劉騰飛,周建康,黃團結(jié),邢 衢,許 玲,張夏清,王亞蘋,楊 波,馬珊珊,關方霞
· 綜 述 | REVIEW ARTICLES ·
人臍帶間充質(zhì)干細胞移植治療創(chuàng)傷性顱腦損傷的研究進展
劉騰飛1,周建康1,黃團結(jié)1,邢 衢1,許 玲1,張夏清1,王亞蘋1,楊 波2,馬珊珊1,關方霞1
創(chuàng)傷性顱腦損傷(traumatic brain injury,TBI)是發(fā)生在中樞神經(jīng)系統(tǒng)的一種常見疾病。近年來人臍帶間充質(zhì)干細胞(human umbilical cord mesenchymal stem cells,hUC-MSCs)移植為其治療提供了新思路。間充質(zhì)干細胞(mesenchymal stem cells,MSCs)能優(yōu)先歸巢到受損組織,分泌多種因子從而發(fā)揮營養(yǎng)、保護、清理、激活和橋接作用。但是,目前干細胞移植治療TBI的研究大部分還處于實驗動物模型階段,其在臨床上的安全性和有效性仍缺乏有效證據(jù),還需要在大宗和長期的臨床試驗中進行評價和驗證。筆者對hUC-MSCs移植治療TBI的研究進展情況作一綜述,為其開展更為廣泛的研究提供有益參考。
人臍帶間充質(zhì)干細胞;移植;創(chuàng)傷性顱腦損傷
創(chuàng)傷性顱腦損傷(traumatic brain injury,TBI)是頭部受到暴力所造成的損傷,已成為全球性的公共衛(wèi)生問題。TBI后生存患者常存在神經(jīng)功能缺失和行為能力障礙,給家庭和社會造成沉重的負擔。臨床上對TBI急性期的治療手段主要有清創(chuàng)止血、手術減壓、藥物脫水降顱壓、營養(yǎng)神經(jīng)、高壓氧治療及對癥支持等多種方法以促進受損中樞神經(jīng)系統(tǒng)的恢復;對TBI患者遠期的治療主要是進行肢體功能康復訓練。雖然這些治療措施在一定程度上可改善患者的神經(jīng)功能,但往往不能獲得較理想的效果。
隨著基礎醫(yī)學的不斷進步,干細胞移植有望成為一種治療神經(jīng)類疾病的新途徑,而干細胞移植治療TBI在動物實驗上已取得良好的效果[1]。目前,國內(nèi)干細胞移植所采用的“種子細胞”多局限于幾種傳統(tǒng)的成體干細胞[如骨髓源間充質(zhì)干細胞(mesenchymal stem cells,MSCs)],雖然這些細胞也能促進神經(jīng)功能的恢復,但在來源、取材、制備和數(shù)量等方面均受到了很大限制。因此,需要一種更加具有優(yōu)勢的“種子細胞”來彌補傳統(tǒng)細胞的不足[2]。而人臍帶間充質(zhì)干細胞(human umbilical cord mesenchymal stem cells,hUC-MSCs)作為一種來源于中胚層并具有自我復制和多向分化潛能的成體干細胞,近年來備受矚目。研究發(fā)現(xiàn),hUC-MSCs移植可促進多種中樞神經(jīng)系統(tǒng)損傷疾病的神經(jīng)修復[3-6]?,F(xiàn)將hUC-MSCs移植治療TBI的研究現(xiàn)狀作一綜述。
1.1病理生理 人體在受到TBI后,病理生理過程主要分為兩個階段,即原發(fā)性損傷階段和繼發(fā)性損傷階段。原發(fā)性損傷是由于創(chuàng)傷所造成的機械性腦組織損傷,可直接造成血管破壞和神經(jīng)細胞損傷;繼發(fā)性損傷是由原發(fā)性損傷所引發(fā)的一系列病理生理過程,其始于創(chuàng)傷后的數(shù)分鐘,可持續(xù)數(shù)周、數(shù)個月甚至數(shù)年,這一過程涉及血腦屏障的破壞、腦血管反應、腦水腫、興奮性中毒、線粒體功能的破壞和伴隨的炎性反應等,其中炎性反應被認為是造成繼發(fā)性損傷的關鍵因素。由于原發(fā)性損傷具有不可逆性,所以臨床上治療TBI應從防治繼發(fā)性損傷著手,如進行營養(yǎng)因子修復、減輕炎性反應等[7-9]。
1.2動物模型的構(gòu)建方法 TBI動物模型的構(gòu)建方法有很多種,如Feeney自由落體硬膜外撞擊法[10]、液壓撞擊法[11]和冷凍法[12]等。這些方法一般都是在撞擊或冷凍前在左側(cè)顱骨上開一個合適大小的骨窗,且保持硬膜的完整,然后利用自由落體的撞擊、液壓的沖擊力或硬膜接觸的冷凍對實驗動物造成損傷。其中Feeney自由落體硬膜外撞擊法可通過調(diào)整打擊高度和重物質(zhì)量來控制腦損傷的程度,是一種較經(jīng)典的TBI動物模型構(gòu)建方法。其實無論何種動物模型的制作,一般均需要滿足以下條件:(1)損傷機制與臨床實際相接近并能反應客觀問題;(2)外力大小可有效預測損傷結(jié)果;(3)造成損傷的外力具有可計量性、可重復性和可控性;(4)模型可充分模擬人腦 TBI 特征,并具有可計量性和可重復性;(5)實驗結(jié)果可用生理學、形態(tài)學或行為學參數(shù)表達[13]。
人臍帶在妊娠的第五周開始發(fā)育,最終長度在50 cm左右。研究表明,從新鮮臍帶的臍血、沃頓膠組織和靜脈內(nèi)皮下層等幾個區(qū)域均能成功獲取hUCMSCs[14-16]。其中沃頓膠組織富含透明質(zhì)酸,占據(jù)了臍帶的大部,其成纖維細胞周圍還具有水凝膠結(jié)構(gòu),故目前的研究更傾向于從臍帶沃頓膠組織中分離出hUCMSCs。
hUC-MSCs和其他MSCs一樣,至今尚未明確其表面的特異性標志。細胞形態(tài)、流式細胞檢測結(jié)果和多向分化潛能均可作為hUC-MSCs的判別標準,而在實際研究中常使用流式細胞儀對hUC-MSCs進行細胞表面抗原鑒定以增強實驗說服力。以往的流式細胞檢測研究顯示,MSCs的表面標志主要包括以下幾類:(1)黏附分子類,如CD44、CD54和CD106等;(2)整合素家族,如CD29、CD49和CD104等;(3)生長因子和細胞因子受體,如白細胞介素-1(interleukin-1,IL-1)、白細胞介素 -3(interleukin-3,IL-3)和腫瘤壞死因子 -α(tumor necrosis factor-α,TNF-α)等;(4)其他,如 CD105、CD90 等[17]。
hUC-MSCs移植治療具有如下優(yōu)點:(1)hUCMSCs是從臍帶中分離出來的,而臍帶屬于醫(yī)療廢棄物,來源廣泛,易獲取;(2)hUC-MSCs具有較穩(wěn)定的干細胞特性,多次傳代后,仍具有穩(wěn)定的多向分化潛能,可通過誘導分化成脂肪源性、肌源性、骨源性及神經(jīng)源性前體細胞;(3)hUC-MSCs能分泌多種細胞因子,如腦源性神經(jīng)生長因子;(4)hUC-MSCs臨床應用前景廣泛,可用于治療缺血性、神經(jīng)損傷性等疾病;(5)hUCMSCs低表達主要組織相容性復合體Ⅰ類分子,不表達主要組織相容性復合體Ⅱ類分子,具有低免疫原性,適于不同物種個體之間的移植;(6)hUC-MSCs不存在太多的倫理道德問題[18,19]。
轉(zhuǎn)分化是指在某些理化因素作用下一種類型的細胞或組織轉(zhuǎn)變?yōu)榱硪环N細胞或組織的現(xiàn)象[20]。hUCMSCs在體外可轉(zhuǎn)分化為具有神經(jīng)干細胞特點的hUCMSCs源神經(jīng)球。研究者將hUC-MSCs源神經(jīng)球和hUC-MSCs分別移植到TBI大鼠模型上,并對它們的治療效果進行比較,以確認移植前的轉(zhuǎn)分化是否有必要。研究發(fā)現(xiàn),轉(zhuǎn)分化在提高hUC-MSCs向神經(jīng)樣細胞分化能力的同時卻降低了hUC-MSCs分泌神經(jīng)營養(yǎng)因子的能力。進一步研究發(fā)現(xiàn),未轉(zhuǎn)分化的hUC-MSCs對TBI后的認知功能恢復及組織結(jié)構(gòu)的保護效果更好,提示hUC-MSCs在移植前沒有必要進行轉(zhuǎn)分化[21,22]。
hUC-MSCs和創(chuàng)傷腦組織相互作用能產(chǎn)生多種因子[23,24]。這些因子不僅有利于局部微環(huán)境的改善,還利于受損神經(jīng)的修復[25,26],同時也利于內(nèi)源性神經(jīng)干細胞分化成神經(jīng)細胞而進行自我修復[27]。但是,單純hUCMSCs移植對TBI的修復作用還不夠理想,可結(jié)合生物工程材料、基因修飾、基因沉默、藥物和物理等手段綜合治療。研究發(fā)現(xiàn),腦源性神經(jīng)營養(yǎng)因子、促紅細胞生成素等基因修飾的hUC-MSCs可在大鼠腦組織中存活和遷移,并可明顯改善TBI模型大鼠的神經(jīng)學功能[28,29];Ras超家族成員A基因沉默的hUC-MSCs也可明顯改善TBI后大鼠的神經(jīng)學功能[30]。另外,hUCMSCs移植聯(lián)合高壓氧治療、C5a受體拮抗劑和短肽-腦源性神經(jīng)營養(yǎng)因子肽支架等也能對TBI產(chǎn)生較好的治療效果[31-33]。
MSCs是干細胞家族的重要成員,來源于發(fā)育早期的中胚層,屬于多能干細胞,最早發(fā)現(xiàn)于骨髓中,隨后還發(fā)現(xiàn)存在于人體發(fā)生、發(fā)育過程的多種組織。研究發(fā)現(xiàn),骨髓、脂肪、滑膜、骨骼、肌肉、肺、肝、胰腺、臍帶、羊水及臍帶血中均能被分離和制備出MSCs[34,35]。
5.1 MSCs移植途徑、時機和劑量的選擇 MSCs治療TBI動物模型的移植途徑主要有大腦實質(zhì)立體定向注射、腦室內(nèi)注射和靜脈注射等,以上途徑均可獲得歸巢的干細胞和一定程度上的神經(jīng)功能恢復。相比較而言,每種移植途徑均存在一定缺點。立體定向腦實質(zhì)內(nèi)注射和腦室內(nèi)注射必然會對腦組織造成損傷,有加重神經(jīng)功能缺損的風險;而靜脈移植雖然是一種非侵襲性移植途徑,但遷移至損傷組織的細胞數(shù)量非常有限,另外,小鼠靜脈細、難以辨認,進針成功率低,且進針后易發(fā)生腫脹,MSCs易滲漏,這給MSCs的定量注射帶來了一定困難[36-38]。
關于MSCs移植時間窗和功能恢復的關系,現(xiàn)階段尚無定論。如果移植過早,TBI后炎性介質(zhì)釋放增多,細胞毒性物質(zhì)也會隨之增加,此時的腦組織微環(huán)境并不利于MSCs的存活。如果移植過晚,由于腦損傷的自我修復已達到了一定程度,血腦屏障的通透性減弱,通過血腦屏障進入大腦的MSCs就更少了。目前,研究認為在TBI后24 h進行干細胞移植的效果較好,且移植的干細胞具有一定的時效性,其量隨時間延長而不斷減少[39],因此,在臨床上治療TBI宜采用多次移植的方法。關于MSCs移植劑量和功能恢復的關系,現(xiàn)階段也無明確定論。MSCs移植的劑量可受多種因素影響,如細胞的來源、宿主的差異等。有研究者認為中等量(1×106個細胞)移植效果比較理想[40-43]。
5.2治療機制
5.2.1 MSCs優(yōu)先歸巢到受損組織 干細胞歸巢是指自體或外源性干細胞在多種因素的作用下,發(fā)生趨向性遷移,越過血管內(nèi)皮細胞至靶向組織并定植存活的過程。袁源等[11]利用hUC-MSCs移植治療TBI模型大鼠,術后觀察到穿刺道損傷皮質(zhì)處存在大量的5-溴脫氧尿嘧啶核苷(5-bromo-2-deoxyuridine,BrdU)陽性表達細胞,這說明hUC-MSCs可在宿主體內(nèi)很好地存活并發(fā)生定向遷移。目前,對干細胞的歸巢機制尚未完全掌握,尤其是對MSCs的動員機制。已有研究表明,基質(zhì)衍生因子 1(stromal cell derived factor-1,SDF-1)與其受體CXCR4結(jié)合所形成的SDF-1/CXCR4軸是促進MSCs向損傷組織歸巢的一個重要生物軸[44]。受損組織能上調(diào)SDF-1的表達,使局部SDF-1的濃度升高并向周圍擴散。表面表達CXCR4的MSCs能沿著SDF-1的濃度梯度到達損傷部位從而參與組織修復。SDF-1/CXCR4軸還具有增加MSCs存活率和增殖活性、抑制MSCs凋亡等作用[45-47]。目前,SDF-1及其受體CXCR4對MSCs的趨化作用是一個研究熱點。另外,肝細胞生長因子(hepatocyte growth factor,HGF)及其受體c-met構(gòu)成的HGF/c-met軸、干細胞因子(stem cell factor,SCF)及其受體c-kit構(gòu)成的SCF/c-kit軸、胰島素樣生長因子、粒細胞集落刺激因子、血小板衍生因子和血管內(nèi)皮生長因子等亦均被證明出與MSCs的歸巢機制有關[48-50]。
5.2.2 MSCs的細胞替代作用 一直以來,學術界認為移植的MSCs主要是通過分化成神經(jīng)元、替代壞死神經(jīng)元來發(fā)揮治療作用的。然而研究表明,hUC-MSCs在移植治療TBI 1周后,治療組神經(jīng)功能較對照組已經(jīng)有了顯著改善[51]。推測在如此短的時間內(nèi),MSCs很難分化為成熟的功能神經(jīng)元,即便是分化出成熟的神經(jīng)元也很難真正整合到宿主復雜的神經(jīng)網(wǎng)絡結(jié)構(gòu)中。hUC-MSCs在移植治療TBI 4周后,確實有部分hUCMSCs分化成了神經(jīng)樣細胞,但現(xiàn)在還缺乏充足的實驗證據(jù)證明這種由hUC-MSCs分化而來的神經(jīng)元樣細胞與大腦皮質(zhì)神經(jīng)元間是否存在真正意義上結(jié)構(gòu)與功能的整合。同時Yuan等[11]發(fā)現(xiàn)神經(jīng)元特異性烯醇化酶(neuron specific enolase,NSE)和膠質(zhì)原纖維酸性蛋白(glial fibrillary acidic protein,GFAP)陽性細胞的數(shù)量很少,且并無明顯的軸突或樹突狀突起,不足以重建損傷的神經(jīng)結(jié)構(gòu)。因此,MSCs的細胞替代作用很有可能不是促進神經(jīng)功能恢復的主要機制[11]。
5.2.3其他機制 MSCs移植治療TBI還可能通過以下作用機制來實現(xiàn)[52-55]。(1)營養(yǎng)作用:MSCs能分泌神經(jīng)營養(yǎng)因子,并促進受損腦組織與其相互作用分泌血管內(nèi)皮生長因子、腦源性神經(jīng)生長因子和神經(jīng)生長因子等,這對損傷局部微環(huán)境的改善起著重要作用。(2)保護作用:減少膠質(zhì)瘢痕形成和繼發(fā)損傷的組織丟失,其保護作用主要是通過拮抗興奮性氨基酸的神經(jīng)毒性,提高清除自由基的能力,減少遲發(fā)性神經(jīng)元死亡,抑制凋亡因子表達和穩(wěn)定細胞內(nèi)鈣離子濃度等。(3)清理作用:MSCs在腦組織內(nèi)轉(zhuǎn)化為某類細胞,吞噬潰變的軸突碎片和解體的髓鞘。(4)激活作用:遷移到受損腦組織區(qū)的MSCs可通過激活處于休眠狀態(tài)的內(nèi)源性神經(jīng)干細胞從而對受損區(qū)神經(jīng)元發(fā)揮修復作用。(5)橋接作用:移植的MSCs可為創(chuàng)傷性腦損傷宿主的軸突再生提供一個連接通道,讓再生的神經(jīng)軸突順利通過損傷處,為腦損傷處兩側(cè)殘端重新建立神經(jīng)突觸聯(lián)系創(chuàng)造了條件。
TBI的治療是一個世界性難題。隨著動物體內(nèi)實驗的進步,科學家和神經(jīng)外科醫(yī)師們急于通過臨床試驗來探索干細胞移植對TBI患者的治療方案?,F(xiàn)已有一些TBI患者參與到了臨床試驗,但由于存在臨床試驗的固有障礙,包括患者病理生理過程的不同和倫理等問題。目前為止,尚無一個安全有效的治療方案。故hUC-MSCs移植在臨床上正式成為一種安全有效的治療方法之前,仍需要更深入的研究。
[1]Ding D C, Shyu W C, Lin S Z. Mesenchymal stem cells [J].Cell Transplant, 2011, 20(1): 5-14. DOI: 10.3727/09636 8910X.
[2]黃 華. 人臍帶間充質(zhì)干細胞治療大鼠脊髓損傷及其對內(nèi)源性干細胞的影響[D]. 鄭州:鄭州大學,2013.
[3]Xie J, Wang B, Wang L,et al. Intracerebral and intravenous transplantation represents a favorable approach for application of human umbilical cord mesenchymal stromal cells in intracerebral hemorrhage rats [J]. Med Sci Monit,2016,22: 3552-3561. DOI: 10.12659/MSM.900512.
[4]Cui Y B, Ma S S , Zhang C Y,et al. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer's disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis[J]. Behav Brain Res, 2017,320: 291-301. DOI: 10.1016/j.bbr.2016.12.021.
[5]Hwang J W, Choi S, Oh W,et al. Intracerebroventricular transplantation of human umbilical cord blood derived mesenchymal stem cells attenuates symptoms of repetitive mild traumatic brain injury (RM TBI) [J]. Cytotherapy,2017,19(5 Supp l): S201. DOI: 10.1016/j.jcyt.2017.02.303.
[6]Zhou L, Mo B L, Qiu S J,et al. Preconditioning in lowered oxygen enhances the therapeutic potential of human umbilical mesenchymal stem cells in a rat model of spinal cord injury [J]. Brain Res, 2016, 1642: 426-435. DOI:10.1016/j.brainres.2016.04.025.
[7]Barkhoudarian G, Hovda D A, Giza C C. The molecular pathophysiology of concussive brain injury-an update [J].Phys Med Rehabil Clin N Am, 2016, 27(2): 373-393.DOI: 10.1016/j.pmr.2016.01.003.
[8]Prins M L, Matsumoto J. Metabolic response of pediatric traumatic brain injury [J]. J Child Neurol, 2016, 31(1):28-34. DOI: 10.1177/0883073814549244.
[9]Margulies S S, Anderson G D, Atif F,et al. Combination therapies for traumatic brain injury: retrospective considerations [J]. J Neurotrauma, 2016, 33(1): 101-112.DOI: 10.1089/neu.2014.3855.
[10]張文進. 人臍帶沃頓膠間充質(zhì)干細胞移植治療對大鼠腦損傷區(qū)微循環(huán)的影響[D]. 鄭州:鄭州大學,2014.
[11]Yuan Y, Yang S, Zhang J. Human umbilical cord derived mesenchymal stem cell transplantation for rat traumatic brain injury [J]. CJTER, 2011, 15(45): 8424-8428. DOI:10.3969/j.issn.1673-8225.2011.45.014.
[12]Zhu J, Hong J, Cui J,et al. Adipose mesenchymal stem cells for treatment of traumatic brain injury [J]. CJTER,2017, 21(1): 71-76.
[13]Cernak I. Animal models of head trauma [J]. Neurorx,2005, 2(3): 410-422. DOI: 10.1602/neurorx.2.3.410.
[14]Meng X, Sun B, Xue M,et al. Comparative analysis of microRNA expression in human mesenchymal stem cells from umbilical cord and cord blood [J]. Genomics, 2016,107(4): 124-131. DOI: 10.1016/j.ygeno.2016.02.006.
[15]Joerger-Messerli M S, Marx C, Oppliger B,et al.Mesenchymal stem cells from Wharton's jelly and amniotic fluid [J]. Best Pract Res Clin Obstet Gynaecol, 2016, 31:30-44. DOI: 10.1016/j.bpobgyn.2015.07.006.
[16]Boyd N L, Nunes S S, Krishnan L,et al. Dissecting the role of human embryonic stem cell-derived mesenchymal cells in human umbilical vein endothelial cell network stabilization in three-dimensional environments [J]. Tissue Eng Part A, 2013, 19(1-2): 211-223. DOI: 10.1089/ten.tea.2011.0408.
[17]彭 琴,張 蕾. hUC-MSCs肝樣細胞分化機制的研究進展[J]. 中國細胞生物學學報,2016, 38(9): 1134-1143.
[18]Fan C G, Zhang Q J, Zhou J R. Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord [J]. SCRR, 2011, 7(1): 195-207. DOI: 10.1007/s12015-010-9168-8.
[19]Huang C, Zhao L, Gu J,et al. The migration and differentiation of hUC-MSCs(CXCR4/GFP) encapsulated in BDNF/chitosan scaffolds for brain tissue engineering[J]. J Biomed Mater Res, 2016, 11(3): 1748-6041. DOI:10.1088/1748-6041/11/3/035004.
[20]Stone L. Transdifferentiation results in resistance [J].Nat Rev Urol, 2017, 14(7): 1759-4812. DOI: 10.1038/nrurol.2017.68.
[21]洪孫權. 轉(zhuǎn)分化和未轉(zhuǎn)分化人臍帶間充質(zhì)干細胞在腦損傷修復中的比較研究[D]. 廣州:南方醫(yī)科大學,2012.
[22]Hong S Q, Zhang H T, You J,et al. Comparison of transdifferentiated and untransdifferentiated human umbilical mesenchymal stem cells in rats after traumatic brain injury [J]. Neurochem Res, 2011, 36(12): 2391-2400. DOI: 10.1007/s11064-011-0567-2.
[23]Munoz J R, Stoutenger B R, Prockop D J. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice[J]. PNAS, 2005, 102(50): 18171-18176. DOI: 10.1073/pnas.0508945102.
[24]Buzanska L, Jurga M, Stachowiak E K,et al. Neural stemlike cell line derived from a nonhematopoietic population of human umbilical cord blood [J]. Stem Cells Dev, 2006,15(3): 391-406. DOI: 10.1089/scd.2006.15.391.
[25]Neuhoff S, Moers J, Rieks M,et al. Proliferation,differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro [J]. Exp Hematol, 2007, 35(7): 1119-1131. DOI: 10.1016/j.exph em.2007.03.019.
[26]Pang K M, Sung M A, Alrashdan M S,et al. Transplantation of mesenchymal stem cells from human umbilical cord versus human umbilical cord blood for peripheral nerve regeneration [J]. Neural Regen Res, 2010, 5(11): 838-845. DOI: 10.3969/j.issn.1673-5374.2010.11.006.
[27]Lou S, Gu P, Chen F,et al. The effect of bone marrow stromal cells on neuronal differentiation of mesencephalic neural stem cells in Sprague-Dawley rats [J]. Brain Res,2003, 968(1): 114-121. DOI: 10.1016/S0006-8993(03)0 2224-8.
[28]Yuan Y, Pan S, Sun Z,et al. Brain-derived neurotrophic factor-modified umbilical cord mesenchymal stem cell transplantation improves neurological deficits in rats with traumatic brain injury [J]. Int J Neurosci, 2014, 124(7):524-531.
[29]Zhong Z, Lü J. Therapeutic effect of erythropoietin gene modified umbilical cord derived mesenchymal stem cells transplantation on the morphology of brain cells and the recovery of neurological function in traumatic brain injury rats [J]. CJTER, 2012, 16(6): 1036-1040. DOI: 10.3969/j.issn.1673-8225.2012.06.020.
[30]Feng S, Han J. Treatment of traumatic brain injury in rats by RhoA gene silencing combined with umbilical cord mesenchymal stem cell transplantation [J]. CJTER, 2013, 17(1): 23-30. DOI: 10.3969/j.issn.2095-4344.2013.01.004.
[31]Zhou H, Liu Z, Liu X,et al. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury [J]. Neural Regen Res, 2016, 11(1): 107-113.DOI:10.4103/1673-5374.175054.
[32]Lu J X, Yin H. Treatment of traumatic brain injury by human umbilical cord mesenchymal stem cells transplantation combined with C5a receptor antagonist [J].CJTER, 2011, 15(49): 9182-9185.
[33]Shi W, Huang C, Xu X,et al. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury[J]. Acta Biomater, 2016, 45: 247-261. DOI: 10.1016/j.actbio.2016.09.001.
[34]Igura K, Zhang X, Takahashi K,et al. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta [J]. Cytotherapy, 2004, 6(6): 543-553. DOI: 10.1080/14653240410005366.
[35]Campagnoli C, Roberts I A, Kumar S,et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow [J]. Blood, 2001, 98(8): 2396-2402. DOI: 10.1182/blood.V98.8.2396.
[36]Bao X J, Liu F Y, Lu S,et al. Transplantation of Flk-1+human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and anti-inflammatory and angiogenesis effects in an intracerebral hemorrhage rat model [J]. Int J Mol Med, 2013, 31(5): 1087-1096. DOI:10.3892/ijmm.2013.1290.
[37]Lee S H, Kim Y, Rhew D,et al. Impact of local injection of brain-derived neurotrophic factor-expressing mesenchymal stromal cells (MSCs) combined with intravenous MSC delivery in a canine model of chronic spinal cord injury [J]. Cytotherapy, 2017, 19(1): 1465-3249. DOI: 10.1016/j.jcyt.2016.09.014.
[38]Park S E, Jung N Y, Lee N K,et al. Distribution of human umbilical cord blood-derived mesenchymal stem cells(hUCB-MSCs) in canines after intracerebroventricular injection [J]. Neurobiol Aging, 2016, 47: 192-200. DOI:10.1016/j.neurobiolaging.2016.08.002.
[39]Chen N, Shen N, He J,et al. Changes of BDNF after treatment of traumatic brain injury with human umbilical cord blood mesenchymal stem cells in rats [J]. J Shandong Univ Health Sci, 2013, 51(1): 22-26.
[40]Kim J W, Ha K Y, Molon J N,et al. Bone marrow-derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: comparative study between intralesional and intravenous transplantation [J]. Spine, 2013, 38(17):1065-1074. DOI: 10.1097/BRS.0b013e31829839fa.
[41]Han M Y, Feng S Q, Li H,et al. Transplantation of human umbilical cord-derived mesenchymal stem cells for the treatment of spinal cord injury in rats [J]. CRTER, 2010, 14(19): 3483-3489. DOI: 10.3969/j.issn.1673-8225.2010.1 9.013.
[42]張振梁,楊新明,孟憲勇,等. 丙戊酸聯(lián)合骨髓間充質(zhì)干細胞移植對大鼠脊髓損傷的影響[J]. 中國臨床藥理學雜志,2017,33(8): 714-717. DOI: 10.13699/j.cnki.1001-6821.2017.08.012.
[43]孫佳佳,周 軍,楊惠林. 骨髓間充質(zhì)干細胞移植治療大鼠脊髓損傷的抗慢性應激作用[J]. 中華創(chuàng)傷雜志,2016(4): 337-343. DOI: 10.3760/cma.j.issn.1001-8050.2016.04.014.
[44]Kitaori T, Ito H, Schwarz E M,et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model [J]. Arthritis Rheum, 2009, 60(3): 813-823. DOI: 10.1002/art.24330.
[45]Falco E D, Porcelli D, Torella A R. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells [J]. Blood, 2004, 104(12):3472-3482. DOI: 10.1182/blood-2003-12-4423.
[46]Lapidot T, Dar A, Kollet O. How do stem cells find their way home? [J]. Blood, 2005, 106(6): 1901-1910. DOI:10.1182/blood-2005-04-1417.
[47]馬紹華,浦 波,舒 鈞,等. 間充質(zhì)干細胞歸巢的研究進展[J]. 醫(yī)學綜述, 2011, 17(4): 507-510. DOI:10.3969/j.issn.1006-2084.2010.05.013.
[48]Ponte A L, Marais E, Gallay N,et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells:comparison of chemokine and growth factor chemotactic activities [J]. Stem Cells, 2007, 25(7): 737-1745. DOI:10.1634/stemcells.2007-0054.
[49]Ishibashi S, Sakaguchi M, Kuroiwa T,et al. Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in mongolian gerbils [J]. Neurosci Res, 2004, 78: 215-223.DOI: 10.1002/jnr.20246.
[50]劉慧純. 人臍帶間充質(zhì)干細胞移植治療大鼠腦缺血損傷的實驗研究[D]. 天津:天津醫(yī)科大學,2012.
[51]Mahmood A,Lu D Y,Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury [J]. J Neurotrauma, 2004, 21(1): 33-39. DOI:10.1089/089771504772695922.
[52]張?zhí)煜?,?波,關方霞,等. 靜脈移植人脂肪間充質(zhì)干細胞治療大鼠顱腦損傷[J]. 中國組織工程研究與臨床康復,2011, 15(14): 2551-2556. DOI: 10.3969/j.issn.1673-8225.2011.14.018.
[53]Darkazalli A, Vied C, Badger C D,et al. Human mesenchymal stem cell treatment normalizes corticalgene expression after traumatic brain injury [J]. J Neurotrauma,2017, 3(4): 204-212. DOI: 10.1089/neu.2015.4322.
[54]Wang Z, Wang Y, Wang Z,et al. Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury [J]. Stem Cells, 2015, 33(2): 456-467. DOI:10.1002/stem.1878.
[55]Zhang R, Liu Y, Yan K,et al. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury [J]. J Neuroinflamm, 2013, 10(1): 1-12. DOI: 10.1186/1742-2094-10-106.
Research progress of human umbilical cord mesenchymal stem cell transplantation in the treatment of traumatic brain injury
LIU Tengfei1, ZHOU Jiankang1, HUANG Tuanjie1, XING Qu1, XU Ling1, ZHANG Xiaqing1, WANG Yaping1, YANG Bo2, MA Shanshan1, and GUAN Fangxia1. 1. School of Life Science, Zhengzhou University, Zhengzhou 450001, China; 2. Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
MA Shanshan, E-mail: mashanshan84@163.com
Traumatic brain injury (TBI) is a common disease that occurs in the central nervous system and recently human umbilical cord mesenchymal stem cells (hUC-MSCs) transplantation provides a new method for its treatment. Mesenchymal stem cells (MSCs)preferentially target the damaged tissues and secrete a variety of factors that exert their functions of nutrition, protection, cleaning, activation and bridging. However, the study of stem cell transplantation in the treatment of traumatic brain injury most is still in experimental stage of animal models and lacks effective evidence in clinical safety and effectiveness, which also needs to be evaluated and validated in large and long-term clinical trials. This paper reviews the progress of hUC-MSCs transplantation in the treatment of traumatic brain injury, and hopes to provide references for the future extensive research.
R318
Key wordshuman umbilical cord mesenchymal stem cells; transplantation; traumatic brain injury
10.13919/j.issn.2095-6274.2017.11.017
國家自然科學基金資助項目(81601078,U1404313,81471306);河南省高??萍紕?chuàng)新團隊(15IRTSTHN022);河南省科技創(chuàng)新人才計劃(154200510008);河南省國際人才合作項目(2016GH03,2016GH15);河南省重點科技攻關項目(152102310272)
作者單位:1. 450001,河南省鄭州大學生命科學學院;
2. 450052,河南省鄭州大學第一附屬醫(yī)院神經(jīng)外科
馬珊珊,E-mail: mashanshan84@163.com
(2017-08-22收稿2017-10-23修回)
(本文編輯 張亞麗)