趙 莉,雷臘梅,2,彭 亮,2,韓博平,2
(1:暨南大學(xué)水生生物研究中心,廣州 510632)(2:廣東省水庫藍(lán)藻水華防治中心,廣州 510632)
廣東省鎮(zhèn)海水庫擬柱孢藻(Cylindrospermopsis raciborskii)的季節(jié)動(dòng)態(tài)及驅(qū)動(dòng)因子分析
趙 莉1,雷臘梅1,2,彭 亮1,2,韓博平1,2
(1:暨南大學(xué)水生生物研究中心,廣州 510632)(2:廣東省水庫藍(lán)藻水華防治中心,廣州 510632)
擬柱孢藻(Cylindrospermopsisraciborskii)是熱帶地區(qū)普遍存在的藍(lán)藻種類,已在廣東省很多水庫成為優(yōu)勢(shì)種類甚至形成水華,作為一種新的有害水華類型,目前對(duì)其成因研究甚少. 以廣東省江門市鎮(zhèn)海水庫為研究對(duì)象,于2014年11月-2015年10月期間對(duì)其進(jìn)行逐月采樣,觀測(cè)理化因子和浮游植物組成,測(cè)定擬柱孢藻的絲體長度,初步探討該水庫擬柱孢藻優(yōu)勢(shì)形成的原因. 數(shù)據(jù)表明,擬柱孢藻是鎮(zhèn)海水庫的絕對(duì)優(yōu)勢(shì)種,常年生物量較高,介于5.9~15.5 mg/L之間,平均生物量為11.3 mg/L,占浮游植物總生物量的93.5%. 從季節(jié)上看,擬柱孢藻生物量在2-6月相對(duì)較高,最高生物量出現(xiàn)在6月,10月和11月生物量最低. 擬柱孢藻的絲體長度具有顯著的季節(jié)變化,與水溫呈極顯著負(fù)相關(guān). 相關(guān)性分析表明擬柱孢藻生物量與總氮、總磷濃度呈顯著正相關(guān),與氮磷比呈顯著負(fù)相關(guān),而逐步回歸分析表明擬柱孢藻生物量的變化主要由總磷濃度決定,推測(cè)該藻對(duì)磷的超強(qiáng)吸收和儲(chǔ)存能力在其生物量季節(jié)變動(dòng)中起重要作用.
擬柱孢藻;藻絲體長度;生物量;環(huán)境因子;鎮(zhèn)海水庫
由于我國經(jīng)濟(jì)的快速發(fā)展,淡水水體富營養(yǎng)化日益嚴(yán)重,導(dǎo)致藍(lán)藻水華頻發(fā),其中以微囊藻水華最為常見. 但近年來,魚腥藻(Anabaena)、束絲藻(Aphanizomenon)、擬柱孢藻等藍(lán)藻水華也屢有報(bào)道[13-15]. 擬柱孢藻在我國的廣東、湖北、云南、臺(tái)灣、福建等地區(qū)的水體中均有發(fā)現(xiàn)[15-18]. 作為熱帶特征性種類,擬柱孢藻在溫帶地區(qū)的湖北和云南等水體中并不是優(yōu)勢(shì)種,在相對(duì)溫暖的廣東、臺(tái)灣和福建等地區(qū),擬柱孢藻可占據(jù)優(yōu)勢(shì),并在廣東與臺(tái)灣地區(qū)形成水華. 在福建江東水庫,擬柱孢藻在水體穩(wěn)定的夏、秋季為藍(lán)藻優(yōu)勢(shì)種之一[18]. 在臺(tái)灣,擬柱孢藻從夏季到冬季均占優(yōu)勢(shì),尤其在夏季高溫時(shí),該藻占浮游植物的比例可達(dá)90%,分析發(fā)現(xiàn)低透明度、高溫、弱堿性、低DIN的環(huán)境條件有利于擬柱孢藻形成優(yōu)勢(shì)[17]. 廣東省屬于亞熱帶海洋性季風(fēng)氣候,常年溫度較高,調(diào)查顯示該省多個(gè)水庫均發(fā)現(xiàn)擬柱孢藻的分布,其生物量在豐水期高于枯水期[15],在三坑、百花林、顯崗等多個(gè)水庫中發(fā)生了擬柱孢藻水華,其相對(duì)豐度可達(dá)93%以上[19],而目前我國對(duì)南亞熱帶水庫擬柱孢藻頻繁出現(xiàn)乃至形成水華的原因完全缺乏了解. 為深入分析廣東省擬柱孢藻種群優(yōu)勢(shì)形成的影響因素,本文以鎮(zhèn)海水庫為研究對(duì)象,對(duì)2014年11月-2015年10月間的浮游植物群落結(jié)構(gòu)和理化環(huán)境因子進(jìn)行觀測(cè)和分析,探討擬柱孢藻優(yōu)勢(shì)形成的生態(tài)條件.
圖1 鎮(zhèn)海水庫在廣東省的位置與水庫采樣點(diǎn)設(shè)置Fig.1 Location of the sampling site in Zhenhai Reservoir in Guangdong Province
1.1 水庫概況、采樣點(diǎn)與采樣時(shí)間
鎮(zhèn)海水庫(22°34′N, 112°33′E)位于廣東省江門的開平市北部,水庫集雨面積為128 km2,總庫容為1.09×108m3,正常庫容為7670×104m3,平均水深9.6 m,屬于亞熱帶海洋性季風(fēng)氣候,夏季高溫多雨,冬季溫和少雨,為廣東省重要的大型供水水庫. 本次調(diào)查的采樣點(diǎn)設(shè)置在鎮(zhèn)海水庫的庫中區(qū)(圖1),于2014年11月-2015年10月間每月進(jìn)行一次采樣.
1.2 理化因子的測(cè)定
1.3 浮游植物的處理與鑒定
用于浮游植物定量鏡檢的樣品當(dāng)場(chǎng)加10 ml魯哥試劑固定,帶回實(shí)驗(yàn)室沉淀濃縮后計(jì)數(shù),在進(jìn)行浮游植物計(jì)數(shù)過程中,隨機(jī)測(cè)量180根擬柱孢藻絲體長度,同時(shí)對(duì)藻絲體上異形胞和厚壁孢子進(jìn)行觀察和計(jì)數(shù)[21]. 浮游植物的定性樣品用25#網(wǎng)孔直徑為64 μm的浮游生物網(wǎng),在水體的水平和垂直方向上多次拖網(wǎng),所得樣品當(dāng)場(chǎng)加福爾馬林至終濃度的3%~5%保存. 浮游植物的定性與定量樣品均在光學(xué)顯微鏡(OLYMPUS-BX51)10×40倍下進(jìn)行鑒定和計(jì)數(shù).
1.4 數(shù)據(jù)處理
采用相關(guān)性分析和多因素逐步回歸對(duì)擬柱孢藻的生物量和長度與環(huán)境因子之間的關(guān)系進(jìn)行分析,在方差分析(ANOVA)中,取P<0.05為差異顯著,P<0.01為差異極顯著. 本文所涉及的所有數(shù)據(jù)的處理和分析均在SPSS 16.0軟件中完成,作圖均在Origin 8.0和Photoshop 6.0軟件中進(jìn)行.
2.1 鎮(zhèn)海水庫理化因素的動(dòng)態(tài)特征
調(diào)查期間,TP濃度介于0.019~0.086 mg/L之間,平均濃度為0.040 mg/L,其濃度在3-6月間維持較高水平;SRP濃度介于0.001~0.018 mg/L之間,平均值為0.006 mg/L,其季節(jié)性變化趨勢(shì)與TP濃度基本一致(圖2a). TN濃度介于0.83~1.80 mg/L之間,平均濃度為1.39 mg/L,在2014年10月-2015年6月比較平穩(wěn),基本維持在1.58 mg/L,7-10月逐漸降低至0.83 mg/L;DIN濃度介于0.12~0.62 mg/L之間,平均濃度為0.41 mg/L(圖2b). 鎮(zhèn)海水庫TN/TP的范圍為19.2~75.8,根據(jù)水體中TN/TP高于Redfield比(TN/TP=16),則水體是磷限制的標(biāo)準(zhǔn),該水庫全年均處于磷限制狀態(tài).
圖2 鎮(zhèn)海水庫TP和SRP濃度(a), TN和DIN濃度(b), Zeu/Zm和水溫(c)的季節(jié)動(dòng)態(tài)Fig.2 Seasonal dynamics of TP and SRP concentrations(a), TN and DIN concentrations (b), Zeu/Zm and surface water temperature (c) in Zhenhai Reservoir
鎮(zhèn)海水庫的Zeu/Zm在0.12~0.34間波動(dòng),平均值為0.2,水庫在3-4月Zeu/Zm較高,在3月達(dá)到最大值,也僅為0.34(圖2c),因此該水庫浮游植物的生長常年受到光限制. 表層水溫在16.7~32.8℃間波動(dòng),平均表層水溫為25℃,6-9月水溫均在30℃以上,8月達(dá)到最高值32.8℃,在12月至次年2月,表層水溫一直低于20℃,2月為最低水溫16.7℃(圖2c).
2.2 鎮(zhèn)海水庫浮游植物群落動(dòng)態(tài)特征
調(diào)查期間,鎮(zhèn)海水庫共檢測(cè)到浮游植物6門43種(屬),其中藍(lán)藻門11種(屬),綠藻門23種(屬),硅藻門4種(屬),甲藻門3種(屬),裸藻門1種(屬),隱藻門1種(屬). 鎮(zhèn)海水庫的浮游植物群落以藍(lán)藻為主,其平均生物量為11.6 mg/L,占浮游植物總生物量的95.6%,其他各門浮游植物僅占浮游植物總生物量的4.4%(圖3).
圖3 鎮(zhèn)海水庫浮游植物生物量的季節(jié)動(dòng)態(tài)Fig.3 Seasonal dynamic of phytoplankton biomass in Zhenhai Reservoir
擬柱孢藻為藍(lán)藻門的絕對(duì)優(yōu)勢(shì)種,生物量為5.9~15.5 mg/L,平均值為11.3 mg/L,在調(diào)查期間其優(yōu)勢(shì)度一直維持較高水平,平均占浮游植物總生物量的93.5%. 從季節(jié)上看,擬柱孢藻生物量在2-6月相對(duì)較高,最高生物量出現(xiàn)在6月,10月和11月生物量最低(圖4a). 擬柱孢藻生物量與TN和TP濃度呈顯著正相關(guān)(r=0.596,P=0.041;r=0.671,P=0.017),與TN/TP呈顯著負(fù)相關(guān)(r=-0.583,P=0.046)(表1). 將擬柱孢藻生物量與相關(guān)的環(huán)境因子進(jìn)一步進(jìn)行多因素逐步回歸分析表明,擬柱孢藻生物量只與TP濃度呈顯著正相關(guān)(r2=0.4,P=0.017).
圖4 鎮(zhèn)海水庫擬柱孢藻生物量(a)和絲體長度(b)的季節(jié)動(dòng)態(tài)Fig.4 Seasonal dynamic of the C. raciborskii biomass(a) and filamental length(b) in Zhenhai Reservoir
在本次調(diào)查期間,基本沒有見到含異形胞或厚壁孢子的擬柱孢藻,但其絲體形態(tài)呈現(xiàn)明顯的季節(jié)變化,這主要體現(xiàn)在絲體長度,絲體寬度則無顯著差異. 鎮(zhèn)海水庫擬柱孢藻絲體長度在72.1~212.8 μm內(nèi)波動(dòng),平均長度為108.1 μm. 在表層水溫較低的1-3月,藻絲體長度均在160 μm以上,在表層水溫最低的2月,藻絲體長度達(dá)到最大值212 μm;反之,藻絲體在水溫較高的季節(jié)較短,長度集中在70~90 μm之間,最小值出現(xiàn)在2015年6月(圖4b). 相關(guān)性分析表明,擬柱孢藻的絲體長度與TN濃度呈顯著正相關(guān)(r=0.596,P=0.041),與水溫呈極顯著負(fù)相關(guān)(r=-0.734,P=0.007)(表1). 進(jìn)一步的多因素逐步回歸分析表明,擬柱孢藻絲體長度只與水溫存在極顯著負(fù)相關(guān)(r2=0.554,P=0.007).
表1 擬柱孢藻生物量或絲體長度與環(huán)境因子之間的相關(guān)性
Tab.1 Correlation analysis between the environmental factors andC.raciborskiibiomass or filamental length
TempZeu/ZmTNTPTN/TPSRPDINDIN/SRP擬柱孢藻豐度擬柱孢藻生物量nsns0.596?0.671?-0.583?nsnsnsns擬柱孢藻絲體長度-0.734??ns0.596?nsnsnsnsnsns
*表示顯著相關(guān),P<0.05;**表示極顯著相關(guān),P<0.01;ns表示無顯著相關(guān)性,P>0.05.
本次調(diào)查中,廣東省鎮(zhèn)海水庫的浮游植物生物量幾乎都由擬柱孢藻貢獻(xiàn),其他藻類的生物量所占比例極少. 這種擬柱孢藻常年占據(jù)絕對(duì)優(yōu)勢(shì)的現(xiàn)象極為少見,在巴西Ingazeira水庫和Lagoa santa湖有類似的現(xiàn)象發(fā)生,Ingazeira水庫擬柱孢藻的相對(duì)生物量在4-11月可占到96%~100%,生物量最高可達(dá)70 mg/L[22];Lagoa santa湖的擬柱孢藻在整個(gè)研究期間都為絕對(duì)優(yōu)勢(shì)種,平均占總浮游植物的70%[7]. 但更多的研究發(fā)現(xiàn)擬柱孢藻的優(yōu)勢(shì)度往往呈季節(jié)性變化,如希臘的Kastoria湖和非洲塞內(nèi)加爾的Guiers湖的研究發(fā)現(xiàn),擬柱孢藻常年為兩個(gè)湖泊的優(yōu)勢(shì)種,在夏季溫度較高時(shí)生物量較高,約占浮游植物總生物量的60%[23-24];在法國的Francs-Pêcheurs池塘中,雖然擬柱孢藻最高可達(dá)99%,但僅在7-9月水溫較高的季節(jié)發(fā)生[5].
鎮(zhèn)海水庫中擬柱孢藻絲體長度與溫度呈顯著負(fù)相關(guān),這與以色列和中國臺(tái)灣水體的研究結(jié)果一致[21,17],推測(cè)擬柱孢藻可以通過調(diào)整藻絲體的長短以適應(yīng)外界溫度的變化. 高溫是擬柱孢藻增殖的必要條件[5],因此在低溫條件下,擬柱孢藻為積蓄能量不進(jìn)行分裂繁殖而形成長藻絲體,當(dāng)溫度升高至適宜范圍,擬柱孢藻進(jìn)入快速生長階段,通過頻繁分裂增殖形成短的藻絲體,因此擬柱孢藻絲體長度的季節(jié)變化可以反映其生長速率[17]. 在進(jìn)行擬柱孢藻長度測(cè)量的過程中,幾乎沒有發(fā)現(xiàn)厚壁孢子和異形胞,可能是因?yàn)殒?zhèn)海水庫的水溫高于厚壁孢子萌發(fā)的最適溫度5~10℃[12],氮營養(yǎng)鹽濃度較高,不需要通過異形胞固氮來獲取生長所需氮源.
高溫可能也是導(dǎo)致擬柱孢藻在鎮(zhèn)海水庫常年發(fā)生水華的關(guān)鍵因素. 調(diào)查期間,鎮(zhèn)海水庫水溫高且波動(dòng)小,這樣的溫度條件有助于增強(qiáng)浮游植物群落的穩(wěn)定性,并促進(jìn)擬柱孢藻獲得生長優(yōu)勢(shì). 已有研究表明,擬柱孢藻喜高溫環(huán)境[25],從鎮(zhèn)海水庫分離出的N8藻株的比生長速率隨溫度的升高而升高,并在高溫下具最適生長速率[26]. 本研究中擬柱孢藻生物量與水溫之間并不具顯著相關(guān)性,這可能是因?yàn)槟蟻啛釒У貐^(qū)表層水溫變化范圍小,溫度始終處于擬柱孢藻生長所需的適宜范圍內(nèi). 調(diào)查期間,除TP和SRP濃度稍有變化外,鎮(zhèn)海水庫的表層水溫、Zeu/Zm及TN、DIN濃度均無顯著的季節(jié)變化,多因素逐步回歸分析表明除TP濃度外,其他因素與擬柱孢藻生物量無顯著相關(guān)性,而藍(lán)藻的存在和優(yōu)勢(shì)地位通常與水體的穩(wěn)定性有較高的相關(guān)性[27],有人認(rèn)為擬柱孢藻不僅能夠很好地適應(yīng)穩(wěn)定的水體條件,而且可以在穩(wěn)定的水體中一直保持優(yōu)勢(shì)地位并形成水華[7,22].
鎮(zhèn)海水庫浮游植物的生長常年受到光限制,Zeu/Zm代表了光可獲得性的大小,當(dāng)該比值>1時(shí)光可獲得性較好,湖上層的浮游植物極少受到光限制;當(dāng)該比值<1時(shí)光可獲得性較差[28]. 而擬柱孢藻被認(rèn)為能耐受低光,比其他藍(lán)藻對(duì)光照的需求更低[4],由此低的光照給高耐陰性的擬柱孢藻提供競爭優(yōu)勢(shì)使得鎮(zhèn)海水庫易發(fā)生擬柱孢藻水華[29],這與Briand、Figueredo、Bouvy等的研究結(jié)果基本一致[5,7,22]. 鎮(zhèn)海水庫屬于磷限制性水體,SRP濃度在3-5月較高時(shí)也僅達(dá)到18 μg/L,其他月份一直低于4 μg/L,但擬柱孢藻卻常年都是浮游植物的絕對(duì)優(yōu)勢(shì)種群,這可能是因?yàn)閿M柱孢藻具有超強(qiáng)的吸收和儲(chǔ)存磷的能力[6],比其他藍(lán)藻(如微囊藻)有更高的吸收和轉(zhuǎn)換效率[4]. 我們的研究也發(fā)現(xiàn),在以磷為限制性底物時(shí),鎮(zhèn)海水庫分離出的擬柱孢藻N8藻株的半飽和常數(shù)比微囊藻低,即該藻在低磷環(huán)境中更具生長優(yōu)勢(shì)[30]. 此外,當(dāng)外界環(huán)境中的無機(jī)磷處于限制條件時(shí),擬柱孢藻有可能利用不同的有機(jī)磷源支持其生長[31]. 鎮(zhèn)海水庫具有常年高溫且波動(dòng)小、低的光可獲得性及磷限制性水體的特性,有利于擬柱孢藻在這一環(huán)境條件下維持競爭優(yōu)勢(shì)與高生物量.
[1] Antunes JT, Le?o PN, Vasconcelos VMetal.Cylindrospermopsisraciborskii: Review of the distribution, phylogeography, and ecophysiology of a global invasive species.FrontiersinMicrobiology, 2015, 6: 473. DOI: 10.3389/fmicb.2015.00473.
[2] Briand JF, Leboulanger C, Humbert JFetal.Cylindrospermopsisraciborskii(cyanobacteria) invasion at mid-latitudes: Selection, wide physiological tolerance, or global warming?JournalofPhycology, 2004, 40(2): 231-238. DOI: 10.1111/j.1529-8817.2004.03118.x.
[3] Bonilla S, Aubriot L, Soares MCSetal. What drives the distribution of the bloom-forming cyanobacteriaPlanktothrixagardhiiandCylindrospermopsisraciborskii?FEMSMicrobiologyEcology, 2012, 79(3): 594-607. DOI: http://dx.doi.org/10.1111/j.1574-6941.2011.01242.x.
[4] Wu ZX, Shi JQ, Li RH. Comparative studies on photosynthesis and phosphate metabolism ofCylindrospermopsisraciborskiiwithMicrocystisaeruginosaandAphanizomenonflos-aquae.HarmfulAlgae, 2009, 8(6): 910-915. DOI: 10.1016/j.hal.2009.05.002.
[5] Briand JF, Robillot C, Quiblier-Llobéras Cetal. Environmental context ofCylindrospermopsisraciborskii(Cyanobacteria) blooms in a shallow pond in France.WaterResearch, 2002, 36(13): 3183-3192. DOI: 10.1016/S0043-1354(02)00016-7.
[6] Isvánovics V, Shafik HM, Présing Metal. Growth and phosphate uptake kinetics of the cyanobacterium,Cylindrospermopsisraciborskii(Cyanophyceae) in throughflow cultures.FreshwaterBiology, 2000, 43: 257-275. DOI: 10.1046/j.1365-2427.2000.00549.x.
[7] Figueredo CC, Giani A. Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): Conditions favoring a persistent bloom ofCylindrospermopsisraciborskii.Limnologica-EcologyandManagementofInlandWaters, 2009, 39(4): 264-272. DOI: 10.1016/j.limno.2009.06.009.
[8] Saker ML, Eaglesham GK. The accumulation of cylindrospermopsin from the cyanobacteriumCylindrospermopsisraciborskiiin tissues of the Redclaw crayfish Cherax quadricarinatus.Toxicon, 1999, 37(7): 1065-1077. DOI: 10.1016/S0041-0101(98)00240-2.
[9] Herrero A, Muro-Pastor AM, Valladares Aetal. Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria.FEMSMicrobiologyReviews, 2004, 28(4): 469-487. DOI: http://dx.doi.org/10.1016/j.femsre.2004.04.003.
[10] Padisák J, Reynolds CS. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes.Hydrobiologia, 1998, 384: 41-53. DOI: 10.1023/A:1003255529403.
[11] Figueredo CC, Rückert GV, Cupertino Aetal. Lack of nitrogen as a causing agent ofCylindrospermopsisraciborskii, intermittent blooms in a small tropical reservoir.FEMSMicrobiologyEcology, 2014, 87(3): 557-567. DOI:10.1111/1574-6941.12243.
[12] Moore D, O’Donohue M, Garnett Cetal. Factors affecting akinete differentiation inCylindrospermopsisraciborskii(Nostocales, Cyanobacteria).FreshwaterBiology, 2005, 50(2): 345-352. DOI: 10.1111/j.1365-2427.2004.01324.x.
[13] Li ZL, Yu JW, Yang Metal. Cyanobacterial population and harmful metabolites dynamics during a bloom in Yanghe Reservoir, North China.HarmfulAlgae, 2010, 9(5): 481-488. DOI: 10.1016/j.hal.2010.03.003.
[14] Liu Y, Chen W, Li Detal. First report of aphantoxins in China—waterblooms of toxigenicAphanizomenonflos-aquaein Lake Dianchi.EcotoxicologyandEnvironmentalSafety, 2006, 65(1): 84-92. DOI: 10.1016/j.ecoenv.2005.06.012.
[15] Lei L, Peng L, Huang Xetal. Occurrence and dominance ofCylindrospermopsisraciborskiiand dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China.EnvironmentalMonitoringandAssessment, 2014, 186(5): 3079-3090. DOI: 10.1007/s10661-013-3602-8.
[16] Wu Z, Shi J, Xiao Petal. Phylogenetic analysis of two cyanobacterial generaCylindrospermopsisandRaphidiopsisbased on multi-gene sequences.HarmfulAlgae, 2011, 10(5): 419-425. DOI: 10.1016/j.hal.2010.05.001.
[17] Yamamoto Y,Shiah FK. Factors related to the dominance ofCylindrospermopsisraciborskii(cyanobacteria) in a shallow pond in northern Taiwan.JournalofPhycology, 2012, 48(4): 984-991. DOI: 10.1111/j.1529-8817.2012.01184.x.
[18] Tian YQ, Huang BQ, Yu CCetal. Dynamics of phytoplankton communities in the Jiangdong Reservoir of Jiulong River, Fujian, South China.ChineseJournalofOceanologyandLimnology, 2014, 32: 255-265. DOI: 10.1007/s00343-014-3158-7.
[19] Jiang Qiming, Hou Wei, Gu Jiguangetal. Nutritional status and population characteristics of cyanobacteria in small and medium sized reservoirs in Guangzhou, southern China.EcologyandEnvironmentalSciences, 2010, 19(10): 2461-2467. [江啟明, 侯偉, 顧繼光等. 廣州市典型中小型水庫營養(yǎng)狀態(tài)與藍(lán)藻種群特征. 生態(tài)環(huán)境學(xué)報(bào), 2010, 19(10): 2461-2467.]
[20] Lin Shaojun, He Lijing, Huang Peishengetal. Comparison and improvement on the extraction method for chlorophyll a in phytoplankton.EcologicScience, 2005, 24(1):9-11. DOI: 1008-8873(2005)01-009-03.[林少君, 賀立靜, 黃沛生等. 浮游植物中葉綠素a提取方法的比較與改進(jìn). 生態(tài)科學(xué), 2005, 24(1): 9-11.]
[21] Alster A, Kaplan-Levy RN, Sukenik Aetal. Morphology and phylogeny of a non-toxic invasiveCylindrospermopsisraciborskiifrom a Mediterranean Lake.Hydrobiologia, 2010, 639(1): 115-128. DOI: 10.1007/s10750-009-0044-y.
[22] Bouvy M, Molica RJR, Oliveira SDetal. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsisraciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil.AquaticMicrobialEcology, 1999, 20(3): 285-297. DOI: 10.3354/ame020285.
[23] Berger C, Ba N,Gugger Metal. Seasonal dynamics and toxicity ofCylindrospermopsisraciborskiiin Lake Guiers (Senegal, West Africa).FEMSMicrobiologyEcology, 2006, 57(3): 355-366. DOI: http://dx.doi.org/10.1111/j.1574-6941.2006.00141.x.
[24] Moustaka-Gouni M, Vardaka E, Tryfon Eetal. Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): Steady-state dominance ofLimnothrixredekei,MicrocystisaeruginosaandCylindrospermopsisraciborskii.Hydrobiologia, 2007, 575(1): 129-140. DOI: 10.1007/s10750-006-0360-4.
[25] Padisák J.Cylindrospermopsisraciborskii(Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: Worldwide distribution and review of its ecology.ArchivfürHydrobiologieSupplementbandMonographischeBeitrage, 1997, 107(4): 563-593.
[26] Yu Ting, Dai Jingjun, Lei Lameietal. Effects of temperature, irradiance and nitrate on the growth ofCylindrospermopsisraciborskiiN8.JLakeSci, 2014, 26(3):441-446.DOI: 10.18307/2014.0315.[于婷, 戴景俊, 雷臘梅等. 溫度、光照強(qiáng)度及硝酸鹽對(duì)擬柱孢藻(CylindrospermopsisraciborskiiN8)生長的影響. 湖泊科學(xué),2014, 26(3):441-446.]
[27] Komárková J, Komárek O, Hejzlar J. Evaluation of the long term monitoring of phytoplankton assemblages in a canyon-shape reservoir using multivariate statistical methods.Hydrobiologia, 2003, 504(1/2/3): 143-157. DOI: 10.1023/B:HYDR.0000008514.45771.aa.
[28] Bormans M, Ford PW, Fabbro L. Spatial and temporal variability in cyanobacteria populations controlled by physical processes.PlanktonRes, 2005, 27: 61-70. DOI: 10.1093/plankt/fbh150.
[29] Reynolds CS,Huszar V, Kruk Cetal. Towards a functional classification of the freshwater phytoplankton.JournalofPlanktonResearch, 2002, 24(5): 417-428. DOI: 10.1093/plankt/24.5.417.
[30] Dai Jingjun, Peng Liang, Yu Tingetal. The effects of phosphorus and nitrogen on the growth ofCylindrospermopsisraciborskiiN8 isolated from the Zhenhai Reservoir.ActaHydrobiologicaSinica, 2015, 39(3): 533-539. DOI: 10.7541/2015.70.[戴景俊, 彭亮, 于婷等. 鎮(zhèn)海水庫擬柱孢藻的分離鑒定和氮磷對(duì)其生長的影響. 水生生物學(xué)報(bào), 2015, 39(3): 533-539.]
[31] Bai F, Liu R, Yang Yetal. Dissolved organic phosphorus use by the invasive freshwater diazotroph cyanobacterium,Cylindrospermopsisraciborskii.HarmfulAlgae, 2014, 39: 112-120. DOI: 10.1016/j.hal.2014.06.015.
Seasonal dynamic and driving factors of Cylindrospermopsis raciborskii in Zhenhai Reservoir, Guangdong Province
ZHAO Li1, LEI Lamei1,2**, PENG Liang1,2& HAN Boping1,2
(1:InstituteofHydrobiology,JinanUniversity,Guangzhou510632,P.R.China)(2:GuangdongCenterforControlandPreventionofReservoirCyanobacterialBlooms,Guangzhou510632,P.R.China)
Cylindrospermopsisraciborskii, thought to be an originally tropical species, is found to become dominant and even formed blooms in many reservoirs of Guangdong Province. The dominance of this species presents a new threat to the region but little is known about its bloom forming mechanism. With the above reasons, the study aims to determine the factors that may lead to the successful dominance and bloom formation ofC.raciborskii. TheC.raciborskiifilamental length, phytoplankton species composition, and different environmental physico-chemical parameters were examined monthly during the period of November 2014 and October 2015 in Zhenhai Reservoir. Our results showed thatC.raciborskiidominated absolutely in the reservoir during the sampling period. Its biomass ranged from 5.9 to 15.5 mg/L, with a mean value of 11.3 mg/L, accounting for nearly 93.5% of the total phytoplankton biomass.C.raciborskiibiomass was relatively high from February to June in 2015. The highest levels were recorded in June and the lowest in both October and November. Filamental length ofC.raciborskiiexhibited an obvious seasonal regularity. Correlation analysis shows a highly significant negative correlation between filamental length ofC.raciborskiand water temperature. The biomass ofC.raciborskiiwas significant-positively correlated with total nitrogen and total phosphorus, and significant-negatively correlated with the ratio of nitrogen to phosphorus. Further analysis with continuously multiple factors analysis indicated that total phosphorus concentration was the key factor affectingC.raciborskiibiomass. We speculate that the strong absorption to phosphorus and the high P-storage capacity ofC.raciborskiihave played an important role in the seasonal variation of biomass.
Cylindrospermopsisraciborskii; filamental length; biomass; environmental factors; Zhenhai Reservoir
*廣東省科技計(jì)劃項(xiàng)目(2013B091300015)、廣東省水利科技創(chuàng)新項(xiàng)目(2016-29)和國家自然科學(xué)基金項(xiàng)目(41403061)聯(lián)合資助. 2016-02-28收稿; 2016-05-04收修改稿. 趙莉(1990~), 女, 碩士研究生; E-mail:1729251839@qq.com.
*通信作者; E-mail: tleilam@jnu.edu.cn.
J.LakeSci.(湖泊科學(xué)), 2017, 29(1): 193-199
DOI 10.18307/2017.0121
?2017 byJournalofLakeSciences