水體異味的情況. 因此找出這9種物質(zhì)與水環(huán)境因子間的關(guān)系對(duì)于湖泊水體中異味物質(zhì)的防控具有重要意義.
東湖(30°31′~30°36′N,114°21′~114°28′E)位于長(zhǎng)江中游,是一個(gè)典型的中型淺水內(nèi)陸湖泊,面積約32 km2,平均水深2.2 m,最大水深4.8 m. 它是武漢市生活、工業(yè)與農(nóng)業(yè)灌溉用水的水源地,全國(guó)聞名的風(fēng)景區(qū)和水上休閑運(yùn)動(dòng)場(chǎng),還具有防汛調(diào)蓄、水產(chǎn)養(yǎng)殖、調(diào)節(jié)小氣候等多種功能[7]. 由于東湖受周邊地區(qū)工農(nóng)業(yè)迅速發(fā)展及人口迅速增加的影響,水體富營(yíng)養(yǎng)化程度較重,嚴(yán)重破壞了生態(tài)平衡,水體中藻源性次生代謝產(chǎn)物產(chǎn)生的異味物質(zhì)對(duì)飲用水安全及水產(chǎn)品質(zhì)量具有重要影響,因此對(duì)東湖水體中異味物質(zhì)的研究十分必要. 本研究以東湖為研究對(duì)象,分析了2014年?yáng)|湖水體中溶解態(tài)異味物質(zhì)的含量,并分析了各異味物質(zhì)之間以及其水環(huán)境因子之間的相關(guān)關(guān)系,旨在找出影響東湖水體中異味化合物的主要環(huán)境因素.
1.1 試劑與儀器
DMS、DMDS、DMTS、MIB、GEO、β-Cyclocitral、β-ionone、IBMP及IPMP的標(biāo)準(zhǔn)品購(gòu)自Sigma公司,并用色譜級(jí)甲醇(Merck公司)配置成1 mg/L的溶液用于標(biāo)準(zhǔn)曲線溶液的配置. 用于分離溶解態(tài)及結(jié)合態(tài)異味物質(zhì)的玻璃纖維素薄膜GF/C膜購(gòu)自Brentford公司. 水體中的溶解態(tài)異味物質(zhì)采用吹掃捕集(Eclipse4660,OI分析儀器公司,美國(guó))-氣相色譜-質(zhì)譜聯(lián)用(P&T-GCMS,島津GCMS-QP2010Plus,島津公司,日本)法進(jìn)行分析[8]. 色譜柱為HP-5MSUI石英毛細(xì)管柱(30 m×0.25 mm×0.25 μm).
圖1 武漢東湖采樣點(diǎn)分布Fig.1 Schematic diagram of the sampling sites in Lake Donghu
1.2 樣品采集與水環(huán)境因子的測(cè)定
1.3 水中溶解態(tài)異味物質(zhì)的測(cè)定
參考Deng等[8]的方法對(duì)經(jīng)Whatman GF/C膜過(guò)濾后的水樣中的異味物質(zhì)進(jìn)行測(cè)定.
1.4 數(shù)據(jù)分析
采用SPSS 22.0軟件對(duì)各樣點(diǎn)的水環(huán)境因子與異味物質(zhì)的空間分布數(shù)據(jù)進(jìn)行分析.
2.1 水環(huán)境理化指標(biāo)的變化
表1 研究期間東湖水環(huán)境因子范圍及均值
Tab.1 Annual means and ranges of water quality variables in Lake Donghu during the study period
參數(shù)范圍年平均值Tw/℃5.51~31.2019.97DO/(mg/L)4.73~13.738.94pH5.39~10.208.75電導(dǎo)率/(μS/cm)307~439398.20Chl.a(chǎn)/(μg/L)5.58~68.6328.33TN/(mg/L)0.49~1.951.16NH+4?N/(mg/L)0.02~0.620.25TP/(mg/L)0.03~0.420.12
表2 研究期間東湖各采樣點(diǎn)環(huán)境因子的年均值
Tab.2 Annual means of water quality variables at each sampling site of Lake Donghu during the study period
位點(diǎn)TP/(mg/L)TN/(mg/L)NH+4?N/(mg/L)Chl.a(chǎn)/(μg/L)電導(dǎo)率/(μS/cm)Tw/℃pHDO/(mg/L)10.131.090.2729.95404.720.398.978.7720.111.100.2621.91403.420.028.498.7030.121.280.2233.13386.619.498.809.36
2.2 溶解態(tài)異味物質(zhì)濃度變化
在對(duì)東湖水體周年采樣過(guò)程中,可以感知到6-9月期間東湖水體整體散發(fā)出輕微腥臭味,夏、秋之交時(shí)較輕,秋、冬季時(shí)明顯減輕,甚至沒(méi)有感知到異味. 從湖區(qū)分布來(lái)看,水果湖及湯菱湖區(qū)異味程度相近,在夏季時(shí)均散發(fā)輕微腥臭味,而郭鄭湖區(qū)夏季散發(fā)的腥臭味相比另外兩個(gè)湖區(qū)要弱很多.
9種溶解態(tài)異味物質(zhì)中除IBMP在6、7、8、9、10及12月均未被檢測(cè)到,其余異味物質(zhì)在3個(gè)采樣點(diǎn)中均被檢出. 除DMDS及IPMP外,其他7種異味物質(zhì)均有月平均濃度超出異味閾值(OTC)的情況. 超出OTC的異味物質(zhì)中以DMS、β-cyclocitral及β-ionone最為顯著,其中DMS及β-cyclocitral濃度全年均超出異味閾值,β-ionone濃度僅1月低于7 ng/L,其余11個(gè)月均超出. DMS、DMTS、β-cyclocitral及β-ionone濃度在夏季時(shí)普遍偏高. 由于β-ionone及β-cyclocitral嗅味主要為煙葉或花香味,而DMS及DMTS主要為腐臭味,因此夏季東湖散發(fā)出的微腥臭味主要由DMS及DMTS貢獻(xiàn)(表3).
從異味物質(zhì)空間分布(表4)來(lái)看,水果湖區(qū)的DMS年平均濃度為54.09 ng/L,高于郭鄭湖區(qū)及湯菱湖區(qū)(49.17及49.61 ng/L). DMDS的年平均濃度中,郭鄭湖區(qū)最低,為4.96 ng/L,郭鄭湖及湯菱湖區(qū)稍高,分別為8.04及9.23 ng/L. 3個(gè)位點(diǎn)的β-cyclocitral年平均濃度分別為14.27、12.39 和16.12 ng/L. 水果湖區(qū)及湯菱湖區(qū)的β-ionone年平均濃度(24.43及32.53 ng/L)均高于郭鄭湖區(qū)(19.94 ng/L). 其他幾種異味物質(zhì)在3個(gè)采樣位點(diǎn)的差異不大. 由此可見(jiàn),郭鄭湖區(qū)的異味問(wèn)題要輕于其他兩個(gè)位點(diǎn).
表3 研究期間東湖3個(gè)位點(diǎn)水樣異味物質(zhì)月平均濃度(ng/L)變化*
Tab.3 Seasonal changes of taste and odor compounds concentrations at the 3 sampling sites of Lake Donghu during the study period
月份DMSDMDSDMTSβ?cyclocitralβ?iononeIBMPIPMPMIBGEO18.871.243.746.416.1717.821.1610.890.92225.360.611.543.6213.765.314.072.990.52321.460.390.342.8614.858.551.606.261.01415.980.290.242.9229.357.391.1234.081.54521.120.310.463.0917.9511.920.9411.322.46682.0213.3816.6730.9334.840.4315.974.017100.157.0319.4023.3625.870.2814.981.958139.338.2016.8727.6742.710.4111.312.45964.034.1614.1321.6838.230.365.771.641061.6514.7733.3323.0638.142.2310.540.901138.7523.0220.5116.4127.301.230.463.440.831232.7915.5424.689.0918.410.593.151.00年平均50.967.4112.6614.2625.634.351.1410.891.60OTC0.3~10002200100.5~1930072~1620154
*各異味物質(zhì)OTC值引自文獻(xiàn)[10-13];月平均值為3個(gè)位點(diǎn)的月平均值,超出OTC的用下劃線標(biāo)出.
表4 研究期間東湖各采樣點(diǎn)異味物質(zhì)年濃度(ng/L)
Tab.4 Annual concentrations of taste and odor compounds at each sampling site of Lake Donghu during the study period
位點(diǎn)DMSDMDSDMTSIPMPIBMPMIBβ?cyclocitralGEOβ?ionone154.098.0412.790.914.2916.1114.272.0724.43249.174.9611.190.905.2917.2912.391.6419.94349.619.2314.001.033.2715.2716.121.1132.53
2.3 水環(huán)境因子與異味物質(zhì)及異味物質(zhì)之間的相關(guān)關(guān)系
相關(guān)分析結(jié)果(表5)表明,東湖水體中DMS濃度與水溫呈極顯著正相關(guān)(P<0.01),與DO濃度呈顯著負(fù)相關(guān)(P<0.05). DMDS濃度與TP濃度呈極顯著正相關(guān)(P<0.01),與TN濃度呈顯著正相關(guān)(P<0.05). DMTS濃度與Chl.a和TN濃度呈顯著正相關(guān)(P<0.05),與pH呈顯著負(fù)相關(guān)(P<0.05). β-cyclocitral及β-ionone濃度與Chl.a濃度和水溫分別呈極顯著正相關(guān)(P<0.01),分別與TP濃度顯著正相關(guān)(P<0.05),并與電導(dǎo)率呈極顯著負(fù)相關(guān)(P<0.01). β-cyclocitral濃度還與DO濃度呈顯著負(fù)相關(guān)(P<0.05),與TN濃度呈極顯著正相關(guān)(P<0.01). 同時(shí)分析了9種異味物質(zhì)濃度之間的相關(guān)關(guān)系(表6),發(fā)現(xiàn)DMTS濃度與DMS及DMDS濃度均呈極顯著正相關(guān)(P<0.01),β-cyclocitral濃度與β-ionone濃度呈極顯著正相關(guān)(P<0.01),同時(shí)與3種硫醚類異味物質(zhì)也分別呈極顯著正相關(guān)(P<0.01).
表5 東湖異味物質(zhì)和水質(zhì)變量之間的相關(guān)關(guān)系
Tab.5 Correlations between water quality variables and taste and odor compounds in Lake Donghu
DMSDMDSDMTSMIBGEOβ?cyclocitralβ?iononeIBMPIPMPChl.a(chǎn)0.370?0.527??0.853??-0.465??DO-0.422?-0.405?-0.367?0.416?pH-0.371?NH+4?NTP0.471??0.372?0.407?-0.355?TN0.341?0.336?0.469??-0.396?Tw0.707??0.649??0.655??0.557??-0.626??COND-0.402?-0.493??-0.594??-0.738??-0.532?0.532??
*表示P<0.05,**表示P<0.01,“-”表示相關(guān)性不顯著,下同.
表6 東湖異味物質(zhì)之間的相關(guān)關(guān)系
Tab.6 Correlations among taste and odor compounds in Lake Donghu
DMSDMDSDMTSMIBGEOβ?cyclocitralβ?iononeIBMPIPMPDMS1DMDS1DMTS0.433??0.764??1MIB1GEO0.432??1β?cyclocitral0.778??0.479??0.701??0.400?1β?ionone0.544??0.419?0.698??1IBMP0.677??0.712??0.783??-0.489?1IPMP-0.433?-0.355?-0.514??-0.527??-0.396?1
3.1 異味物質(zhì)來(lái)源
除了工農(nóng)業(yè)廢水及生活污水污染外,水體富營(yíng)養(yǎng)化導(dǎo)致的藻類水華也是引起水體異味的重要原因. 在富營(yíng)養(yǎng)化水體中,由于營(yíng)養(yǎng)物質(zhì)過(guò)剩,使得淡水生態(tài)系統(tǒng)的平衡遭到破壞,一些藻、菌微生物群落過(guò)剩生長(zhǎng),這些藻、菌等能在生長(zhǎng)繁殖或死亡分解時(shí)不斷分泌和產(chǎn)生出各種具有異味的次生代謝產(chǎn)物. 東湖自1980s的觀測(cè)數(shù)據(jù)就顯示富營(yíng)養(yǎng)化程度比較嚴(yán)重[14-15],近年來(lái)雖然水體中個(gè)別因子(如浮游植物等)變化較大,但總體上富營(yíng)養(yǎng)化程度沒(méi)有顯著變化.
在以往水體中檢測(cè)到的硫化物中,最常見(jiàn)的為DMS、DMDS和DMTS[16-17],而本研究也表明在東湖水體中廣泛存在硫化物類異味物質(zhì),尤其是DMS(表3). 研究表明,DMS、DMDS和DMTS可由藻類或水生植物在生長(zhǎng)過(guò)程中及死亡腐爛后的有機(jī)質(zhì)中分解產(chǎn)生[18-19]. 在湖泊等富營(yíng)養(yǎng)化水體中,藻體細(xì)胞死亡分解可放出二甲基磺基丙酯(DMSP),DMSP是一種可以通過(guò)調(diào)節(jié)細(xì)胞滲透壓及抗凝作用來(lái)對(duì)細(xì)胞本身提供保護(hù)的化學(xué)物質(zhì). 經(jīng)過(guò)一些微生物(如淡水SAR11 細(xì)菌)以及物理化學(xué)降解過(guò)程,DMSP可以轉(zhuǎn)化成DMS并進(jìn)一步轉(zhuǎn)化成DMDS和DMTS[20]. 其次,微生物降解含硫有機(jī)物也是這類異味物質(zhì)產(chǎn)生的重要途徑之一[21]. 含有蛋白質(zhì)的工業(yè)廢水和生活污水等排入水體后,在厭氧條件下也可以生成甲硫醇,甲硫醇可以在好氧條件下轉(zhuǎn)化成DMDS,DMDS可以進(jìn)一步轉(zhuǎn)化為DMS[22]. 因此,本研究中DMTS與DMS及DMDS分別表現(xiàn)出顯著相關(guān)的關(guān)系可能是由于它們的產(chǎn)生途徑類似. 2#采樣點(diǎn)郭鄭湖區(qū)夏季時(shí)散發(fā)的腥臭味相比另外兩個(gè)湖區(qū)要弱很多,該湖區(qū)的DMS及DMTS年平均濃度要低于另外兩個(gè)湖區(qū),且該湖區(qū)年平均TN及Chl.a濃度均為3個(gè)湖區(qū)中最低的,表明可能是水體中相對(duì)較低的營(yíng)養(yǎng)鹽濃度沒(méi)有造成藻類的大量產(chǎn)生,從而由藻類生長(zhǎng)及死亡腐爛后的有機(jī)質(zhì)中產(chǎn)生的DMS及DMTS濃度相對(duì)較低;且相比其他兩個(gè)采樣點(diǎn),該湖區(qū)采樣點(diǎn)距離岸邊較遠(yuǎn),可能受人類活動(dòng)(工業(yè)廢水及生活污水的排放等)干擾較小,污染物來(lái)源主要是工業(yè)塵埃,生活污水及工業(yè)廢水所占比例低于28%,湖中心具有較強(qiáng)的自凈能力[23],在厭氧條件下產(chǎn)生了相對(duì)較少的硫化物類異味物質(zhì). 綜合以上原因,郭鄭湖區(qū)的異味問(wèn)題相比其他兩個(gè)湖區(qū)較輕. β-cyclocitral和β-ionone主要是由微囊藻屬體內(nèi)的β-胡蘿卜素氧化得來(lái),在藻體生長(zhǎng)過(guò)程中伴隨少量產(chǎn)生,當(dāng)藻體衰敗死亡時(shí),經(jīng)酶催化作用會(huì)大量產(chǎn)生[24-25]. 此外β-cyclocitral和β-ionone能夠加速藍(lán)藻的腐敗,從而增加DMS和DMTS的釋放量,這也解釋了本實(shí)驗(yàn)中β-cyclocitral和β-ionone與DMS、DMTS緊密相關(guān). MIB和GEO是放線菌、黏細(xì)菌和一些浮游藻類如顫藻屬、束絲藻屬及魚腥藻的代謝產(chǎn)物[10,26-27]. IBMP和IPMP檢出量較低,通常在水的貯存過(guò)程中產(chǎn)生,是藍(lán)藻在微生物分解過(guò)程中的產(chǎn)物[3,28],已有研究報(bào)道IBMP及IPMP兩種物質(zhì)的檢出都很低[29-30]. DMS、DMDS及DMTS 3種硫化物和β-cyclocitral、β-ionone的濃度較高,分別為50.96、7.41、12.66、14.26和25.63 ng/L,其中DMS、DMTS、β-cyclocitral和β-ionone超出它們的異味閾值. β-cyclocitral和β-ionone是具有煙葉或花香味的異味化合物,雖然能引起人的嗅覺(jué)感知,但對(duì)東湖水體異味貢獻(xiàn)不大,為非主要致嗅物質(zhì). 而DMS及DMTS具有腐臭味,夏季濃度較高時(shí)可以使得東湖水體呈現(xiàn)出輕微腥臭味,對(duì)湖泊生態(tài)系統(tǒng)及人類生活具有較大的潛在危害.
3.2 東湖水體中與異味物質(zhì)密切相關(guān)的水環(huán)境因子
異味物質(zhì)不僅受到其來(lái)源的影響,也受到眾多非生物因子的影響. Qi等[31]通過(guò)對(duì)太湖中常見(jiàn)異味物質(zhì)與環(huán)境因子之間的分析表明:TN、總?cè)芙獾O、化學(xué)需氧量、pH等均與水體中的異味物質(zhì)有重要的關(guān)系. 這些非生物環(huán)境因子不僅能夠影響藻類產(chǎn)異味的能力,還能夠直接導(dǎo)致異味物質(zhì)的分解與轉(zhuǎn)化.
致謝:感謝中國(guó)科學(xué)院水生生物研究所陳雋研究員的指導(dǎo),感謝于佳幫助制作采樣位點(diǎn)示意圖.
[1] Holtan H. The Lake Mj?sa story.ArchHydrobiolBeihErgebnLimnol, 1979, 13: 242-258.
[2] Presson PE. Off-flavours in aquatic ecosystem—an introduction.WaterScienceandTechnology,1983,15(6/7): 1-11.
[3] Peter A, K?ster O, Schildknecht Aetal. Occurrence of dissolved and particle-bound taste and odor compounds in Swiss lake waters.WaterResearch, 2009, 43(8): 2191-2200.
[4] Li L, Wan N, Gan Netal. Annual dynamics and origins of the odorous compounds in the pilot experimental area of Lake Dianchi, China.WaterScienceandTechnology, 2007, 55(5): 43-50.
[5] Xu LP, Xiong BX, Pan Yetal. Relationship between concentrations of odorous compounds and biomass of phytoplankton and actinomycetes in freshwater ponds of Beijing, China.AquacultureInternational, 2010, 18(3): 245-254.
[6] Bechard RG, Rayburn WR. Volatile organic sulfides from freshwater algae.JournalofPhycology, 1979, 15(4): 379-383.
[7] Shen Xiaoli. Ecological environment of East Lake: Vicissitude and recovery.EnvironmentalScienceandTechnology, 2003, 26(4): 24-26. [沈曉鯉. 武漢東湖的生態(tài)環(huán)境變遷與恢復(fù)問(wèn)題. 環(huán)境科學(xué)與技術(shù), 2003, 26(4): 24-26.]
[8] Deng XW, Liang G, Chen Jetal. Simultaneous determination of eight common odors in natural water body using automatic purge and trap coupled to gas chromatography with mass spectrometry.JournalofChromatographyA, 2011, 1218(24): 3791-3798.
[9] Jin Xiangcan, Tu Qingying eds. The standard methods in lake eutrophication investigation. Beijing: China Environmental Science Press, 1990.[金相燦, 屠清瑛. 湖泊富營(yíng)養(yǎng)化調(diào)查規(guī)范. 北京: 中國(guó)環(huán)境科學(xué)出版社, 1990: 229-230.]
[10] Mallevialle J, Suffet IH. Identification and treatment of tastes and odors in drinking water.RegionalAnesthesiaandPainMedicine, 1981, 33(5): e99.
[11] Young W,Horth H, Crane Retal. Taste and odour threshold concentrations of potential potable water contaminants.WaterResearch, 1996, 30: 331-340.
[12] Waston SB, Ridal J. Periphyton: A primary source of widespread and severe taste and odour.WaterScienceandTechnology, 2000, 49: 33-39.
[13] Juttner F. Characterization ofMicrocystisstrains by alkyl sulfides and beta-cyclocitral. Zeit Schrift fur Anturforschung C-A.JournalofBiosciences, 1984, 39: 867-871.
[14] Liu Jiankang ed. Studies on the ecology of Lake Donghu. Beijing: Science Press, 1990: 1-407.[劉建康. 東湖生態(tài)學(xué)研究. 北京: 科學(xué)出版社, 1990: 1-407.]
[15] Ruan Jingrong, Cai Qinghua, Liu Jiankang. A phosphorus-phytoplankton dynamics model for lake Donghu in Wuhan.ActaHydrobiologicaSinica, 1988, 12(4): 289-307.[阮景榮, 蔡慶華, 劉健康. 武漢東湖的磷-浮游植物動(dòng)態(tài)模型. 水生生物學(xué)報(bào), 1988, 12(4): 289-307.]
[16] Richards SR, Kelly CA, Rudd JWM. Organic volatile sulfur in lakes of the Canadian Shield and its loss to the atmosphere.LimnologyandOceanography, 1991, 36(3): 468-482.
[17] Hu H, Mylon SE, Benoit G. Volatile organic sulfur compounds in a stratified lake.Chemosphere, 2007, 67(5): 911-919.
[18] Lomans BP, Smolders A, Intven LMetal. Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments.AppliedandEnvironmentalMicrobiology, 1997, 63(12): 4741-4747.
[19] Ginzburg B, Dor I, Chalifa Ietal. Formation of dimethyloligosulfides in Lake Kinneret: Biogenic formation of inorganic oligosulfide intermediates under oxic conditions.EnvironmentalScienceandTechnology, 1999, 33(4): 571-579.
[20] Jiang Lin, Hu Min, Ren Changjiu. Biogenic production and consumption of dimethylsulfide in ocean.ActaScientiarumNaturaliumUniversitatisPekinensis, 1997, 33(2): 240-245. DOI: 10.13209/j.0479-8023.1997.034.[蔣林, 胡敏, 任長(zhǎng)久. 海洋二甲基硫的生物生產(chǎn)與降解. 北京大學(xué)學(xué)報(bào): 自然科學(xué)版, 1997, 33(2): 240-245.]
[21] Lu X, Fan C, He Wetal. Sulfur-containing amino acid methionine as the precursor of volatile organic sulfur compounds in algea-induced black bloom.JournalofEnvironmentalSciences, 2013, 25(1): 33-43.
[22] Zhang Xiaojian, Zhang Yue, Wang Huanetal. Emergent drinking water treatment for taste and odor control in Wuxi City water pollution incident.WaterAndWastewaterEngineering, 2007, 33(9): 7-12.[張曉健, 張悅, 王歡等. 無(wú)錫自來(lái)水事件的城市供水應(yīng)急除臭處理技術(shù). 給水排水, 2007, 33(9): 7-12.]
[23] Xiong Zhiping. Study on water environment pollution factors and renovation measurements of the East Lake.WaterSavingIrrigation, 2007, (4): 13-16.[熊志平. 東湖水環(huán)境污染因素與整治措施. 節(jié)水灌溉, 2007, (4): 13-16.]
[24] Watson SB, Ridal J, Boyer GL. Taste and odour and cyanobacterial toxins: Impairment, prediction, and management in the Great Lakes.CanadianJournalofFisheriesandAquaticSciences, 2008, 65(8): 1779-1796.
[25] Smith JL, Boyer GL, Zimba PV. A review of cyanobacterial odorous and bioactive metabolites: Impacts and management alternatives in aquaculture.Aquaculture, 2008, 280(1): 5-20.
[26] Wnorowski AU. Tastes and odours in the aquatic environment: A review.WaterSA, 1992, 18(3): 203-214.
[27] Xu Ying, Li Wen, Wu Wenzhongetal. Study on aquatic off-flavors in eutrophic Donghu Lake.ActaEcologicaSinica, 1999, 19(2): 212-216.[徐盈, 黎雯, 吳文忠等. 東湖富營(yíng)養(yǎng)水體中藻菌異味性次生代謝產(chǎn)物的研究. 生態(tài)學(xué)報(bào), 1999, 19(2): 212-216.]
[28] Khiari D, Barrett SE, Suffet IH. Sensory GC analysis of decaying vegetation and septic odors.AmericanWaterWorksAssociationJournal, 1997, 89(4): 150.
[29] Ma ZM, Xie P, Chen Jetal. Microcystis blooms influencing volatile organic compounds concentrations in Lake Taihu.FreseniusEnvironmentalBulletin, 2013, 22(1): 95-102.
[30] Chen J, Xie P, Ma ZMetal. A systematic study on spatial and seasonal patterns of eight taste and odor compounds with relation to various biotic and abiotic parameters in Gonghu Bay of Lake Taihu, China.ScienceoftheTotalEnvironment, 2010, 409(2): 314-325.
[31] Qi M, Chen J, Sun Xetal. Development of models for predicting the predominant taste and odor compounds in Taihu Lake, China.PLoSOne, 2012, 7(12): e51976.
[32] Barnard WR, Andreae MO, Watkins WEetal. The flux of dimethylsulfide from the oceans to the atmosphere.JournalofGeophysicalResearch:Oceans, 1982, 87(C11): 8787-8793.
[33] Smith VH. Eutrophication of freshwater and coastal marine ecosystems a global problem.EnvironmentalScienceandPollutionResearch, 2003, 10(2): 126-139.
[34] Watson SB. Cyanobacterial and eukaryotic algal odour compounds: Signals or by-products? A review of their biological activity.Phycologia, 2003, 42(4): 332-350.
[35] Tanaka A, Oritani T, Uehara Fetal. Biodegradation of a musty odour component, 2-methylisoborneol.WaterResearch, 1996, 30(3): 759-761.
[36] Li Lin, Song Lirong, Chen Weietal. Degradation of algae production odorous compounds in freshwater by photolysis and TO2photocatalysis.ChinaWater&Wastewater, 2007, 23(13): 102-105.[李林, 宋立榮, 陳偉等. 淡水藻源異味化合物的光降解和光催化降解研究. 中國(guó)給水排水, 2007, 23(13): 102-105.]
[37] Selli S, Prost C, Serot T. Odour-active and off-odour components in rainbow trout (Oncorhynchusmykiss) extracts obtained by microwave assisted distillation-solvent extraction.FoodChemistry, 2009, 114(1): 317-322.
[38] Robin J, Cravedi JP, Hillenweck Aetal. Off flavor characterization and origin in French trout farming.Aquaculture, 2006, 260(1): 128-138.
[39] Chorus I ed. Cyanotoxins: Occurrence, causes, consequences. Berlin: Springer, 2012. DOI: 10.1007/9/978-3-642-59514-1.
Relationships of water taste and odor compounds and their related environmental factors in Lake Donghu, Wuhan
HU Yufei1,2, YU Dezhao1,2, GUO Longgen1& XIE Ping1**
(1:DonghuExperimentalStationofLakeEcosystems,InstituteofHydrobiology,ChineseAcademyofSciences,Wuhan430072,P.R.China)(2:UniversityofChineseAcademyofSciences,Beijing100049,P.R.China)
Nine dissolved taste and odor compounds (T & O), namely DMS, DMDS, DMTS, β-cyclocitral, β-ionone, MIB, GEO, IBMP and IPMP were investigated in three water areas (Lake Shuiguo, Lake Guozheng and Lake Tangling) of Lake Donghu monthly in 2014. According to the changes of the nine T & O compounds and related environmental factors of each month, relationships of these compounds as well as the relationships with environmental factors were analyzed in this study. It was found that the concentrations of the nine T & O compounds were higher in the summer and fall than in the winter and spring. The seasonal concentrations of DMS, DMDS, DMTS, β-cyclocitral and β-ionone were high and their concentrations all surpassed OTC (Over The Count) in the summer, while other T & O compounds made little contributions to the odor problems of Lake Donghu because of their relative low concentrations. Low concentrations of β-cyclocitral and β-ionone can make water smell flavoury while DMS and DMTS contribute fusty smelling, making the main odors that led Lake Donghu smelly. As for the distributions of odors, the yearly concentrations of DMS, DMDS, β-cyclocitral and β-ionone in Lake Guozheng were all lower than that of the other two areas in Lake Donghu. Based on the relative low concentrations of total nitrogen and chlorophyll-a(Chl.a) and the relative low influence of human activities on Lake Guozheng, odor problem in this area is lighter than that of Lake Shuiguo and Lake Tangling. Meanwhile, there were significantly positive correlations between concentrations of Chl.a and the three taste and odor compounds (DMTS, β-cyclocitral and β-ionone), as well as between concentrations of total nitrogen and the two odors (DMDS and DMTS) in the study. Besides, negative correlations were presented in concentration of dissolved oxygen (DO) with DMS and β-cyclocitral, respectively, indicating that low DO concentration induced by decayed algae could aggravate odor problems. To manage the occurrences of taste and odor events in Lake Donghu, it is critical to control the growth of algae.
Lake Donghu; taste and odor compounds; environmental factors; correlation
*淡水生態(tài)與生物技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(2015FB13,2014FBZ02)資助. 2016-03-03收稿; 2016-05-03收修改稿. 胡宇飛(1991~),女,碩士研究生; E-mail: yufeihu@ihb.ac.cn.
*通信作者; E-mail: xieping@ihb.ac.cn.
J.LakeSci.(湖泊科學(xué)), 2017, 29(1): 87-94
DOI 10.18307/2017.0110
?2017 byJournalofLakeSciences