劉 顥,湯祥明,高 光,馮 勝,邵克強(qiáng),胡 洋
(1:常州大學(xué)環(huán)境與安全工程學(xué)院,常州 213164)(2:中國科學(xué)院南京地理與湖泊研究所湖泊與環(huán)境國家重點(diǎn)實(shí)驗(yàn)室,南京 210008)
太湖藻源性顆粒物分解過程中氨基酸的變化特征
劉 顥1,2,湯祥明2,高 光2,馮 勝1,邵克強(qiáng)2,胡 洋2
(1:常州大學(xué)環(huán)境與安全工程學(xué)院,常州 213164)(2:中國科學(xué)院南京地理與湖泊研究所湖泊與環(huán)境國家重點(diǎn)實(shí)驗(yàn)室,南京 210008)
氨基酸;分解速率;氮形態(tài);光照;藍(lán)藻水華;太湖
本文對比了在自然光照和無光條件下,高密度太湖藍(lán)藻分解過程中PAA的分解量、分解速率和組成,DAA含量和組成以及分解過程中氮形態(tài)的變化,并探討了氨基酸態(tài)氮在富營養(yǎng)化水體氮循環(huán)中的作用,為闡明水華過程中氮素的遷移和轉(zhuǎn)化規(guī)律及夏季水華現(xiàn)象發(fā)生的機(jī)理提供理論依據(jù).
1.1 實(shí)驗(yàn)設(shè)置和樣品采集
1.1.1 實(shí)驗(yàn)設(shè)置 實(shí)驗(yàn)在中國科學(xué)院太湖湖泊生態(tài)系統(tǒng)研究站生態(tài)室水槽內(nèi)進(jìn)行. 以6只用純水洗凈晾干的100 L有蓋塑料水桶為培養(yǎng)容器,在各個水桶底部中央固定一造浪泵(功率為24 W),用以模擬水動力條件,保持整個系統(tǒng)內(nèi)有一定的混合度. 從太湖湖泊生態(tài)系統(tǒng)研究站棧橋打撈發(fā)生水華時的藍(lán)藻和湖水,藍(lán)藻藻漿用64 μm尼龍網(wǎng)濃縮,湖水用64 μm尼龍網(wǎng)過濾. 將處理后的湖水加入上述水桶內(nèi),并添加適量藍(lán)藻藻漿,混勻后測定水體中葉綠素a(Chl.a)濃度,保持水桶內(nèi)Chl.a初始濃度為800 μg/L左右,與太湖藍(lán)藻水華堆積時水體中的Chl.a濃度相當(dāng). 實(shí)驗(yàn)時3只水桶暴露在自然光照之下(自然光照組);其余3只水桶外壁和上蓋用鋁箔包好,創(chuàng)造無光條件(無光分解組),使得每個處理組有3個平行. 水桶以隨機(jī)順序懸掛放在有機(jī)玻璃房內(nèi)的大型水槽內(nèi),每個水桶內(nèi)放置一根加熱棒,保持溫度為28±2℃,連續(xù)培養(yǎng)21 d(實(shí)驗(yàn)時間為2014年8月1日-21日).
1.2 理化因子分析
PAA的降解速率采用Olson的指數(shù)模型[18]計算:
Ct/C0=e-kt
(1)
式中,C0為PAA初始濃度(mmol/L);Ct為降解時間t的PAA濃度(mmol/L);t為分解時間(d);k為降解速率常數(shù)(d-1).
1.3 氨基酸分析
每次采集的水樣經(jīng)GF/F濾膜過濾(GF/F濾膜預(yù)先經(jīng)500℃處理4 h),記錄過濾體積,將膜對折,包于鋁箔中,-20℃冷凍保存;另取25 ml上述用GF/F濾膜過濾后的水置于洗凈烘干的塑料瓶中,-20℃冷凍保存,待分析. 其中,濾膜上的為PAA,而塑料瓶中的用來測量DAA.
PAA濃度分析:將濾膜置于真空冷凍干燥機(jī)中凍干后放入水解管中,用5 ml 6 mol/L HCl溶解,氮吹1 min,封瓶,在110℃下水解22 h[19]. 水解結(jié)束后,打開水解管,吸取上層水解液離心(8000轉(zhuǎn)/min)后,取2 ml上清液置于旋轉(zhuǎn)蒸發(fā)儀中蒸發(fā)至干,用1 ml樣品稀釋液(pH=2.2)溶解,并用0.2 μm濾膜過濾,收集濾液放入2 ml離心管中,然后用氨基酸分析儀(Sykam)進(jìn)行分析.
DAA濃度分析:在凍干的塑料瓶中加5 ml 6 mol/L HCl溶解后將全部液體轉(zhuǎn)移入水解管中,并加入微量0.2%(w/v)抗壞血酸,氮吹1 min,封瓶,在110℃下水解22 h. 冷卻后打開水解管,將水解液中的液體完全取出,測量其體積并至于旋轉(zhuǎn)蒸發(fā)儀中蒸發(fā)至干,用1 ml樣品稀釋液(pH=2.2)溶解,并用0.2 μm濾膜頭過濾,收集濾液放入2 ml離心管中,然后用氨基酸分析儀(Sykam)進(jìn)行分析.
1.4 數(shù)據(jù)分析
實(shí)驗(yàn)數(shù)據(jù)通過Microsoft Excel 2013錄入,分別采用SPSS 19.0和Origin 8.6軟件分析及作圖. 采用獨(dú)立樣本t檢驗(yàn)分析不同組別之間是否存在顯著性差異.
2.1 藍(lán)藻分解過程中理化指標(biāo)的變化
實(shí)驗(yàn)時光照強(qiáng)度的變化因天氣而異,出現(xiàn)了較為明顯的波動. 在實(shí)驗(yàn)初期(1~4 d),光照強(qiáng)度比較大,在第2 d達(dá)到最大值116.44 W/m2. 隨后出現(xiàn)兩次波動,第1次波動的最小值為29.27 W/m2(第6 d),最大值為78.56 W/m2(第9 d);第2次波動在第15 d出現(xiàn)最小值15.75 W/m2,隨后上升至82.69 W/m2(第21 d)(圖1).
實(shí)驗(yàn)開始時,在自然光照組和無光分解組DO濃度分別為6.16和5.76 mg/L,隨后兩種不同處理組中DO濃度均明顯下降至最低,分別為3.18和1.61 mg/L. 隨后上升,到第21 d上升至實(shí)驗(yàn)初始水平(5.76和6.43 mg/L)(圖1). 不同處理方式之間具有顯著差異(P<0.05).
實(shí)驗(yàn)初期,有光和無光條件下Chl.a濃度分別為804.61和793.96 μg/L,在0~5 d內(nèi)均下降很快,分別降至463.80和114.23 μg/L,之后下降速率放緩,到21 d分別降至369.24和12.21 μg/L,自然光照組和無光分解組之間差異顯著(P<0.05). 在8~13 d,自然光照組中Chl.a濃度甚至還有上升的趨勢(圖1).
TN濃度在實(shí)驗(yàn)后期略有增加,整體變化不明顯. 有光和無光條件下從實(shí)驗(yàn)前的9.75和9.70 mg/L分別增加到實(shí)驗(yàn)后的10.54和11.72 mg/L. 無光分解組的TN濃度總是稍小于自然光照組. 不同處理方式之間不具有顯著差異(圖1).
圖1 藻源性顆粒物降解過程中理化因子的變化Fig.1 Variation of physical and chemical factors during the process of algae-originated particles decomposition
2.2 藍(lán)藻分解過程中氨基酸濃度的變化
實(shí)驗(yàn)期間,自然光照組和無光分解組中PAA濃度均隨時間明顯下降(圖2),在0~5 d,無光分解組和自然降解組中PAA濃度分別從0.44和0.46 mmol/L降至0.15和0.31 mmol/L,隨后兩種不同的處理中PAA濃度變化不明顯,到實(shí)驗(yàn)結(jié)束時分別為0.06和0.30 mmol/L,無光分解組仍有一定的降解. 通過分析可以看出,實(shí)驗(yàn)期間,自然光照組中PAA的降解率為34.8%,而無光分解組中PAA的降解率高達(dá)86.0%,無光分解組中PAA分解量較自然分解組更大,兩組之間差異顯著(P<0.05).
DAA濃度的變化與PAA不同,呈現(xiàn)出先增加后降低的趨勢(圖2). 實(shí)驗(yàn)前期0~6 d,自然光照組和無光分解組DAA濃度均顯著增加,第6~8 d,分別上升到最大值(10.94和7.94 μmol/L). 這時,水體中的DAA處于相對穩(wěn)定的狀態(tài),DAA的生成與降解相對平衡. 第8 d之后,均呈現(xiàn)一個下降的過程,在第21 d分別降至3.13和0.66 μmol/L. 無光分解組DAA最終濃度低于初始濃度. 將DAA隨時間的變化曲線分為上升期(0~5 d)和降解期(10~21 d). 可以發(fā)現(xiàn)在上升期,無光分解組DAA生成速率小于自然降解組;而在降解期,兩組的分解速率并無顯著性差異(P<0.05). 說明光照對上升期的DAA變化影響比較大.
圖2 藻源性顆粒物降解過程中PAA和DAA濃度的變化Fig.2 Variations of PAA and DAA during the process of algae-originated particles decomposition
無光分解組中PAA的降解比較符合Olson指數(shù)衰減模型(R2=0.9494),降解速率常數(shù)為0.17424 d-1;自然光照組的降解則不太符合,降解速率常數(shù)為0.03916 d-1(圖3). 從PAA降解速率曲線來看,自然光照組的降解速率常數(shù)不足無光分解組的1/4,表明了光照對PAA降解的影響很大.
圖3 無光分解組和自然降解組中PAA的Olson指數(shù)衰減擬合曲線Fig.3 Olson exponent fitting curves of PAA in aphotic decomposition group and natural light group
圖4 藻源性顆粒物分解過程中酸性、中性和堿性氨基酸的百分含量Fig.4 Percentage composition of acidic, neutral and basic amino acids during the process of algae-originated particles decomposition
2.3 藍(lán)藻分解過程中氨基酸組成的變化
選擇實(shí)驗(yàn)初期(第0 d)、實(shí)驗(yàn)中期(第7 d)和實(shí)驗(yàn)?zāi)┢?第21 d),在兩種不同的處理條件下PAA和DAA中酸性、中性和堿性氨基酸的百分比含量的三角圖(圖4). 可以發(fā)現(xiàn),在所有實(shí)驗(yàn)條件和時間點(diǎn),PAA和DAA中中性氨基酸百分含量總是最大的,占總氨基酸含量的60%~90%,酸性氨基酸次之,堿性氨基酸最小.
隨著實(shí)驗(yàn)的進(jìn)行,PAA中氨基酸組分變化不明顯,而DAA中則酸性氨基酸比重逐漸降低,從初始條件下的18%~20%降低到11%左右,而中性和堿性氨基酸比重則逐漸升高(中性氨基酸從70%~72%增加到77%左右、堿性氨基酸從8.8%增加到10%左右). 其中,在第21 d無光分解組中DAA幾乎檢測不出酸性氨基酸,比重幾乎為零. 但是,在相同的時間點(diǎn),不同處理方式對PAA和DAA的組成改變不大(圖4).
2.4 藍(lán)藻分解過程中氮素百分含量的變化
圖5 藻源性顆粒物分解過程中不同N素和其他N)的百分含量during the process of algae-originated particles decomposition
3.1 光照對藻源性顆粒物中氨基酸分解量、分解速率和組成的影響
PAA的分解量和分解速率會受到光照條件的制約;同樣,作為PAA分解的中間產(chǎn)物,DAA也間接地受到光的作用. 一般認(rèn)為,光照對水華生消影響最大,是藍(lán)藻生長和水華暴發(fā)的主導(dǎo)性因子[10],對PAA分解有著顯著的影響. 在有光照的條件下,PAA的分解會比無光條件下小得多. 這是由兩方面因素造成的:一方面,在光照條件下,浮游植物會通過光合作用進(jìn)行有機(jī)質(zhì)的合成[20-21],而PAA是合成的產(chǎn)物之一. 這使得在自然光照條件下,堆積在上部的藍(lán)藻可以通過光合作用合成PAA,宏觀上降低了PAA的降解速度. 一定條件下,甚至?xí)呌赑AA的降解和合成的平衡狀態(tài),導(dǎo)致在往后的一段時間內(nèi)Chl.a保持一個穩(wěn)定的高值. 另一方面,無光條件會使浮游植物細(xì)胞中進(jìn)行氨基酸合成的碳骨架無效化,導(dǎo)致氨基酸的合成受到抑制[22-23],并且在光照強(qiáng)度很小的條件下,藍(lán)藻的光合作用變?nèi)?而呼吸作用變強(qiáng),迫使系統(tǒng)內(nèi)的DO濃度水平降低,形成兼性厭氧的環(huán)境,加快了藻源性顆粒物中PAA的降解[24]. 因此,在光照較弱的甚至是無光的環(huán)境中,藻源性顆粒物中PAA分解很快,提高了藻源性顆粒物轉(zhuǎn)化為無機(jī)氮的能力[25-26].
而水體中DAA的現(xiàn)存量取決于PAA轉(zhuǎn)化為DAA和DAA轉(zhuǎn)化為其他物質(zhì)這兩步反應(yīng). 首先,PAA轉(zhuǎn)化為DAA會受到光的影響. 吳豐昌等[27]認(rèn)為有機(jī)質(zhì)從高分子量到低分子量降解途徑可能主要是光化學(xué)降解. 因此光照條件下DAA的生成量會大于無光條件. 盡管在無光條件以及其造成的低氧環(huán)境可以促進(jìn)有機(jī)質(zhì)的分解[26],但是DAA的轉(zhuǎn)化主要是依靠細(xì)菌的吸收[28],而光照與否引起水體中細(xì)菌的數(shù)量和結(jié)構(gòu)以及功能的變化還需進(jìn)一步深入探討.
3.2 藻源性顆粒物中氨基酸分解轉(zhuǎn)化對藍(lán)藻水華維持的意義
圖6 藻源性顆粒物分解過程中N素的可能轉(zhuǎn)化途徑(實(shí)線表示無論是否光照,均會發(fā)生的轉(zhuǎn)化途徑;虛線表示主要發(fā)生在無光條件下的轉(zhuǎn)化途徑)Fig.6 Possible transformation pathways of N forms during the process of algae-originated particles decomposition
[1] Yang GP, Chen Y, Gao XC. Distribution of dissolved free amino acids, dissolved inorganic nitrogen and chlorophyll a in the surface microlayer and subsurface water of the Yellow Sea, China.ContinentalShelfResearch, 2009, 29(14): 1737-1747. DOI:10.1016/j.csr.2009.05.015.
[2] Preston T, Bury S, Mcmeekin Betal. Isotope dilution analysis of combined nitrogen in natural waters: II. amino acids.RapidCommunicationsinMassSpectrometry, 1996, 10(8): 965-968. DOI:10.1002/(SICI)1097-0231(19960610)10:83.3.CO;2-F.
[3] Lai Haiyan. Uptake and utilization characteristies of harmful algal bloom species for dissolved free amino acids [Dissertation]. Guangzhou: Jinan University, 2011.[賴海燕. 典型赤潮藻對氨基酸的利用特性研究[學(xué)位論文]. 廣州: 暨南大學(xué), 2011.]
[4] Zeng Jin, Yang Liuyan, Xiao Linetal. Biogeochemical cycling of nitrogen in lakes and the role of microorganisms in conversion of nitrogen compounds.JLakeSci, 2007, 19(4): 382-389. DOI:10.18307/2007.0405. [曾巾, 楊柳燕, 肖琳等. 湖泊氮素生物地球化學(xué)循環(huán)及微生物的作用. 湖泊科學(xué), 2007, 19(4): 382-389.]
[5] Wang Qiulu, Zhou Yanxia, Wang Jiangtaoetal. Research of the assimilation of inorganic nitrogen by marine heterobacteria.MarineScienceBulletin, 2010, 29(2): 231-234,240. [王秋璐, 周燕遐, 王江濤等. 海洋異養(yǎng)細(xì)菌對無機(jī)氮吸收的研究. 海洋通報, 2010, 29(2): 231-234,240.]
[6] Hoch MP, Kirchman DL. Ammonium uptake by heterotrophic bacteria in the delaware estuary and adjacent coastal waters.LimnologyandOceanography, 1995, 40(5): 886-897. DOI: 10.4319/lo.1995.40.5.0886.
[7] Antia NJ, Harrison PJ, Oliveira L. The Role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology.Phycologia, 1991, 30(1): 1-89. DOI:10.2216/i0031-8884-30-1-1.1.
[8] Zhou Tao, Li Zhengkui, Feng Lulu. The different roles of ammonium and nitrate in the bloom self-maintenance of Lake Taihu.ChinaEnvironmentalScience, 2013, 33(2): 305-311. [周濤, 李正魁, 馮露露. 氨氮和硝氮在太湖水華自維持中的不同作用. 中國環(huán)境科學(xué), 2013, 33(2): 305-311.]
[9] Fiedler D, Graeber D, Badrian Metal. Growth response of four freshwater algal species to dissolved organic nitrogen of different concentration and complexity.FreshwaterBiology, 2015, 60(8): 1613-1621. DOI: 10.1111/fwb.12593.
[10] Huang Yuling, Chen Mingxi, Liu Defuetal. Effect of nitrogen, phosphorus, light and water temperature on the formation and disappearance of blue-green algae bloom.JournalofNorthwestA&FUniversity(NaturalScienceEdition), 2008, 36(9): 93-100. [黃鈺鈴, 陳明曦, 劉德富等. 不同氮磷營養(yǎng)及光溫條件對藍(lán)藻水華生消的影響. 西北農(nóng)林科技大學(xué)學(xué)報: 自然科學(xué)版, 2008, 36(9): 93-100.]
[11] Xu H, Paerl HW, Qin BQetal. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China.LimnologyandOceanography, 2010, 55(1): 420-432. DOI:10.4319/lo.2010.55.1.0420.
[12] Wu Shengli, Liu Cheng, Sun Junetal. Remote sensing and analysis on meteorological factors of blue algal bloom in Lake Tai.MeteorologicalMonthly, 2009, 35(1):18-23. [武勝利, 劉誠, 孫軍等. 衛(wèi)星遙感太湖藍(lán)藻水華分布及其氣象影響要素分析. 氣象, 2009, 35(1):18-23.]
[13] Zhu Guangwei. Spatio-temporal distribution pattern of water quality in Lake Taihu and its relation with cyanobacterial blooms.ResourcesandEnvironmentintheYangtzeBasin, 2009, 18(5):439-445. [朱廣偉. 太湖水質(zhì)的時空分異特征及其與水華的關(guān)系. 長江流域資源與環(huán)境, 2009, 18(5): 439-445.]
[14] Zhu Mengyuan, Zhu Guangwei, Wang Yongping. Influence of scum of algal bloom on the release of N and P from sediments of Lake Taihu.EnvironmentalScience, 2011, 32(2): 409-415. [朱夢圓, 朱廣偉, 王永平. 太湖藍(lán)藻水華衰亡對沉積物氮、磷釋放的影響. 環(huán)境科學(xué), 2011, 32(2): 409-415.]
[15] Liu Zongguang, Wu Ying, Hu Junetal. Distribution of particulate amino acids and its controlling factors in the PN transection of the East China Sea Shelf.OceanologiaetLimnologiaSinica, 2013, 44(3):563-569. DOI:10.11693/hyhz201303004004. [劉宗廣, 吳瑩, 胡俊等. 東海陸架典型斷面顆粒態(tài)氨基酸的分布及控制因素分析. 海洋與湖沼, 2013, 44(3):563-569.]
[16] "Monitoring and analysis method of water and wastewater" editorial board of State Environmental Protection Administration of China ed. Monitoring and analysis method of water and wastewater: Fourth Edition. Beijing: China Environmental Science Press, 2002. [國家環(huán)境保護(hù)總局《水和廢水監(jiān)測分析方法》編委會. 水和廢水監(jiān)測分析方法: 第4版. 北京: 中國環(huán)境科學(xué)出版社, 2002.]
[17] Yang Jingmin, Zhang Zhongqing, Cao Guojun. Soil nitrate and nitrite content determined by Skalar SAN++.SoilandFertilizerSciencesinChina, 2014, 2(2): 101-105. DOI: 10.11838/sfsc.20140221. [楊靖民, 張忠慶, 曹國軍. 應(yīng)用間隔流動分析儀測定土壤硝態(tài)氮和亞硝態(tài)氮含量. 中國土壤與肥料, 2014, 2(2): 101-105.]
[18] Olson JS. Energy storage and the balance of producers and decomposers in ecological systems.Ecology, 1963, 44(2): 322-331. DOI:10.2307/1932179.
[19] Xia Qingyan, Yang Guipeng, Gao Xianchietal. Distribution and composition of dissolved amino acids in surface water of northern South China Sea.MarineEnvironmentalScience, 2011, 30(6): 774-779. [夏清艷, 楊桂朋, 高先池等. 南海北部表層海水中溶解氨基酸的分布與組成研究. 海洋環(huán)境科學(xué), 2011, 30(6): 774-779.]
[20] Qasim SZ, Bhattath PM, Devassy VP. The effect of intensity and quality of illumination on the photosynthesis of some tropical marine phytoplankton.MarineBiology, 1972, 16(1): 22-27. DOI:10.1007/BF00347843.
[21] Huang Yuling, Chen Mingxi. Simulation for algal bloom occurrence & disappearance and its variation process of dissolved oxygen.EnvironmentalScienceandTechnology, 2013, 10(10): 67-72. [黃鈺鈴, 陳明曦. 水華生消模擬及其溶解氧變化過程分析. 環(huán)境科學(xué)與技術(shù), 2013, 10(10): 67-72.]
[22] Fuhrman J, Ferguson R. Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater-agreement between chemical and microbiological measurements.MarineEcologyProgressSeries, 1986, 33(3): 237-242. DOI:10.3354/meps033237.
[23] Fuhrman JA, Bell TM. Biological considerations in the measurement of dissolved free amino acids in seawater and implications for chemical and microbiological studies. Marine ecology progress series.Oldendorf, 1985, 25(1): 13-21. DOI:10.3354/meps025013.
[24] Sun Xiaojing, Qin Boqiang, Zhu Guangwei. Release of colloidal phosphorus, nitrogen and organic carbon in the course of dying and decomposing of cyanobacteria.ChinaEnvironmentalScience, 2007, 27(3): 341-345. [孫小靜, 秦伯強(qiáng), 朱廣偉. 藍(lán)藻死亡分解過程中膠體態(tài)磷、氮、有機(jī)碳的釋放. 中國環(huán)境科學(xué), 2007, 27(3): 341-345.]
[25] Li Ke, Guan Baohua, Liu Zhengwen. Experiments on decomposition rate and release forms of nitrogen and phosphorus from the decomposing cyanobacterial detritus.JLakeSci, 2011, 23(6): 919-925. DOI:10.18307/2011.0614. [李柯, 關(guān)保華, 劉正文. 藍(lán)藻碎屑分解速率及氮磷釋放形態(tài)的實(shí)驗(yàn)分析. 湖泊科學(xué), 2011, 23(6): 919-925.]
[26] Shang Lixia, Ke Fan, Li Wenchaoetal. Laboratory research on the contaminants release during the anaerobic decomposition of high-density cyanobacteria.JLakeSci, 2013, 25(1): 47-54. DOI:10.18307/2013.0107. [尚麗霞, 柯凡, 李文朝等. 高密度藍(lán)藻厭氧分解過程與污染物釋放實(shí)驗(yàn)研究. 湖泊科學(xué), 2013, 25(1): 47-54.]
[27] Wu F, Mills R, Evans Retal. Kinetics of metal-fulvic acid complexation using a stopped-flow technique and three-dimensional excitation emission fluorescence spectrophotometer.AnalyticalChemistry, 2004, 76(1): 110-113. DOI:10.1021/ac030005p.
[28] Mulholland MR, Gobler CJ, Lee C. Peptide hydrolysis, amino acid oxidation, and nitrogen uptake in communities seasonally dominated byAureococcusanophagefferens.LimnologyandOceanography, 2002, 47(4): 1094-1108. DOI:10.4319/lo.2002.47.4.1094.
[29] Carstens D, K?llner KE, Bürgmann Hetal. Contribution of bacterial cells to lacustrine organic matter based on amino sugars and d-amino acids.GeochimicaetCosmochimicaActa, 2012, 89(4): 159-172. DOI:10.1016/j.gca.2012.04.052.
[30] Shen Bingliang, Cui Ying, Zhu Zhuoyietal. Variation of particulate amino acid in the Suzhou River and the Huangpu River in Shanghai.JournalofEastChinaNormalUniversity(NaturalScienceEdition), 2014, (1): 99-106. [沈冰良, 崔瑩, 朱卓毅等. 蘇州河和黃浦江顆粒態(tài)氨基酸的季節(jié)變化. 華東師范大學(xué)學(xué)報(自然科學(xué)版), 2014, (1): 99-106.]
[31] Dauwe B, Middelburg JJ, Herman PMetal. Linking diagenetic alteration of amino acids and bulk organic matter reactivity.LimnologyandOceanography, 1999, 44(7): 1809-1814. DOI:10.4319/lo.1999.44.7.1809.
[32] Williams PLB. Heterotrophic utilization of dissolved organic compounds in the sea: I. size distribution of population and relationship between respiration and incorporation of growth substrates.JournaloftheMarineBiologicalAssociationoftheUnitedKingdom, 1970, 50(4): 859-870. DOI:10.1017/S0025315400005841.
[33] Palenik BP. Organic nitrogen utilization by phytoplankton: The role of cell-surface deaminases. DTIC Document, 1989.
[34] Nguyen RT, Harvey HR. Protein and amino acid cycling during phytoplankton decomposition in oxic and anoxic waters.OrganicGeochemistry, 1997, 27(3): 115-128. DOI: 10.1016/S0146-6380(97)00076-4.
[35] Palenik B, Morel FMM. Amino acid utilization by marine phytoplankton: A novel mechanism.LimnologyandOceanography, 1990, 35(2): 260-269. DOI:10.4319/lo.1990.35.2.0260.
[36] Wang Xiaoxiong, Jiang Chengchun, Li Jinweietal. Effects ofLitchichinensisdefoliation on growth and photosynthesis ofMicrocystisaeruginosa.EnvrionmentalScience, 2015, 36(5): 1648-1654. [汪小雄, 姜成春, 李錦衛(wèi)等. 荔枝落葉對銅綠微囊藻生長和光合作用的影響. 環(huán)境科學(xué), 2015, 36(5): 1648-1654.]
[37] Hayashi T, Suitani Y, Murakami Metal. Protein and amino acid compositions of five species of marine phytoplankton.BulletinoftheJapaneseSocietyofScientificFisheries(Japan), 1986, 26(8): 885-900. DOI:10.2331/suisan.52.337.
[38] Li Zhian, Zou Bi, Ding Yongzhenetal. Key factors of forest litter decomposition and research progress.ChineseJournalofEcology, 2004, 23(6): 77-83. [李志安, 鄒碧, 丁永禎等. 森林凋落物分解重要影響因子及其研究進(jìn)展. 生態(tài)學(xué)雜志, 2004, 23(6): 77-83.]
[39] Pennock JR, Sharp JH. Temporal alteration between light- and nutrient-limitation of phytoplankton production in a coastal plain estuary.MarineEcologyProgress, 1994, 111(3): 275-288. DOI:10.3354/meps111275.
[40] Wheeler PA, Kirchman DL. Utilization of inorganic and organic nitrogen by bacteria in marine systems.LimnologyandOceanography, 1986, 31(5): 998-1009.
[41] Liu Jutao, Yang Yongsheng, Gao Junfengetal. Characteristics of cyanobacteria bloom grading and its temporal and spatial varition in Taihu Lake.ResourcesandEnvironmentintheYangtzeBasin, 2011, 20(2): 156-160. [劉聚濤, 楊永生, 高俊峰等. 太湖藍(lán)藻水華分級及其時空變化. 長江流域資源與環(huán)境, 2011, 20(2): 156-160.]
Characteristics of amino acids during the process of algae-originated particles decomposition in Lake Taihu
LIU Hao1,2, TANG Xiangming2**, GAO Guang2, FENG Sheng1, SHAO Keqiang2& HU Yang2
(1:SchoolofEnvironmentandSafetyEngineering,ChangzhouUniversity,Changzhou213164,P.R.China)(2:StateKeyLaboratoryofLakeScienceandEnvironment,NanjingInstituteofGeographyandLimnology,ChineseAcademyofSciences,Nanjing210008,P.R.China)
The characteristics of decomposition rate and quantity of amino acids, as well as the change of nitrogen forms, were explored during the process of decomposition of high-density cyanobacterial particles in this study. The results showed that the initial concentrations of particulate amino acids (PAA) were 0.46 mmol/L in natural light group and 0.44 mmol/L in the aphotic group. At the end of the experiment, the PAA was much stable with a concentration of 0.30 mmol/L in natural light group, while decreased dramatically to 0.06 mmol/L in the aphotic group. The degradation rate constants were 0.03916 and 0.17424 d-1, respectively. The concentration of dissolved amino acids (DAA) was much lower in comparison to PAA in the process of decomposition. In detail, the DAA increased gradually and peaked at 10.94 and 7.94 μmol/L for the two groups, respectively, and then declined to around the initial value in the end of the 21st day. At the beginning of the experiment, PAA accounted for 74%-80% of the total amino acids, then PAA was transformed to DAA and ammonia (NH+4-N) quickly, and finally the NH+4-N was transformed gradually to NO-3-N by nitrification. Compared with the natural light group, the decomposition of particles in aphotic group was more complete. Algal photosynthesis inhibited the decomposition of cyanobacterial particles in the natural group. Our results demonstrated that amino acids are potential nitrogen sources of phytoplankton and could be demineralized to NH+4-N to support phytoplankton growth during cyanobacterial blooms. Therefore, the decomposition of high-density algal particles plays a key role in the maintenance of cyanobacterial blooms.
Amino acids; degradation rate; nitrogen form; illumination; cyanobacterial blooms; Lake Taihu
*中國科學(xué)院南京地理與湖泊研究所“一三五”戰(zhàn)略發(fā)展項目(NIGLAS2012135002)、國家自然科學(xué)基金項目(41471040,31100342,41501101)、南京水利科學(xué)研究院水利部水科學(xué)與水工程重點(diǎn)實(shí)驗(yàn)室開放研究基金項目(YK914006)和江蘇省自然科學(xué)基金項目(BK20151059)聯(lián)合資助. 2015-12-04收稿; 2016-05-27收修改稿. 劉顥(1991~),男,碩士研究生; E-mail: mizar_alcor@qq.com.
*通信作者; E-mail: xmtang@niglas.ac.cn.
J.LakeSci.(湖泊科學(xué)), 2017, 29(1): 95-104
DOI 10.18307/2017.0111
?2017 byJournalofLakeSciences