孟素慈+陳敏+謝吉民
(江蘇大學 化學化工學院,江蘇 鎮(zhèn)江 212013)
摘要:本文針對大學化學的學科特點,從四個方面探討了量子化學計算軟件在大學化學教學的應用實例。運用形象直觀的量子化學軟件,結合多媒體教學手段,將枯燥、深奧、抽象的化學知識和概念以一種形象、生動、直觀、立體的形式呈現(xiàn)出來,幫助學生建立形象思維,使學生進入一種喜聞樂見、生動活潑的學習氛圍,從而開拓學生思路,激發(fā)學生學習興趣。結果表明,該方法對激發(fā)學生學習化學的興趣具有顯著的促進作用,取得了良好的教學效果,同時也豐富了大學化學課程的教學方法。
關鍵詞:量子化學;密度泛函理論;計算化學;Gaussian 09
中圖分類號:G642.0 文獻標志碼:A 文章編號:1674-9324(2016)50-0176-04
傳統(tǒng)的化學是一門實驗科學,它的發(fā)展已經(jīng)經(jīng)歷了幾千年的時間。發(fā)展至今,化學科學已經(jīng)成為了包含有機化學、無機化學、物理化學、生物化學、分析化學、實驗化學、理論化學、應用化學、精細化學、材料化學等眾多子學科的中心學科。在大學化學基礎理論的教學中,涉及很多抽象的化學知識和概念,比如原子、分子及晶體結構等,無法通過肉眼進行直接觀測,而且微觀結構難以用宏觀模型進行科學的描述。傳統(tǒng)的教學模式很難滿足學生學習化學的需求,這就需要引入新型的先進教學方法和手段。上個世紀20年代開始形成了一門新的化學子學科——量子化學。量子化學是用量子力學原理研究原子、分子和晶體的電子層結構、化學鍵理論、分子間作用力、化學反應理論、各種光譜、波譜和電子能譜的理論,以及無機和有機化合物、生物大分子和各種功能材料的結構和性能關系的科學[1]。理論與計算化學能滲透到化學領域的很多方面,與其他學科交叉,并形成了很多分支學科,例如:物理化學方面,我們可以通過量子化學方法計算分子的熱力學性質(zhì)、動力學性質(zhì)、光譜性質(zhì)、固體的化學成鍵性質(zhì)等,從而形成了量子電化學、量子反應動力學等子學科;在有機化學方面,可以通過量子化學計算預測異構體的相對穩(wěn)定性、反應中間體性質(zhì)、反應機理與譜學性質(zhì)(NMR,ESR…)等,因而衍生了量子有機化學;在分析化學方面,可以借助于計算化學進行實驗光譜的解析等;無機化學方面,可以進行過渡金屬化合物的成鍵性質(zhì)的解析等,并形成了量子無機化學;在生物化學領域中,也可以通過理論計算研究生物分子活性中心結構、結構環(huán)境效應、酶與底物相互作用等,并逐漸產(chǎn)生了量子生物化學。隨著計算量子化學方法與計算機科學的發(fā)展,本世紀有望在復雜體系的精確量子化學計算研究方面取得較大進展,從而更好地從微觀角度去理解和預測宏觀化學現(xiàn)象。本文通過四個教學實例,運用形象直觀的量子化學軟件,結合多媒體教學手段,將枯燥、深奧、抽象的化學知識和概念以一種形象、生動、直觀、立體的形式呈現(xiàn)出來,幫助學生建立形象思維,使學生進入一種喜聞樂見、生動活潑的學習氛圍,從而開拓學生思路,激發(fā)學生學習興趣。結果表明,該方法對激發(fā)學生學習化學的興趣具有顯著的促進作用,取得了良好的教學效果,同時也豐富了大學化學課程的教學方法。
一、常用量子化學軟件Gaussian/GaussView簡介
Gaussian軟件是一個功能強大的量子化學綜合軟件包,它可以在Windows,Linux,Unix操作系統(tǒng)中運行,是在半經(jīng)驗計算和從頭計算中使用最為廣泛的計算化學軟件之一。該軟件可以計算分子的能量和結構、鍵和反應能量、分子軌道、原子電荷和電勢、振動頻率、紅外和拉曼光譜、核磁性質(zhì)、極化率和超極化率、熱力學性質(zhì)、反應路徑等。該軟件的量子化學計算可以對體系的基態(tài)或激發(fā)態(tài)執(zhí)行,可以預測周期體系的能量,結構和分子軌道。因此,Gaussian可以作為功能強大的工具,用于研究許多化學領域的課題,例如取代基的影響、化學反應機理、勢能曲面和激發(fā)能等等,因此我們可以從微觀角度去理解和預測很多宏觀的化學性質(zhì)及現(xiàn)象。Gaussian計算軟件經(jīng)常與相應的可視化軟件GaussView連用。目前Gaussian軟件的最新版本是Gaussian 09[2]。
二、量子化學理論及軟件在大學化學教學中的應用實例
1.分子穩(wěn)定性預測。1,3-丁二烯分子中的碳-碳單鍵能夠自由旋轉,因而理論上可以形成順式和反式異構體。那么兩種異構體的熱力學穩(wěn)定性如何?我們可以通過理論計算給出合理的預測。運用密度泛函理論(density functional theory,DFT),在B3LYP/6-31G*水平,我們分別優(yōu)化了順式-1,3丁二烯和反式-1,3丁二烯的幾何結構,并做了頻率分析。頻率計算無虛頻,說明所得到的順式-1,3丁二烯和反式-1,3丁二烯均為最小點。圖1給出了B3LYP/6-31G*優(yōu)化得到的順式-1,3丁二烯和反式-1,3丁二烯的幾何結構和相對應的分子的能量。理論計算結果表明,相對于順式1,3丁二烯的能量,反式1,3-丁二烯的能量大約低3.55 kcal/mol,所以反式1,3丁二烯的熱力學穩(wěn)定性更強,這就解釋了為什么實驗上沒有發(fā)現(xiàn)順式-1,3丁二烯構象的存在。
2.分子的紅外吸收光譜和振動模式。將一束不同波長的紅外射線照射到物質(zhì)的分子上,某些特定波長的紅外射線被吸收,形成這一分子的紅外吸收光譜。每種分子都有由其組成和結構決定的獨有的紅外吸收光譜,據(jù)此可以對分子進行結構分析和鑒定。紅外光譜法的工作原理是由于振動能級不同,化學鍵具有不同的頻率。因此,通過理論上的頻率計算,就可以相應地得到分子的紅外吸收光譜,并可以與實驗得到的紅外光譜進行比較。以最常見的H2O為例,基于水分子穩(wěn)定點,通過DFT理論,在B3LYP/6-31G*水平計算了H2O分子的頻率,并得到了相應的紅外光譜圖。如圖2所示,在計算的水分子的紅外光譜圖中,一共有三個吸收峰,理論值與實驗值(括號內(nèi)的數(shù)值)是一致的。并且按照波數(shù)從小到大,分別對應H2O分子中O-H鍵的三種振動模式,分別是剪式振動,對稱性伸縮振動,非對稱的伸縮振動模式。通過理論計算和圖形界面的動畫演示,有利于加強學生對紅外光譜的理解。
3.苯的前線分子軌道。分子軌道理論是結構化學教學的重點和難點內(nèi)容之一。分子軌道理論是指當原子組合成分子時,原來專屬于某個原子的電子將在整個分子范圍內(nèi)運動,其軌道也不再是原來的原子軌道,而成為整個分子所共有的分子軌道。關于分子軌道的概念非常抽象,單純從理論和數(shù)學的角度學生難以理解[3,4]。如果能夠結合量子化學軟件將分子軌道圖形化,有助于學生深入理解該理論。以苯分子的分子軌道計算為例,簡單說明量子化學在結構化學教學中的應用。苯分子中有6個碳原子,6個π電子。這6個π電子雜化成6個π型分子軌道,其中三個成鍵軌道三個反鍵軌道。圖3是通過Gaussian 09軟件,在B3LYP/6-31G*水平計算得到苯分子的所有π型軌道,并通過GaussView可視化軟件,將這6個π軌道顯示出來。從圖3中可以看出,這6個π型分子軌道的節(jié)面數(shù)分別是0,1,2或3。這6個π型軌道共有四個能級,節(jié)面為1和2的分子軌道,分別有兩個簡并能級。
4.溶劑化顯色效應的模擬及其機理解釋。溶劑分子能引起溶質(zhì)吸收帶的位置,強度,甚至譜線形狀的變化[5]。這種現(xiàn)象稱為溶劑化顯色現(xiàn)象。在從微觀結構研究溶劑對噻吩類化合物結構及性能影響方面,理論計算起著越來越重要的作用。圖4(a)展示了含時密度泛函(TD-DFT)方法計算得到的齊聚噻吩的吸收光譜圖,譜線按Lorentzian線形展開,從氣相到強極性的水溶液,聚噻吩的吸收光譜發(fā)生了紅移現(xiàn)象,與實驗現(xiàn)象一致。根據(jù)Frank-Condon原理,垂直激發(fā)通常伴隨著電荷的重新分布,因此激發(fā)過程可能會導致溶質(zhì)偶極矩和能量發(fā)生變化?;诖?,我們采用完全活性空間自洽場方法(complete active space self-consistent field)CASSCF(12,10)/6-31G*方法分別計算了二噻吩氣相與溶液中基態(tài)和第一單重激發(fā)態(tài)的能量。如圖4(b)所示,隨著溶劑極性的增加,基態(tài)和激發(fā)態(tài)能量均隨著溶劑極性增加而降低,但是激發(fā)態(tài)的能量降低的比基態(tài)的能量降低的要多一些,從而從本質(zhì)上解釋了噻吩吸收光譜發(fā)生紅移的原因[6]。
運用量子化學計算軟件Gaussian 09和可視化軟件GaussView,結合多媒體技術,將大學化學教學中抽象難懂的化學知識以一種形象、直觀、易于理解的形式呈現(xiàn)出來,有利于學生更加深入形象地理解化學知識,還能提高學習效率,對激發(fā)學生學習化學的興趣具有顯著的促進作用,取得了良好的教學效果,同時也豐富了大學化學課程教學的方法。
參考文獻:
[1]Lewars,E. Computational Chemistry-Introduction to the Theory and Applications of Molecular and Quantum Mechanics,Kluwer Acadamic Publishers:New York,Boston,Dordrecht,London,Moscow,2004:1-5.
[2]Frisch,M. J. et al.,Gaussian 09,Revision A. 02,Gaussian,Inc.,Wallingford,CT,2009.
[3]李延偉,姚金環(huán),楊建文,申玉芬,鄒正光.量子化學計算軟件在物質(zhì)結構教學中的應用[J].中國現(xiàn)代教育裝備,2012,(5).
[4]劉楊先.量子化學Gaussian軟件在“燃燒學”教學中的應用[J].課程教材改革,2012,(19):41-42.
[5]Reichardt. C. Solvents and Solvent Effects in Organic Chemistry,3rd ed.;VCH:Weinheim,2003:285-300.
[6]Meng,S.;Ma,J.;Jiang,Y. J. Phys. Chem. B,2007,111,4128.