賈苗 謝玉賢 邱宏 李冰燕
【摘要】 目的:探討磷脂酰肌醇3激酶(PI3K)抑制劑LY294002對高糖培養(yǎng)的大鼠腎小球足細(xì)胞snail表達(dá)的影響,為進(jìn)一步研究糖尿病腎病足細(xì)胞損傷的機制提供依據(jù)。方法:體外培養(yǎng)大鼠原代腎小球足細(xì)胞,經(jīng)細(xì)胞免疫熒光法鑒定。足細(xì)胞分化完全后同步化,分為正常糖組、甘露醇對照組、高糖組、高糖+LY294002(2 mg/L)組,培養(yǎng)上述細(xì)胞48 h后觀察細(xì)胞形態(tài),Western blot法半定量檢測snail的表達(dá)。結(jié)果:高糖可導(dǎo)致足細(xì)胞足突消失,細(xì)胞體積變大,snail表達(dá)增強(P<0.05)。與高糖組相比,高糖+LY294002(2 mg/L)組可部分抑制高糖導(dǎo)致的snail表達(dá)增強(P<0.05)。結(jié)論:PI3K抑制劑可部分阻斷高糖導(dǎo)致的足細(xì)胞snail表達(dá)。
【關(guān)鍵詞】 高糖; 足細(xì)胞; PI3K抑制劑; snail
Effect of LY294002 on Snail of Glomerular Podocytes under High Glucose Condition in Rats/JIA Miao,XIE Yu-xian,QIU Hong,et al.//Medical Innovation of China,2016,13(35):027-030
【Abstract】 Objective:To evaluate the effect of the blocker of PI3K LY294002 on the expression of snail in high glucose-induced podocyte cell.Method:The glomeruli were isolated and gathered for primary culture.The cells were randomized into normal glucose(NG) group,high glucose(HG) group,mannitol control(MG) group,HG+LY294002(2 mg/L)group. The culture was continued for 48 h.The expression of snail was observed with Western blot methods.Result:Compared with NG group,the podocytic-process retraction and partial effacement and intercellular junction losing appeared in HG group,the expression of snail was increased(P<0.05).Compared with HG group,there was a down-regulation of the expression of snail(P<0.05).Conclusion:PI3K inhibitor protects podocytes by partly inhibiting the expression of snail.
【Key words】 Glucose; Podocytes; LY294002; Snail
First-authors address:The Peoples Hospital of Suzhou National New & Hi-tech Industrial Development Zone,Suzhou 215129,China
doi:10.3969/j.issn.1674-4985.2016.35.007
磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K) 是生物體內(nèi)重要的細(xì)胞內(nèi)激酶。其主要的下游是絲氨酸/蘇氨酸激酶Akt。PI3K/Akt信號通路在細(xì)胞代謝、凋亡、增殖與分化等方面發(fā)揮著重要作用[1-2]。snail作為一種鋅指轉(zhuǎn)錄因子,其可以與E-cadherin啟動子上的E-box結(jié)合,從而使上皮細(xì)胞粘附分子E-cadherin的表達(dá)下調(diào),使上皮細(xì)胞間的粘附性降低,參與上皮細(xì)胞的轉(zhuǎn)分化[3]。目前關(guān)于snail在腎病方面的研究多集中在腎小管上,對足細(xì)胞的研究較少。本研究通過觀察LY294002對高糖培養(yǎng)的大鼠原代足細(xì)胞snail表達(dá)的影響,旨在為糖尿病腎病的診療提供新的理論依據(jù),現(xiàn)報道如下。
1 材料與方法
1.1 實驗動物與主要試劑 雄性SD大鼠200~220 g購自上海斯萊克實驗動物中心,質(zhì)量合格證號2007000580977,實驗動物使用許可證號碼SCXK(滬)2012-0002。兔抗snail、synaptopodin購自美國Abcam,LY294002購自Sigma-Aldrich Corporation,DMEM-F12培養(yǎng)基、RPMI無糖培養(yǎng)基、培養(yǎng)基添加物ITS、胎牛血清購自美國Gibco公司。
1.2 實驗方法
1.2.1 大鼠腎小球足細(xì)胞原代培養(yǎng)與鑒定 采用差異過篩法分離大鼠腎小球,方法參見文獻(xiàn)[4-5]。無菌取腎后分離腎皮質(zhì)后輕柔研磨并逐層分別通過80、150、200目篩網(wǎng),收集200目篩網(wǎng)上的腎小球,并將其接種于細(xì)胞瓶中,采用翻轉(zhuǎn)法培養(yǎng),放置于37 ℃ 5%CO2恒溫恒濕培養(yǎng)箱內(nèi),孵育4.5 h后將培養(yǎng)瓶翻轉(zhuǎn)過來使其正常放置。第7~8天后,首次傳代后的細(xì)胞培養(yǎng)7 d,待細(xì)胞長滿瓶底后行倒置相差顯微鏡觀察足細(xì)胞形態(tài),并采用synaptopodin鑒定足細(xì)胞。
1.2.2 實驗分組 使用正常糖培養(yǎng)基培養(yǎng)7 d至足細(xì)胞分化完全,相互間形成廣泛連接,用無血清培養(yǎng)基繼續(xù)培養(yǎng)24 h使各組細(xì)胞同步化。按下述分組分別更換不同培養(yǎng)基繼續(xù)生長48 h。(1)正常濃度葡萄糖組(NG,GS 5 mmol/L);(2)甘露醇對照組(MG,甘露醇30 mmol/L);(3)高糖組(HG,GS 30 mmol/L);(4)HG+LY294002(GS 30 mmol/L+ LY294002 2 mg/L)
1.2.3 Western-blot法檢測各組細(xì)胞蛋白表達(dá) 培養(yǎng)48 h后收集細(xì)胞,加入蛋白裂解液提取各組蛋白,用考馬斯亮藍(lán)法測定蛋白濃度后分別放于-70 ℃保存。每組樣本取50 μg總蛋白,10%SDS-PAGE凝膠電泳后在冰盒中電轉(zhuǎn)至PVDF膜;5%脫脂奶粉37 ℃恒溫箱中封閉2 h,再分別加入兔抗snail(1∶200稀釋)、GAPDH多克隆抗體,4 ℃冰箱搖床上孵育過夜。洗膜后用辣根過氧化物酶標(biāo)記的二抗(1∶2000)室溫孵育1 h,ECL化學(xué)發(fā)光法顯色。WB條帶信號強度采用Lab Work45圖像分析軟件系統(tǒng)進(jìn)行半定量分析,測定各個條帶的積分光密度值(IOD),以snail與內(nèi)參GAPDH條帶的IOD比值代表其蛋白的相對表達(dá)量。
1.3 統(tǒng)計學(xué)處理 采用SPSS 18.0軟件對所得數(shù)據(jù)進(jìn)行統(tǒng)計分析,計量資料用(x±s)表示,組間兩兩比較采用LSD方法分析,多組間比較采用單因素方差分析。P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 足細(xì)胞原代培養(yǎng)結(jié)果及鑒定 消化傳代后的足細(xì)胞呈星形,細(xì)胞質(zhì)和細(xì)胞核較增殖狀態(tài)明顯增大,最大直徑可達(dá)500 μm,自細(xì)胞體伸出樹枝樣突起,常見雙核,相鄰細(xì)胞間形成連接,7 d后呈完全分化狀態(tài),見圖1~3。免疫熒光鑒定顯示表達(dá)synaptopodin,見圖4。
2.2 實驗組觀察結(jié)果 各組細(xì)胞形態(tài)學(xué)比較:HG組培養(yǎng)12、24、48h均出現(xiàn)足突回縮,直至足突消失及失去細(xì)胞間連接,隨培養(yǎng)時間延長而加重,尤以48h最明顯。
2.3 LY294002對snail蛋白表達(dá)的影響 與正常糖組比較,高糖組snail表達(dá)增強(P<0.05)。與高糖組相比,高糖+LY294002(2 mg/L)組可部分抑制高糖導(dǎo)致的snail表達(dá)增強(P<0.05),見圖5和6。
3 討論
隨著糖尿病發(fā)病率的逐年提高,其主要的微血管并發(fā)癥糖尿病腎?。―KD)也已成為發(fā)達(dá)國家及我國發(fā)達(dá)城市終末期腎病的最主要原因,嚴(yán)重危害人類健康,并占國家財政支出的重要一部分。2型糖尿病腎病患者腎臟病理變化包括系膜增生、細(xì)胞外基質(zhì)積聚、基底膜增厚,最終發(fā)展成腎小球硬化和廣泛間質(zhì)纖維化[5]。近年的研究發(fā)現(xiàn),DKD的主要發(fā)病機制為足細(xì)胞病,足細(xì)胞損傷和脫失在糖尿病腎病發(fā)生中的作用舉足輕重[6]。大量研究表明,在足細(xì)胞脫失前存在足細(xì)胞損傷[7]。足細(xì)胞和腎小管上皮細(xì)胞均起源于胚胎中胚層的間葉細(xì)胞,故盡管足細(xì)胞是終末分化細(xì)胞,但仍然具備在病理條件下轉(zhuǎn)分化成間葉細(xì)胞的可能,其轉(zhuǎn)分化后可獲得分泌功能,從而使細(xì)胞外基質(zhì)(ECM)分泌過多,導(dǎo)致腎小球硬化并最終發(fā)展至纖維化[8]。上皮細(xì)胞改變其形態(tài)轉(zhuǎn)變?yōu)椋。┏衫w維細(xì)胞的轉(zhuǎn)分化過程稱為上皮-間質(zhì)細(xì)胞轉(zhuǎn)換(EMT)[9-10]。典型的上皮通常只有一層細(xì)胞,上皮細(xì)胞具有極性而且細(xì)胞與細(xì)胞之間通過緊密連接、間隙連接、黏合連接等規(guī)則排列,從而阻止細(xì)胞從上皮分離、轉(zhuǎn)移。然而,由于間質(zhì)細(xì)胞間缺少穩(wěn)定的細(xì)胞連接,從而形態(tài)不規(guī)則,具有移動能力。EMT過程中,上皮細(xì)胞失去細(xì)胞間以及與細(xì)胞外基質(zhì)的連接,導(dǎo)致細(xì)胞與周圍細(xì)胞和基膜的分離并且獲得間質(zhì)樣細(xì)胞的生物特征,最終能夠從原發(fā)組織中轉(zhuǎn)移。上皮細(xì)胞轉(zhuǎn)變?yōu)殚g質(zhì)細(xì)胞時,細(xì)胞的形態(tài)、結(jié)構(gòu)、粘連性以及轉(zhuǎn)移能力都將發(fā)生顯著變化[11-12]。EMT導(dǎo)致腎臟纖維化是腎臟長期損傷或正常傷口愈合過程中功能失調(diào),導(dǎo)致過量的ECM沉積。snail家族屬于鋅指轉(zhuǎn)錄因子,于1984年首次在黑腹果蠅胚胎中發(fā)現(xiàn)。snail基因在腫瘤侵潤、轉(zhuǎn)移及胚胎發(fā)育中起著關(guān)鍵作用。文獻(xiàn)[13]通過在雞胚胎上施行Slug功能缺失實驗,首次證明snail基因家族具有觸發(fā)上皮-間質(zhì)細(xì)胞轉(zhuǎn)換的作用。
snail可通過其鋅指區(qū)域與E-cadherin啟動子區(qū)E盒主鏈上的CAGGTG序列結(jié)合而發(fā)揮其下調(diào)E-cadherin的作用,從而啟動EMT的關(guān)鍵步驟[3]。另外,snail能通過P13K信號通路及促分裂原活化蛋白激酶(MAPK)的激活促進(jìn)金屬基質(zhì)蛋白酶9(MMP 9)轉(zhuǎn)錄,從而使表達(dá)snail的細(xì)胞獲得侵襲特性。
目前snail與腎臟纖維化的研究主要集中在腎小管上皮細(xì)胞中,其在多種腎病模型的腎小管上皮細(xì)胞的表達(dá)上調(diào),可以誘導(dǎo)腎小管上皮細(xì)胞發(fā)生EMT,促進(jìn)腎臟纖維化[14-15]。對于DKD足細(xì)胞snail表達(dá)情況鮮有研究,本實驗觀察到高糖環(huán)境下足細(xì)胞大量表達(dá)snail,與已有的研究結(jié)果一致[16-20]。逆轉(zhuǎn)足細(xì)胞功能損傷可能延緩或減輕DN的進(jìn)展,因此探討足細(xì)胞轉(zhuǎn)分化的機制,并進(jìn)一步干預(yù)并阻斷該過程至關(guān)重要。PI3K/Akt信號通路參與多種細(xì)胞的生長與增殖,該過程主要與細(xì)胞有絲分裂有關(guān),其促進(jìn)有絲分裂的靶點主要是Akt活化后產(chǎn)生的下游分子,包括mTOR、糖原合成激酶3β(GSK-3β)、核糖體蛋白S6激酶(p70S6K)、真核啟動因子4E結(jié)合蛋白(4EBPS)等,同時通過磷酸化CDK1(p21Cip1與p27Kip1),正調(diào)控cyclin/CDK,因此阻斷該信號通路的活化將抑制細(xì)胞的增殖。PI3K催化亞基p110的靶向抑制LY294002可以阻斷3-磷酸肌醇的產(chǎn)生,進(jìn)而阻斷此通路的活化,從而抑制腫瘤細(xì)胞的生長[1]。
本研究通過LY294002阻斷PI3K的通路,可降低高糖環(huán)境下足細(xì)胞snail的表達(dá),說明PI3K信號通路可能參與調(diào)控高糖誘導(dǎo)的足細(xì)胞EMT。本研究初步探討了PI3K信號通路與snail在高糖環(huán)境下足細(xì)胞中表達(dá)的關(guān)系,為今后臨床DKD的防治提供了新的干預(yù)思路。
參考文獻(xiàn)
[1] Hers I,Vincent E E,Tavare J M.Akt signaling in health and disease[J].Cell Signal,2011,23(10):1515-1527.
[2] Xu N,Lao Y,Zhang Y,et al.Akt:a double-edged sword in cell proliferation and genome stability[J].J Oncol,2012,2012:951 724.
[3] Chen X,Xiao W,Liu X,et al.Blockade of Jagged/Notch pathway abrogates transforming growth factor β2-induced epithelial-mesenchymal transition in human retinal pigment epithelium cells[J].Curr Mol Med,2014,14(4):523-534.
[4] Ni L,Saleem M,Mathieson P W.Podocyte culture: tricks of the trade [J].Nephrology(Carlton),2012,17(6):525-531.
[5] Shankland S J,Anders H J,Romagnani P.Glomerular parietal epithelial cells in kidney physiology, pathology, and repair[J].Curr Opin Nephrol Hypertens,2013,22(3):302-309.
[6] Fu J,Lee K,Chuang P Y,et al.Glomerular endothelial cell injury and cross talk in diabetic kidney disease[J].Am J Physiol Renal Physiol,2015,308(4):F287-297.
[7] Jain S,De Petris L,Hoshi M,et al.Expression profiles of podocytes exposed to high glucose reveal new insights into early diabetic glomerulopathy[J].Lab Invest,2011,91(4):488-498.
[8] Mora-Fernández C,Domínguez-Pimentel V,de Fuentes M M,et al.Diabetic kidney disease: from physiology to therapeutics[J].J Physiol,2014,592(18):3997-4012.
[9] Reidy K,Kang H M,Hostetter T,et al.Molecular mechanisms of diabetic kidney disease[J].J Clin Invest,2014,124(6):2333-2340.
[10] Brosius F C,Coward R J.Podocytes, signaling pathways, and vascular factors in diabetic kidney disease[J].Adv Chronic Kidney Dis,2014,21(3):304-310.
[11] Komers R.Rho kinase inhibition in diabetic kidney disease[J].Br J Clin Pharmacol,2013,76(4):551-559.
[12] Fernández B,Elewa U,Sánchez-Ni?o M D,et al.2012 update on diabetic kidney disease: the expanding spectrum, novel pathogenic insights and recent clinical trials[J].Minerva Med,2012,103(4):219-234.
[13] Barrallo-Gimeno A,Nieto M A.The Snail genes as inducers of cell movement and survival:implications in development and cancer[J].Development,2005,132(14):3151-3161.
[14] Ohnuki K,Umezono T,Abe M,et al.Expression of transcription factor snail and tubulointerstitial fibrosis in progressive nephropathy[J].Nephrol,2012,25(2):233-239.
[15] Xu X Y,Chai J J,Chen Y P,et al.Hirsutella sinensis Attenuates Aristolochic Acid-Induced Renal Tubular Epithelial-Mesenchymal Transition by Inhibiting TGF-β1 and Snail Expression[J].PLoS One,2016,11(2):e0 149 242.
[16] Bai X,Geng J,Zhou Z,et al.MicroRNA-130b improves renal tubulointerstitial fibrosis via repression of Snail-induced epithelial-mesenchymal transition in diabetic nephropathy[J].Sci Rep,2016,6:20 475.
[17] Meng F D,Li Y,Tian X,Ma P,et al.Synergistic effects of snail and quercetin on renal cell carcinoma Caki-2 by altering AKT/mTOR/ERK1/2 signaling pathways[J].Int J Clin Exp Pathol,2015,8(6):6157-6168.
[18] Izawa G,Kobayashi W,Haraguchi M,et al.The ectopic expression of Snail in MDBK cells does not induce epithelial-mesenchymal transition[J]. Int J Mol Med,2015,36(1):166-172.
[19] Wei M G,Sun W,He W M,et al.Ferulic Acid Attenuates TGF-β1-Induced Renal Cellular Fibrosis in NRK-52E Cells by Inhibiting Smad/ILK/Snail Pathway[J].Evid Based Complement Alternat Med,2015,2015:619 720.
[20] Lin T C,Liu Y P,Chan Y C,et al.Ghrelin promotes renal cell carcinoma metastasis via Snail activation and is associated with poor prognosis[J].J Pathol,2015,237(1):50-61.
(收稿日期:2016-11-18) (本文編輯:程旭然)
中國醫(yī)學(xué)創(chuàng)新2016年35期