王 帥, 楊恩孝
(長春光華學(xué)院基礎(chǔ)教研部,吉林長春 130033)
二階張量的特征問題
王 帥, 楊恩孝
(長春光華學(xué)院基礎(chǔ)教研部,吉林長春 130033)
本文對(duì)二階張量的特征值與特征向量(函數(shù))展開研究,并在此基礎(chǔ)上研究了對(duì)稱二階張量的特征值與特征向量,得到了一些較理想的結(jié)果.通過線性變換找到了在不同基底下的二階張量的特征.
二階張量;特征值問題;線性變換
(采用Einstein求和約定).
既然是物理量和幾何量,它們表述的事實(shí)就應(yīng)該與坐標(biāo)系的選取無關(guān), 這就是張量的不變性.但在不同坐標(biāo)系下,它們的分量卻不同.只有在坐標(biāo)系變換下,張量分量遵循確定的變換規(guī)律才能表述張量的不變性.
(1.1)
式中Aii′Ai′i是變換系數(shù),
(1.2)
Aij′Aj′j=δij,Ai′jAjj′=δi′j′, (i=1,2,3;i′=1′,2′,3′).
(1.3)
σi′j′=Ai′iAj′jσij, (i=1,2,3,;i′=1′,2′,3′),
(1.4)
(1.5)
(1.5)式正好表明張量的不變性.
張量的點(diǎn)積
是一階張量,這與用張量分量的縮并運(yùn)算σijuj是相同的.
(2.1)
(2.2)
(2.3)
有
σi′j′=Ai′iAj′jσij.
2.2 二階張量的特征值問題
因?yàn)榉匠?/p>
(2.4)
(2.5)
亦即
(2.6)
(2.7)
確定.
2.3 對(duì)稱二階張量的特征值與特征向量
于是
而
因此
σ(α)(β)=e(α)ie(β)jσij
又因?yàn)?/p>
(σij-λ(α)δij)e(α)ie(β)j=0,
則有
σije(α)ie(β)j=λ(α)e(α)ie(β)i,
因此
即有
(2.8)
[1]SeamusDGarvey,UwePrells,MichaelIFriswell,ZhengChen.Generalisospectralflowsforlineardynamicsystems[J].LinearAlgebraanditsApplications, 2004,24(2):365-368.
[2] M T Chu, Fasma Diele, Ivonne Sgura. Gradient flow methods for matrix completion with prescribed eigenvalues[J]. Linear Algebra and its Applications, 2004,34(1):85-112.
[3] F Tisseur, K Meerbergen,The quadratic eigenvalue problem[J]. SIAM, Review, 2001,24(6), 43:235-286.
[4] M I Friswell, U Prells, S D Garvey.Low-rank damping modifications and defective systems[J]. Journal of Sound and Vibration, 2005,34(3):757-774.
[5] P R Houlston, S D Garvey, A A Popov.Modal control of vibration in rotating machines and other generally damped systems[J].Journal of Sound and Vibration, 2007,12(3):104-116.
[責(zé)任編輯 胡廷鋒]
The Characteristics of Second Order Tensor
WANG Shuai, YANG En-xiao
(Basic Research Section, Changchun Guanghua University, Changchun 130033, China)
In this paper, we study the eigenvalue and eigenvector (function) of second order tensor. On this basis, we obtain some ideal results for the eigenvalues and eigenvectors of symmetric second order tensor. The characteristics of two order tensors in different bases are found by linear transformation.
second-order tensor; Eigenvalue problem; linear transformation
O151.24
A
1009-4970(2017)02-0023-03
2015-02-03
王帥(1985—), 男, 滿族, 吉林長春人, 碩士, 講師. 研究方向: 系統(tǒng)分析與建模.