田力++胡楊
摘要:運(yùn)用ANSYS/LSDYNA軟件分別建立了鋼筋混凝土柱、汽車、炸藥及空氣等模型,對模型的有效性進(jìn)行了模擬驗(yàn)證;采用全過程分階段數(shù)值模擬方法研究了不同參數(shù)對鋼筋混凝土柱動(dòng)力響應(yīng)的影響,并對柱的破壞模式進(jìn)行了分析。結(jié)果表明:汽車速度、炸藥量的增加都會不同程度地加大柱中水平位移;柱截面慣性矩及箍筋配筋率的增加均對柱的抗沖擊能力有不同程度提高;混凝土軸心抗壓強(qiáng)度和縱筋配筋率的提高雖然使柱中水平位移有所降低,但在一定范圍內(nèi)降低值并不是很大;柱的破壞模式主要包括局部破壞、整體彎剪破壞和整體剪切破壞。
關(guān)鍵詞:鋼筋混凝土柱;汽車撞擊;爆炸;動(dòng)力響應(yīng);破壞模式
中圖分類號:TU375.3文獻(xiàn)標(biāo)志碼:A
Dynamic Response and Failure Modes of Reinforced Concrete
Columns Under Vehicle Impact and BlastTIAN Li1,2, HU Yang1
(1. School of Civil Engineering, Tianjin University, Tianjin 300072, China; 2. Key Laboratory of Coast
Civil Structure Safety of Ministry of Education, Tianjin University, Tianjin 300072, China)Abstract: The models of reinforced concrete column, vehicle, explosive and air were established by software ANSYS/LSDYNA, and the validity of the models was verified by simulation. The influence of different parameters on the dynamic response of reinforced concrete column was studied by using the whole process staged numerical simulation method, and the failure modes of the columns were analyzed. The results show that the increases of vehicle speed and explosive quantity will increase the horizontal displacements in the middle of column. The increases of column section inertia moment and stirrup ratio can improve the impact resistance of the column. Although the increases of axial compressive strength of concrete and longitudinal reinforcement ratio can decrease the horizontal displacements of column, but the reduced values are not very large in a certain range. The failure modes of the column mainly include the local damage, the whole bending shear failure and the whole shear failure.
Key words: reinforced concrete column; vehicle impact; blast; dynamic response; failure mode
0引言
近年來,世界范圍內(nèi)恐怖襲擊事件時(shí)有發(fā)生,爆炸恐怖襲擊活動(dòng)已經(jīng)成為恐怖分子最為常用的活動(dòng)形式,這給所在國家乃至全世界的政治經(jīng)濟(jì)環(huán)境造成了惡劣影響,對人民生命財(cái)產(chǎn)安全造成了嚴(yán)重威脅。汽車炸彈由于具有隱蔽、破壞性強(qiáng)、發(fā)起突然、影響面廣等特點(diǎn),深受恐怖分子青睞。汽車炸彈通常有2種實(shí)施方式[1]:一是停放的汽車炸彈戰(zhàn)術(shù),恐怖分子將載有炸藥的汽車停在建筑物附近,然后用遙控裝置引爆炸藥;二是行進(jìn)的汽車炸彈戰(zhàn)術(shù),恐怖分子駕駛裝有炸藥的汽車直接撞向目標(biāo)并引爆炸藥實(shí)施攻擊。本文所研究的是第2種,即汽車炸彈襲擊方式。鋼筋混凝土結(jié)構(gòu)是當(dāng)前應(yīng)用最為廣泛的建筑結(jié)構(gòu),鋼筋混凝土柱作為結(jié)構(gòu)的主要承重構(gòu)件,研究其在汽車先撞擊后爆炸下的動(dòng)力響應(yīng)及破壞模式具有重要的工程價(jià)值和意義。
由于載有炸藥的汽車先撞擊后爆炸整體過程的復(fù)雜性,對此種情況下鋼筋混凝土柱的研究幾乎是空白。對單獨(dú)撞擊過程和單獨(dú)爆炸過程作用下混凝土結(jié)構(gòu)及構(gòu)件的研究有很多。田力等[2]對鋼筋混凝土柱在碰撞沖擊荷載作用下的損傷評估及防護(hù)方法進(jìn)行了研究。程小衛(wèi)等[3]研究了撞擊荷載下鋼筋混凝土柱的動(dòng)力響應(yīng)。Thilakarathna等[4]對鋼筋混凝土柱在側(cè)向沖擊荷載下的動(dòng)力特性進(jìn)行了數(shù)值研究,并對其損傷程度做了分析。余敏[5]對不同類型柱在汽車撞擊下的性能進(jìn)行了對比分析。Shi等[6]對鋼筋混凝土柱在爆炸作用下的動(dòng)態(tài)響應(yīng)進(jìn)行了參數(shù)分析,并對柱的破壞模式進(jìn)行了總結(jié)。李忠獻(xiàn)等[7]提出了一種基于纖維模型的鋼筋混凝土柱宏觀模型,分析了其在爆炸荷載下的動(dòng)態(tài)響應(yīng),并對其適用性進(jìn)行了驗(yàn)證。申祖武等[8]對汽車炸彈爆炸沖擊波作用下建筑物的動(dòng)力響應(yīng)進(jìn)行了數(shù)值分析。
本文采用ANSYS/LSDYNA軟件對汽車先撞擊后爆炸作用下鋼筋混凝土柱的動(dòng)力響應(yīng)及破壞模式進(jìn)行全過程分階段數(shù)值仿真模擬。分析不同汽車速度、炸藥量、截面慣性矩、混凝土軸心抗壓強(qiáng)度、縱筋配筋率和箍筋配筋率等參數(shù)對鋼筋混凝土柱動(dòng)力響應(yīng)的影響,總結(jié)鋼筋混凝土柱的破壞模式。
1數(shù)值模擬及驗(yàn)證
1.1模型簡介
為確保撞擊階段計(jì)算結(jié)果的可靠性,本文汽車采用美國國家碰撞分析中心(National Crash Analysis Center,NCAC)免費(fèi)提供的有限元模型。同時(shí)為使汽車在爆炸階段能夠接近實(shí)際變形及破壞,對所用汽車模型的鋼板材料考慮應(yīng)變率效應(yīng)。筆者僅對原有汽車鋼板材料的應(yīng)變率效應(yīng)參數(shù)進(jìn)行了相應(yīng)設(shè)置,最終的汽車有限元模型如圖1所示。
圖1汽車與鋼筋混凝土柱的耦合模型
Fig.1Coupling Model of Vehicle and
Reinforced Concrete Column鋼筋混凝土柱的有限元模型運(yùn)用ANSYS/LSDYNA軟件建立,采用三維分離式建模方式,如圖2所示。圖2中h為截面高度,其所在面為柱被撞擊面和迎爆面,b為截面寬度,c為混凝土保護(hù)層厚度。柱中鋼筋采用Beam161單元,混凝土采用Solid164單元,單元網(wǎng)格尺寸均采用25 mm×25 mm[6]。為準(zhǔn)確模擬柱端約束,在柱上下兩端分別設(shè)置了柱頭和柱腳,柱腳采用三向約束,柱頭僅約束2個(gè)水平方向。
圖2鋼筋混凝土柱有限元模型
Fig.2Finite Element Model of
Reinforced Concrete Column炸藥、空氣的有限元模型同樣運(yùn)用ANSYS/LSDYNA軟件建立。炸藥與空氣均采用Eular單元,將炸藥定義成流體,以避免爆炸過程中網(wǎng)格過分畸變對計(jì)算結(jié)果產(chǎn)生不利影響[9]。
1.2材料模型
柱的混凝土材料采用塑性損傷模型MAT_CONCRETE_DAMAGE_REL3(MAT72),鋼筋材料采用隨動(dòng)強(qiáng)化雙線性彈塑性模型MAT_PLASTIC_KINEMATIC(MAT3)[10]。
在快速?zèng)_擊作用下,混凝土與鋼筋及汽車鋼板材料均會產(chǎn)生很高的應(yīng)變率[11],故本文對其分別考慮了應(yīng)變率效應(yīng)。材料的應(yīng)變率效應(yīng)由材料強(qiáng)度的動(dòng)力增大系數(shù)來表示,其定義為在某應(yīng)變率下材料動(dòng)力強(qiáng)度與靜力強(qiáng)度之比?;炷敛牧蠌?qiáng)度的動(dòng)力增大系數(shù)采用K&C模型來考慮[11],鋼筋及汽車鋼板材料強(qiáng)度的動(dòng)力增大系數(shù)采用CowperSymonds模型來考慮[12]。
本文所采用的混凝土材料模型MAT72不能考慮材料的失效,為了真實(shí)模擬混凝土的壓碎與脫落,分析中通過材料模型MAT_ADD_EROSION設(shè)置混凝土單元的失效主應(yīng)變εf,其值取為0.15[6]。當(dāng)混凝土單元的應(yīng)變大于該值時(shí),單元失效刪除。
空氣采用LSDYNA中的MAT_NULL模型,炸藥采用MAT_HIGH_EXPLOSIVE_BURN模型[13]。2種模型均需與對應(yīng)的狀態(tài)方程聯(lián)用。
空氣材料對應(yīng)的狀態(tài)方程由LSDYNA中的EOS_LINEAR_POLYNOMAL關(guān)鍵字來考慮,炸藥材料對應(yīng)的狀態(tài)方程由EOS_JWL關(guān)鍵字[13]來考慮。
炸藥材料具體參數(shù)見表1,其對應(yīng)的JWL狀態(tài)方程的參數(shù)見表2。表1炸藥材料參數(shù)
Tab.1Material Parameters of Explosive密度/(g·cm-3)爆速/(mm·μs-1)PCJ壓力/GPa燃燒標(biāo)志BETA體積模量/Pa剪切模量/Pa屈服應(yīng)力/Pa1.640.6930.270000表2JWL狀態(tài)方程參數(shù)
Tab.2Parameters of JWL State EquationABR1R2ωE0/109 JV03.743.23×10-24.150.950.371.0注:A,B均為材料常量;R1,R2,ω均為材料常數(shù);V0為相對體積;
E0為單位體積的初始內(nèi)能。
1.3模擬驗(yàn)證
1.3.1汽車模型驗(yàn)證
為驗(yàn)證設(shè)置了鋼板應(yīng)變率效應(yīng)參數(shù)的汽車模型的合理性,本文對該汽車模型進(jìn)行了撞擊剛性墻的模擬計(jì)算,并與相應(yīng)試驗(yàn)報(bào)告中該汽車實(shí)車撞擊剛體平面墻試驗(yàn)的數(shù)據(jù)進(jìn)行了對比分析。試驗(yàn)報(bào)告相關(guān)內(nèi)容見文獻(xiàn)[5]。
圖3為模擬和試驗(yàn)的撞擊力時(shí)程曲線。通過對撞擊力時(shí)程曲線的比較可知:模型的峰值撞擊力與試驗(yàn)峰值撞擊力基本一致,吻合較好,撞擊力時(shí)程曲線到達(dá)峰值的時(shí)間較試驗(yàn)時(shí)間略微滯后,滯后時(shí)間大概5 ms。從整體模擬效果來看,汽車模型能夠較好地模擬實(shí)車撞擊過程。
圖3撞擊力時(shí)程曲線
Fig.3Time History Curves of Impact Force1.3.2鋼筋混凝土構(gòu)件落錘試驗(yàn)驗(yàn)證
為驗(yàn)證鋼筋混凝土柱模型在撞擊作用下的有效性,本文對一鋼筋混凝土梁落錘試驗(yàn)進(jìn)行了模擬分析[14]。梁的建模方式及材料選用等與本文的柱完全相同。該試驗(yàn)梁截面尺寸為250 mm×150 mm,梁長為1 700 mm,4根縱筋均為直徑16 mm的鋼筋,屈服強(qiáng)度為426 MPa。箍筋為直徑10 mm的鋼筋,間距為75 mm,屈服強(qiáng)度為295 MPa?;炷翀A柱體抗壓強(qiáng)度為30 MPa。落錘總質(zhì)量為400 kg。本文僅對試驗(yàn)中落錘高度為0.6 m和1.2 m兩個(gè)工況進(jìn)行模擬分析。
圖4為2個(gè)工況下撞擊力時(shí)程的模擬結(jié)果與試驗(yàn)結(jié)果比較,圖5為梁跨中撓度時(shí)程曲線的模擬結(jié)果與試驗(yàn)結(jié)果比較。
圖4撞擊力時(shí)程曲線比較
Fig.4Comparison of Time History Curves of Impact Force圖5梁跨中撓度時(shí)程曲線比較
Fig.5Comparison of Time History
Curves of Midspan Deflection通過對撞擊力時(shí)程曲線的模擬值和試驗(yàn)值比較可知,模擬計(jì)算的峰值撞擊力與試驗(yàn)測得的峰值撞擊力大小相近,吻合較好,而達(dá)到峰值的時(shí)間模擬結(jié)果較試驗(yàn)結(jié)果滯后1 ms左右,其原因在于模型所采用的混凝土材料MAT72比實(shí)際混凝土材料硬度略小。由圖5可知,模擬計(jì)算的撓度整體時(shí)程變化與試驗(yàn)測得的撓度整體時(shí)程變化相比誤差很小,擬合較好。從整體模擬效果來看,本文所采用的鋼筋混凝土建模方式能夠很好地模擬鋼筋混凝土構(gòu)件在撞擊作用下的動(dòng)力響應(yīng)。
1.3.3鋼筋混凝土構(gòu)件爆炸試驗(yàn)驗(yàn)證
為驗(yàn)證鋼筋混凝土柱模型在爆炸作用下的有效性,采用同樣的建模方式及模型材料,對一鋼筋混凝土柱的爆炸試驗(yàn)進(jìn)行了模擬計(jì)算[15]。該試驗(yàn)柱凈高為2 400 mm,并建有柱頭和柱腳,柱截面尺寸為400 mm×400 mm。8根縱筋直徑均為20 mm,屈服強(qiáng)度為420 MPa。箍筋直徑均為6 mm,間距為125 mm,屈服強(qiáng)度為280 MPa?;炷翀A柱體抗壓強(qiáng)度為40 MPa。炸藥量相當(dāng)于25 kg的TNT當(dāng)量。該試驗(yàn)對炸藥距離柱面200 mm和500 mm兩種工況分別進(jìn)行了試驗(yàn)。
限于篇幅,圖6只給出了炸藥距離柱面500 mm的鋼筋混凝土柱試驗(yàn)和模擬的破壞結(jié)果。由圖6(a)可以看出:離炸藥最近處的混凝土區(qū)域完全被炸壞,柱縱向鋼筋產(chǎn)生了很大的彎曲變形,混凝土柱完全喪失了軸向承載能力。由圖6(b)可以看出:混凝土破壞區(qū)域長度大概為800 mm,其凈高范圍內(nèi)左右端剩余混凝土長度分別為400 mm和1 200 mm,縱向鋼筋的變形與試驗(yàn)結(jié)果吻合較好。本文建模方式、模型材料及計(jì)算方法能夠較好地模擬鋼筋混凝土構(gòu)件在爆炸作用下的變形及破壞。
圖6數(shù)值模擬與試驗(yàn)結(jié)果對比
Fig.6Comparison Between Numerical
Simulation and Experimental Results綜上可知,本文所選用的汽車模型能很好地模擬汽車與物體的碰撞過程,鋼筋混凝土柱建模方式及材料模型的選取能有效地模擬撞擊階段和爆炸階段柱的動(dòng)力響應(yīng)及破壞。2全過程分階段模擬方法
為了真實(shí)模擬載有炸藥的汽車先撞擊后爆炸的整體過程,本文利用LSDYNA軟件的完全重啟動(dòng)功能[16],采用了全過程分階段的模擬方法。
第1階段為鋼筋混凝土柱的重力加載階段,即讓柱在自重作用下達(dá)到穩(wěn)定狀態(tài),該階段的計(jì)算持續(xù)時(shí)長為1 s。
第2階段為汽車撞擊鋼筋混凝土柱階段。該階段將汽車模型與鋼筋混凝土柱模型耦合到一起。計(jì)算時(shí)利用完全重啟動(dòng)功能繼承第1階段柱的應(yīng)力和應(yīng)變。實(shí)際汽車碰撞過程的持續(xù)時(shí)間一般在100 ms以內(nèi)[17]。為保證足夠的撞擊持時(shí),在現(xiàn)有條件下,將本階段的計(jì)算時(shí)長設(shè)定為200 ms。
第3階段為汽車炸彈爆炸階段。采用流固耦合的爆炸模擬算法[12]。由于汽車的存在對于爆炸沖擊波的傳播影響很大,它會對一部分向柱傳播的沖擊波起到阻擋作用,而且此時(shí)汽車與柱直接相接觸,故此階段不可忽略汽車的影響。該階段在第2階段汽車與鋼筋混凝土柱耦合模型的基礎(chǔ)上,建立空氣及炸藥有限元模型。計(jì)算時(shí)同樣利用完全重啟動(dòng)功能將汽車與柱模型及其相應(yīng)的應(yīng)力和應(yīng)變完全繼承下來。實(shí)際爆炸過程持續(xù)時(shí)間很短,將本階段的計(jì)算時(shí)長設(shè)為20 ms[18]。
第4階段為鋼筋混凝土柱自由響應(yīng)階段。由于該階段爆炸沖擊波已經(jīng)基本消失,汽車、空氣及炸藥模型對于柱的作用已基本結(jié)束,為了節(jié)省計(jì)算時(shí)間,將汽車、空氣及炸藥模型刪除掉,只對柱模型進(jìn)行計(jì)算。鋼筋混凝土柱在第3階段的應(yīng)力和應(yīng)變基礎(chǔ)上繼續(xù)響應(yīng)。
經(jīng)試算可知,總計(jì)算時(shí)長到達(dá)1.6 s時(shí),柱響應(yīng)已基本達(dá)到穩(wěn)定狀態(tài),故將汽車先撞擊后爆炸的全過程計(jì)算總時(shí)長定為1.6 s。3動(dòng)力響應(yīng)的參數(shù)分析
采用參數(shù)化分析方法,考慮汽車速度、炸藥量、截面慣性矩、混凝土軸心抗壓強(qiáng)度、縱筋配筋率和箍筋配筋率等參數(shù)對鋼筋混凝土柱動(dòng)力響應(yīng)的影響,其參數(shù)設(shè)置見表3。對于標(biāo)準(zhǔn)算例,每次變化其中1個(gè)參數(shù),保持其他參數(shù)不變,進(jìn)行參數(shù)分析。通過對比各算例鋼筋混凝土柱的柱中A點(diǎn)(圖1)水平位移,分析各參數(shù)對柱動(dòng)力響應(yīng)的影響。表3數(shù)值算例計(jì)算參數(shù)
Tab.3Calculating Parameters of Numerical Examples參數(shù)汽車速度v/(km·h-1)炸藥量m/kg混凝土軸心抗壓強(qiáng)度f′c/MPah/mmb/mm配筋率ρ/%箍筋間距d/mm標(biāo)準(zhǔn)算例50105304004000.016150對比算例4545304004000.0101005070404004500.01615055105504005000.020200標(biāo)準(zhǔn)算例為在車斗中部放有105 kg炸藥的汽車以50 km·h-1的速度撞擊鋼筋混凝土柱,撞擊后引爆炸藥,此時(shí)炸藥距柱的距離為3.2 m,炸藥距地面的距離為1 m,其先撞擊后爆炸2個(gè)階段的計(jì)算模擬有效塑性應(yīng)變云圖如圖7所示。
圖7汽車撞擊階段和爆炸階段的破壞變形數(shù)值模擬結(jié)果
Fig.7Numerical Simulation Results of Damage
Deformations at Vehicle Impact and
Explosion Stages3.1汽車速度
圖8為不同汽車速度下鋼筋混凝土柱在汽車先撞擊后爆炸作用下的柱中水平位移比較。炸藥量及鋼筋混凝土柱的各項(xiàng)參數(shù)與標(biāo)準(zhǔn)算例的參數(shù)完全一致。從圖8可以看出,隨著汽車速度的增加,撞擊階段柱中水平位移出現(xiàn)不同程度的增加。在撞擊階段柱應(yīng)力、應(yīng)變的基礎(chǔ)上,爆炸階段的柱中水平位移也相應(yīng)出現(xiàn)不同程度的增加。最終柱中水平殘余位移隨著汽車速度等比例增加,呈現(xiàn)出非線性的加速增加。這說明隨著汽車速度的增加,鋼筋混凝土柱的圖8不同汽車速度下柱中水平位移比較
Fig.8Lateral Displacement Comparison of Midheight
Column with Different Velocities of Vehicle位移響應(yīng)不斷增大。最終殘余位移的加速增大是因?yàn)殡m然炸藥量相同,但是速度的不同導(dǎo)致了撞擊階段結(jié)束時(shí)柱的應(yīng)力、應(yīng)變不同。撞擊速度大時(shí),柱進(jìn)入塑性變形的區(qū)域增加,從而加大了相應(yīng)的柱中殘余位移。
3.2炸藥量
圖9為炸藥量分別為45,70,105 kg時(shí)鋼筋混凝土柱的柱中水平位移比較。汽車速度及柱各項(xiàng)參數(shù)與標(biāo)準(zhǔn)算例的參數(shù)完全相同。由圖9可知,由于汽車速度相同,故在撞擊階段柱中水平位移是相同的,爆炸階段受炸藥量變化的影響,位移呈正相關(guān)變化。隨著炸藥量的增大,柱中水平位移峰值及殘余位移均出現(xiàn)不同程度的增大。殘余位移的增大是因?yàn)檎ㄋ幜康脑龃笠鹆吮A段柱圖9不同炸藥量時(shí)柱中水平位移比較
Fig.9Lateral Displacement Comparison of Midheight
Column with Different Quantity of Explosive進(jìn)入塑性變形的區(qū)域相應(yīng)增大所致。
3.3截面慣性矩
確保各算例柱的被撞擊面和迎爆面相同,通過改變鋼筋混凝土柱截面寬度b,保持柱截面高度h不變,從而達(dá)到改變柱截面慣性矩的目的。汽車速度、炸藥量及柱其他參數(shù)均與標(biāo)準(zhǔn)算例一致。
圖10為柱不同截面慣性矩時(shí)柱中水平位移比圖10不同截面慣性矩時(shí)柱中水平位移比較
Fig.10Lateral Displacement Comparison of Midheight
Column with Different Cross Section Inertia Moment較。由圖10可知,隨著截面慣性矩的增大,撞擊階段的位移峰值、爆炸階段的位移峰值及最終殘余位移均出現(xiàn)顯著減小。這是因?yàn)殡S著截面慣性矩的增大,柱的抗彎剛度和抗剪剛度均相應(yīng)顯著增加,從而有效降低了柱中水平位移峰值。同時(shí),在相同撞擊速度和炸藥量作用下,柱進(jìn)入塑性變形的區(qū)域出現(xiàn)不同程度的減少,故柱中水平殘余位移也明顯降低。
3.4縱筋配筋率
通過改變縱筋直徑來改變縱筋配筋率,除縱筋配筋率外,汽車速度、炸藥量及柱其他參數(shù)均與標(biāo)準(zhǔn)算例一致。圖11為不同縱筋配筋率時(shí)柱中水平位移比較。由圖11可知,隨著縱筋配筋率的增加,撞擊階段位移峰值均出現(xiàn)相應(yīng)的降低,爆炸階段位移上升的幅度相差不大,最終殘余位移也略有降低,但降低并不十分顯著。這是因?yàn)樵黾愉摻罨炷林目v筋配筋率,對于受到?jīng)_擊的柱來說其在沖擊階段的抗彎剛度及抗剪剛度雖有所提高,但提高值有限。如果將縱筋配筋率繼續(xù)增大,在先撞擊后爆炸作用下,其最終的柱中水平殘余位移會有較大程度降低。
圖11不同縱筋配筋率時(shí)柱中水平位移比較
Fig.11Lateral Displacement Comparison of Midheight
Column with Different Longitudinal Reinforcement Ratios3.5箍筋間距
圖12為不同箍筋間距下柱中水平位移比較。汽車速度、炸藥量及柱其他參數(shù)均與標(biāo)準(zhǔn)算例一致。從圖12可以看出,隨著柱箍筋間距的縮小,撞擊階圖12不同箍筋間距時(shí)柱中水平位移比較
Fig.12Lateral Displacement Comparison of Midheight
Column with Different Stirrup Spacing段和爆炸階段柱中水平位移均出現(xiàn)了很大程度的減小,位移峰值及殘余位移均得到有效降低。這是因?yàn)殡S著體積配箍率的增加即箍筋間距的縮小,被鋼筋包圍的柱核心區(qū)混凝土被很好地限制,同時(shí)柱的受剪承載力也相應(yīng)提高,在受到瞬時(shí)沖擊荷載作用時(shí),其達(dá)到塑性變形的區(qū)域大幅減少,有效降低了柱的動(dòng)力響應(yīng)。
3.6混凝土軸心抗壓強(qiáng)度
圖13為不同混凝土軸心抗壓強(qiáng)度下鋼筋混凝土柱的柱中水平位移比較。混凝土軸心抗壓強(qiáng)度分別為30,40,50 MPa。汽車速度、炸藥量及柱其他參數(shù)均與標(biāo)準(zhǔn)算例相同。從圖13可以看出,隨著混凝土軸心抗壓強(qiáng)度的提高,撞擊階段柱中水平位移峰值、爆炸階段柱中水平位移峰值及最終殘余位移都相應(yīng)有所降低。混凝土軸心抗壓強(qiáng)度的增加對撞擊階段位移響應(yīng)的降低影響更大。最終殘余位移相應(yīng)降低是因?yàn)殡S著混凝土軸心抗壓強(qiáng)度的提高,鋼筋混凝土柱進(jìn)入塑性的區(qū)域相對減少,從而直接影響柱中水平位移的變化。同時(shí)可以看出,雖然柱中水平位移隨混凝土軸心抗壓強(qiáng)度的增加而有所增加,但其最終殘余位移降低值與提高截面慣性矩或提高箍筋配筋率的殘余位移降低值相比小很多,所以在進(jìn)行設(shè)計(jì)時(shí)不可盲目提高混凝土強(qiáng)度。圖13不同混凝土軸心抗壓強(qiáng)度時(shí)柱中水平位移比較
Fig.13Lateral Displacement Comparison of Midheight
Column with Different Axial Compress Strength of Concrete4破壞模式分析
在載有炸藥的汽車先撞擊后爆炸作用下鋼筋混凝土柱所受到的沖擊力較為復(fù)雜。在汽車撞擊階段,柱直接受到汽車的撞擊作用;在爆炸階段,由于汽車對沖擊波的阻擋作用,柱僅受到一部分爆炸沖擊波的沖擊作用,同時(shí)汽車在沖擊波的沖擊作用下對柱產(chǎn)生了又一次的撞擊作用。
經(jīng)大量計(jì)算分析可知柱的破壞模式主要有3種:局部破壞型、整體剪切破壞型、整體彎剪破壞型。圖14為在汽車先撞擊后爆炸作用下柱的3種破壞模式。圖14(a)為局部破壞型,柱局部區(qū)域混凝土被壓碎,該破壞模式是在汽車撞擊速度和炸藥量均較小時(shí)柱易于發(fā)生的破壞模式,此時(shí)的柱伴有些許彎曲。圖14(b)為整體彎剪破壞型,當(dāng)汽車撞擊速度較小而炸藥量較大時(shí)傾向于發(fā)生此種破壞,撞擊速度較小時(shí)的撞擊荷載為低峰值、高持時(shí),此時(shí)柱在撞擊階段傾向于發(fā)生彎曲破壞,在撞擊后的大炸藥量爆炸階段,汽車在沖擊波沖擊作用下對柱造成瞬時(shí)高速的二次撞擊,柱此時(shí)易于發(fā)生剪切破壞,最后柱的破壞表現(xiàn)為彎剪破壞模式。圖14(c)為整體剪切破壞型,當(dāng)汽車撞擊速度較大時(shí),撞擊荷載為高峰值、低持時(shí),此時(shí)柱在撞擊圖14鋼筋混凝土柱的破壞模式
Fig.14Damage Modes of Reinforced Concrete Column階段傾向于發(fā)生剪切破壞,而在撞擊后的爆炸階段,柱的剪切破壞被加劇。5結(jié)語
(1)汽車速度及炸藥量的增加都會不同程度地加劇鋼筋混凝土柱的動(dòng)力響應(yīng)。
(2)鋼筋混凝土柱的截面慣性矩和箍筋配筋率等參數(shù)的增加對鋼筋混凝土柱動(dòng)力響應(yīng)均有不同程度的降低?;炷凛S心抗壓強(qiáng)度和縱筋配筋率的提高雖使得柱中水平位移有所降低,但在一定范圍內(nèi)降低值并不是很大,故在進(jìn)行設(shè)計(jì)時(shí)不能盲目提高二者的值。
(3)在載有炸藥的汽車先撞擊后爆炸作用下,鋼筋混凝土柱可能發(fā)生局部破壞、整體剪切破壞和整體彎剪破壞。
(4)由于問題的復(fù)雜性及危險(xiǎn)性,本文只采用了仿真模擬方法進(jìn)行研究,結(jié)果可能存在一定誤差??梢詫ζ囅茸矒艉蟊ㄗ饔孟虏煌愋椭M(jìn)行對比分析,以研究不同類型柱的抗沖擊性能。參考文獻(xiàn):
References:[1]孔新立,金豐年,蔣美蓉.恐怖爆炸襲擊方式及規(guī)模分析[J].爆破,2007,24(3):8892.
KONG Xinli,JIN Fengnian,JIANG Meirong.Analysis of Way and Scale of Terroristic Raid[J].Blasting,2007,24(3):8892.
[2]田力,朱聰.碰撞沖擊荷載作用下鋼筋混凝土柱的損傷評估及防護(hù)技術(shù)[J].工程力學(xué),2013,30(9):144150,157.
TIAN Li,ZHU Cong.Damage Evaluation and Protection Technique of RC Columns Under Impulsive Load[J].Engineering Mechanics,2013,30(9):144150,157.
[3]程小衛(wèi),李易,陸新征,等.撞擊荷載下鋼筋混凝土柱動(dòng)力響應(yīng)的數(shù)值研究[J].工程力學(xué),2015,32(2):5363,89.
CHENG Xiaowei,LI Yi,LU Xinzheng,et al.Numerical Investigation on Dynamic Response of Reinforced Concrete Columns Subjected to Impact Loading[J].Engineering Mechanics,2015,32(2):5363,89.
[4]THILAKARATHNA H M I,THAMBIRATNAM D P,DHANASEKAR M,et al.Numerical Simulation of Axially Loaded Concrete Columns Under Transverse Impact and Vulnerability Assessment[J].International Journal of Impact Engineering,2010,37(11):11001112.
[5]余敏.不同類型柱子在汽車撞擊作用下的性能研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2007.
YU Min.Research on the Capability of Different Types of Columns Crashed by Different Types of Cars[D].Harbin:Harbin Institute of Technology,2007.
[6]SHI Y,HAO H,LI Z X.Numerical Derivation of Pressureimpulse Diagrams for Prediction of RC Column Damage to Blast Loads[J].International Journal of Impact Engineering,2008,35(11):12131227.
[7]李忠獻(xiàn),何振鋒,師燕超,等.爆炸荷載下鋼筋混凝土柱動(dòng)態(tài)響應(yīng)分析的宏觀模型[J].工程力學(xué),2015,32(9):7683.
LI Zhongxian,HE Zhenfeng,SHI Yanchao,et al.Macro Model for Dynamic Analysis of Reinforced Concrete Columns Under Blast Loading[J].Engineering Mechanics,2015,32(9):7683.
[8]申祖武,龔敏,王天運(yùn),等.汽車炸彈爆炸沖擊波作用下建筑物的動(dòng)力響應(yīng)分析[J].振動(dòng)與沖擊,2008,27(8):165168,186.
SHEN Zuwu,GONG Min,WANG Tianyun,et al.Analysis on Dynamic Response of Structure Under Blast Shock Wave[J].Journal of Vibration and Shock,2008,27(8):165168,186.
[9]白金澤.LSDYNA3D理論基礎(chǔ)與實(shí)例分析[M].北京:科學(xué)出版社,2005.
BAI Jinze.Theoretical Basis and Case Analysis of LSDYNA3D[M].Beijing:Science Press,2005.
[10]HALLQUIST J O.LSDYNA Keyword Users Manual[M].Livermore:Livermore Software Technology Corporation,2007.
[11]MALVAR L J,ROSS C A.A Review of Strain Rate Effects for Concrete in Tension[J].ACI Materials Journal,1998,95(5):735739.
[12] HALLQUIST J O.LSDYNA Theory Manual[M].Livermore:Livermore Software Technology Corporation,2006.
[13]趙錚,陶鋼,杜長星.爆轟產(chǎn)物JWL狀態(tài)方程應(yīng)用研究[J].高壓物理學(xué)報(bào),2009,23(4):277282.
ZHAO Zheng,TAO Gang,DU Changxing.Application Research on JWL Equation of State of Detonation Products[J].Chinese Journal of High Pressure Physics,2009,23(4):277282.
[14]FUJIKAKE K,LI B,SOEUN S.Impact Response of Reinforced Concrete Beam and Its Analytical Evaluation[J].Journal of Structural Engineering,2009,135(8):938950.
[15]WU K C,LI B,TSAI K C.Residual Axial Compression Capacity of Localized Blastdamaged RC Columns[J].International Journal of Impact Engineering,2011,38(1):2940.
[16]李裕春,時(shí)黨勇,趙遠(yuǎn).ANSYS11.0/LSDYNA基礎(chǔ)理論與工程實(shí)踐[M].北京:中國水利水電出版社,2008.
LI Yuchun,SHI Dangyong,ZHAO Yuan.ANSYS 11.0/LSDYNA Basic Theory and Engineering Practice[M].Beijing:China Water & Power Press,2008.
[17]徐文岷.汽車碰撞過程的有限元數(shù)值模擬[D].哈爾濱:哈爾濱工程大學(xué),2007.
XU Wenmin.Finite Element Numerical Simulation of Car Crash Process[D].Harbin:Harbin Engineering University,2007.
[18]TIAN L,WANG H.Numerical Analysis for Progressive Collapse of a Multistorey Building Due to an Explosion in Its Basement[J].Advanced Materials Research,2011,250253:31153119.