李臘梅,楊雪梅,伍洋平,陳潔,胡章勇△
1.成都醫(yī)學(xué)院 基礎(chǔ)醫(yī)學(xué)院(成都 610083);2.成都醫(yī)學(xué)院 第一附屬醫(yī)院(成都 610500);3.四川大學(xué)生物治療國家重點實驗室(成都 610411)
肝細(xì)胞LO2中細(xì)胞因子誘導(dǎo)的含CISH基因的表達(dá)及其炎性因子調(diào)控的研究*
李臘梅1,楊雪梅2,伍洋平3,陳潔2,胡章勇2△
1.成都醫(yī)學(xué)院 基礎(chǔ)醫(yī)學(xué)院(成都 610083);2.成都醫(yī)學(xué)院 第一附屬醫(yī)院(成都 610500);3.四川大學(xué)生物治療國家重點實驗室(成都 610411)
目的 建立SH2結(jié)構(gòu)域蛋白(cytokine inducible SH2-containing protein,CISH)基因上、下調(diào)的肝細(xì)胞模型,探討CISH基因在正常肝細(xì)胞中的表達(dá)及其對炎性因子的調(diào)控。方法 實驗組分別為轉(zhuǎn)染CISH siRNA組和CISH過表達(dá)質(zhì)粒組,對照組分別為轉(zhuǎn)染空質(zhì)粒的陰性對照組和未轉(zhuǎn)染任何物質(zhì)的空白對照組;分別用CISH siRNA和CISH過表達(dá)質(zhì)粒借助lipo 2000轉(zhuǎn)染肝細(xì)胞LO2構(gòu)建CISH基因表達(dá)的上、下調(diào)肝細(xì)胞模型;采用實時熒光定量PCR和蛋白質(zhì)印跡法(Western Blot)分別檢測肝細(xì)胞LO2中CISH基因在mRNA和蛋白水平的變化;利用ELISA法檢測LO2肝細(xì)胞中CISH基因表達(dá)水平改變后對炎癥因子TNF-α、IL-1β水平的影響。結(jié)果 實時熒光定量PCR和Western Blot法檢測表明,與未轉(zhuǎn)染的LO2肝細(xì)胞比較,被轉(zhuǎn)染CISH過表達(dá)質(zhì)粒的細(xì)胞能夠上調(diào)目的基因CISH的表達(dá),被轉(zhuǎn)染CISH siRNA的細(xì)胞可下調(diào)目的基因CISH的表達(dá);ELISA法檢測表明,與未轉(zhuǎn)染的LO2肝細(xì)胞比較,被轉(zhuǎn)染CISH過表達(dá)質(zhì)粒的細(xì)胞分泌的炎癥因子TNF-α和IL-1β水平表現(xiàn)出降低趨勢,而被轉(zhuǎn)染CISH siRNA的細(xì)胞分泌的炎癥因子TNF-α和IL-1β水平則表現(xiàn)出升高趨勢。結(jié)論 成功構(gòu)建了CISH高、低表達(dá)的LO2肝細(xì)胞系,CISH基因表達(dá)改變可影響LO2肝細(xì)胞系炎性因子的分泌。
慢性乙肝;肝細(xì)胞LO2;CISH基因;炎癥因子
SH2結(jié)構(gòu)域蛋白(cytokine inducible SH2-containing protein,CISH)是SOCS蛋白家族的一員,于1995年由Yoshimura等研究首次發(fā)現(xiàn)[1]。SOCS蛋白家族包含8個成員,各個成員之間結(jié)構(gòu)相似,中間含有一個SH2結(jié)構(gòu)域,能夠結(jié)合磷酸化酪氨酸殘基,其決定著SOCS蛋白家族的識別作用;C端有一段保守序列,稱為“SOCS盒”[2-3]。既往研究[4-6]表明,CISH基因與過敏性哮喘、鉤端螺旋體病、肺結(jié)核、菌血癥及瘧疾等多種感染性疾病相關(guān)。研究[7]報道,處于免疫清除期的e抗原陽性慢性乙型肝炎患者,若CISH基因rs414171位點為AA基因型,則有更高概率發(fā)生HBV自發(fā)清除。本課題組前期研究[8]顯示,CISH基因rs414171和rs2239751位點單核苷酸的多態(tài)性與持續(xù)HBV感染相關(guān)。為驗證正常肝細(xì)胞內(nèi)是否存在CISH基因的表達(dá)及其對炎性因子的調(diào)控,本研究擬在LO2正常肝細(xì)胞中建立CISH基因表達(dá)上調(diào)、下調(diào)的細(xì)胞模型,并探討CISH基因表達(dá)改變后對肝細(xì)胞分泌的炎性因子的影響。
1.1 主要儀器
熒光定量PCR儀(美國BioRad公司)、倒置熒光顯微鏡(日本Nikon公司)。
1.2 主要抗體
兔抗CISH單克隆抗體、辣根酶標(biāo)記山羊抗兔IgG抗體購自美國CST公司,鼠抗β-actin抗體、辣根酶標(biāo)記山羊抗鼠IgG抗體購自北京中杉金橋生物科技有限公司。
1.3 其他試劑
CISH siRNA購自廣州市銳博生物科技有限公司,CISH過表達(dá)質(zhì)粒、陰性空載質(zhì)粒購自上海吉凱基因科技有限公司,ELISA試劑盒購自欣博盛生物科技有限公司,Lipofectamine 2000 Reagent購自美國Life Technologies公司。
1.4 實驗方法
1.4.1 實驗分組 實驗組分為實驗組1(轉(zhuǎn)染CISH siRNA組)和實驗組2(轉(zhuǎn)染CISH過表達(dá)質(zhì)粒組);對照組分為轉(zhuǎn)染空質(zhì)粒的陰性對照組和未轉(zhuǎn)染任何物質(zhì)的空白對照組。
1.4.2 細(xì)胞培養(yǎng) LO2正常人肝細(xì)胞由“四川大學(xué)生物治療國家重點實驗室”惠贈。用含10%胎牛血清的RPIM 1640培養(yǎng)基培養(yǎng),每隔2~3 d傳代1次。
1.4.3 肝細(xì)胞模型構(gòu)建 肝細(xì)胞LO2傳代后用含10%胎牛血清的RPIM 1640培養(yǎng)基培養(yǎng)2 d,胰酶消化細(xì)胞,用不含血清的RPIM 1640培養(yǎng)基重懸細(xì)胞后,按1.0×105個細(xì)胞/孔鋪入6孔板中,細(xì)胞融合度達(dá)50%~70%時,實驗組按Lipofectamine 2000 Reagent操作說明書分別進(jìn)行CISH siRNA和CISH 過表達(dá)質(zhì)粒轉(zhuǎn)染,空白對照組只替換為不含血清的RPIM 1640培養(yǎng)基,陰性對照組轉(zhuǎn)染空載質(zhì)粒,培養(yǎng)6 h后更換成新鮮含10%胎牛血清的1640培養(yǎng)基繼續(xù)培養(yǎng),從而構(gòu)建肝細(xì)胞CISH基因上、下調(diào)表達(dá)模型。
1.4.4 RT-PCR測定 CISH siRNA和CISH 過表達(dá)質(zhì)粒轉(zhuǎn)染肝細(xì)胞LO2,24 h后使用美國Promega公司的Eastep Super總RNA提取試劑盒提取肝細(xì)胞LO2的總RNA,反轉(zhuǎn)錄合成cDNA。按YBR Slect Master Mix說明書進(jìn)行RT-PCR反應(yīng),檢測CISH基因在 mRNA水平的變化。
1.4.5 Western Blot法測定 CISH siRNA和CISH 過表達(dá)質(zhì)粒轉(zhuǎn)染肝細(xì)胞LO2,48 h后使用高效RIPA裂解細(xì)胞提取總蛋白,Western Blot法檢測CISH基因在蛋白水平的變化。
1.4.6 ELISA法測定 CISH siRNA和CISH 過表達(dá)質(zhì)粒轉(zhuǎn)染肝細(xì)胞LO2,48 h后收集上清按ELISA試劑盒說明書檢測炎癥因子TNF-α和IL-1β的水平。
1.5 統(tǒng)計學(xué)方法
2.1 正常肝細(xì)胞LO2中CISH基因的表達(dá)
將LO2細(xì)胞用含10%胎牛血清的RPIM 1640培養(yǎng)基培養(yǎng),待細(xì)胞融合度達(dá)到90%時用高效RIPA裂解細(xì)胞提取總蛋白,BCA法測得蛋白濃度后做Western Blot檢測。結(jié)果顯示,正常肝細(xì)胞LO2中有CISH基因的表達(dá)(圖1)。
圖1 正常肝細(xì)胞LO2中CISH基因的表達(dá)
2.2 CISH siRNA轉(zhuǎn)染肝細(xì)胞LO2后CISH基因在mRNA水平的表達(dá)變化
用無血清培養(yǎng)液將CISH siRNA(#1)利用Lipofectamine 2000 Reagent轉(zhuǎn)染進(jìn)LO2細(xì)胞,6 h后更換成新鮮含10%胎牛血清的RPIM 1640培養(yǎng)基繼續(xù)培養(yǎng),24 h后提取總RNA,反轉(zhuǎn)錄成cDNA,進(jìn)行熒光定量PCR分析,結(jié)果見圖2A。結(jié)果顯示,實驗組1的CISH基因相對表達(dá)量低于空白對照組,差異具有統(tǒng)計學(xué)意義(t=2.851,P=0.046)(圖2B)。
2.3 CISH siRNA轉(zhuǎn)染肝細(xì)胞LO2后CISH基因在蛋白水平的表達(dá)變化
用無血清培養(yǎng)液將CISH siRNA(#1)利用Lipofectamine 2000 Reagent轉(zhuǎn)染進(jìn)LO2細(xì)胞,6 h后更換成新鮮含10%胎牛血清的RPIM 1640培養(yǎng)基繼續(xù)培養(yǎng),48 h后用高效RIPA裂解細(xì)胞提取總蛋白,BCA法測得蛋白濃度后做Western Blot檢測。結(jié)果顯示,實驗組1的CISH蛋白表達(dá)量明顯低于空白對照組(圖3A),灰度值分析得到相同的結(jié)果(圖3B)。
圖3 Western Blot檢測肝細(xì)胞LO2中CISH基因下調(diào)后蛋白水平的表達(dá)變化
2.4 CISH過表達(dá)質(zhì)粒轉(zhuǎn)染肝細(xì)胞LO2后CISH基因在mRNA水平的表達(dá)變化
用無血清培養(yǎng)液將CISH 過表達(dá)質(zhì)粒和陰性空載質(zhì)粒利用Lipofectamine 2000 Reagent轉(zhuǎn)染進(jìn)LO2細(xì)胞,6 h后更換成新鮮含10%胎牛血清的RPIM 1640培養(yǎng)基繼續(xù)培養(yǎng),12 h時轉(zhuǎn)染效率達(dá)90%以上(圖4A),24 h后提取總RNA,反轉(zhuǎn)錄成cDNA,進(jìn)行熒光定量PCR分析。結(jié)果顯示,實驗組2的CISH相對表達(dá)量高于空白對照組和陰性對照組(F=8.175,P=0.009)(表1)。
表1 熒光定量PCR檢測肝細(xì)胞LO2中CISH基因上調(diào)后CISH相對表達(dá)量的表達(dá)變化
2.5 CISH過表達(dá)質(zhì)粒轉(zhuǎn)染肝細(xì)胞LO2中CISH基因在蛋白水平的表達(dá)
用無血清培養(yǎng)液將CISH 過表達(dá)質(zhì)粒和陰性空載質(zhì)粒利用Lipofectamine 2000 Reagent轉(zhuǎn)染進(jìn)LO2細(xì)胞,6 h后更換成新鮮含10%胎牛血清的RPIM 1640培養(yǎng)基繼續(xù)培養(yǎng),12 h轉(zhuǎn)染效率達(dá)90%以上(圖4A),48 h后用高效RIPA裂解細(xì)胞提取總蛋白,BCA法測得蛋白濃度后做Western Blot檢測。結(jié)果顯示,實驗組2的CISH表達(dá)量明顯高于空白對照組和陰性對照組(圖4B),灰度值分析得到相同的結(jié)果(圖4C)。
圖4 Western Blot檢測肝細(xì)胞LO2中CISH基因上調(diào)后蛋白水平的表達(dá)變化
2.6 ELISA檢測肝細(xì)胞LO2中CISH基因上、下調(diào)后肝細(xì)胞分泌的炎性因子的改變
用無血清培養(yǎng)液將CISH 過表達(dá)質(zhì)粒和CISH siRNA(#1)利用Lipofectamine 2000 Reagent轉(zhuǎn)染進(jìn)LO2細(xì)胞,6 h后更換成新鮮含10%胎牛血清的RPIM 1640培養(yǎng)基繼續(xù)培養(yǎng),48 h后ELISA檢測上清中TNF-α和IL-1β水平,結(jié)果如下:實驗組1、2和空白對照組的上清中TNF-α水平差異具有統(tǒng)計學(xué)意義(F=88.70,P<0.000)(圖5A),其中,實驗組1與空白對照組(t=6.667,P=0.003)、實驗組2與空白對照組(t=4.819,P=0.008)及實驗組1與實驗組2(t=22.980,P<0.000)的上清中TNF-α水平差異也具有統(tǒng)計學(xué)意義。實驗組1、2和空白對照組的上清中IL-1β水平差異同樣具有統(tǒng)計學(xué)意義(F=10.88,P=0.010),其中,實驗組1與對照組(t=3.454,P=0.026)、實驗組2與空白對照組(t=7.490,P=0.002)及實驗組1與實驗組2(t=5.47,P=0.0054)的上清中IL-1β水平差異也具有統(tǒng)計學(xué)意義(圖5B)。
圖5 ELISA檢測肝細(xì)胞LO2中CISH基因上、下調(diào)后其上清中炎癥因子的變化
CISH基因作為SOCS蛋白家族中最早發(fā)現(xiàn)的成員,主要調(diào)控細(xì)胞因子信號,尤其是IL-2介導(dǎo)的信號通路。與SOCS蛋白家族其他成員不同,CISH可以通過結(jié)合細(xì)胞因子受體的酪氨酸殘基,從而占據(jù)STAT5的結(jié)合位點。因此,CISH可以抑制STAT5的激活,進(jìn)而抑制其下游的信號分子[8]。有研究[5,9]表明,過敏性哮喘及小兒肺結(jié)核患者中,CISH能負(fù)性調(diào)控STAT5信號從而影響疾病的進(jìn)展。
本研究中,WB和RT -PCR的實驗結(jié)果都證實人類LO2肝細(xì)胞中有CISH基因的表達(dá)。細(xì)胞實驗中,將CISH 過表達(dá)質(zhì)粒和CISH siRNA轉(zhuǎn)染進(jìn)肝細(xì)胞LO2中構(gòu)建CISH基因上、下調(diào)肝細(xì)胞模型,在mRNA和蛋白水平都證實實驗組1的CISH表達(dá)明顯低于空白對照組;相反,實驗組2的CISH表達(dá)卻明顯高于空白對照組及陰性對照組,差異具有統(tǒng)計學(xué)意義。研究結(jié)果表明,筆者成功構(gòu)建了CISH基因上、下調(diào)的肝細(xì)胞模型。
本研究使用CISH 過表達(dá)質(zhì)粒和CISH siRNA重新轉(zhuǎn)染肝細(xì)胞LO2,48 h后收取細(xì)胞上清做ELISA實驗,觀察肝細(xì)胞中CISH基因表達(dá)水平發(fā)生變化后,對肝細(xì)胞分泌的炎性因子的影響。結(jié)果表明,實驗組1中的肝細(xì)胞分泌的促炎因子TNF-α和IL-1β的水平明顯高于空白對照組;相反,實驗組2中的肝細(xì)胞分泌的促炎因子TNF-α和IL-1β的水平卻明顯低于空白對照組。Lewis等[10]研究表明,在造血系統(tǒng)中,CISH可以調(diào)節(jié)JAK2/STAT5信號通路的活性,在過敏性氣道感染疾病中,CISH也可以調(diào)節(jié)STAT3/STAT5/STAT6的活性[11]。Palmer等[12]研究表明,CISH/STAT5還與腫瘤耐受相關(guān)。據(jù)此推測,在肝細(xì)胞中,CISH基因也可能通過JAK2/STAT5信號通路調(diào)控炎性因子的分泌進(jìn)而調(diào)節(jié)肝細(xì)胞功能表型,本課題組下一步將以此作為研究重點。
綜上所述,本研究結(jié)果表明,肝細(xì)胞中有CISH基因的表達(dá)且CISH基因能負(fù)性調(diào)節(jié)肝細(xì)胞促炎因子TNF-α、IL-1β的分泌。
[1]Tefferi A. Essential thrombocythemia, polycythemia vera, and myelofibrosis: current management and the prospect of targeted therapy[J]. Am J Hematol, 2008, 83(6): 491-497.
[2]O'Shea J J, Gadina M, Schreiber R D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway[J]. Cell, 2002, 109(Suppl): S121-S131.
[3]Alexander W S. Suppressors of cytokine signalling (SOCS) in the immune system[J]. Nat Rev Immunol, 2002, 2(6): 410-416.
[4]Yang X O, Zhang H, Kim B S,etal. The signaling suppressor CIS controls proallergic T cell development and allergic airway inflammation[J]. Nat Immunol, 2013, 14(7): 732-740.
[6]Khor C C, Vannberg F O, Chapman S J,etal. CISH and susceptibility to infectious diseases[J]. N Engl J Med, 2010, 362(22): 2092-2101.
[7]Song G, Rao H, Feng B,etal. Association between CISH polymorphisms and spontaneous clearance of hepatitis B virus in hepatitis B extracellular antigen-positive patients during immune active phase[J]. Chin Med J, 2014, 127(9): 1691-1695.
[8]Hu Z, Yang J, Wu Y,etal. Polymorphisms in CISH gene are associated with persistent hepatitis B virus infection in Han Chinese population[J]. PLoS One, 2014, 9(6): e100826.
[9]Sun L, Jin Y Q, Shen C,etal. Genetic contribution of CISH promoter polymorphisms to susceptibility to tuberculosis in Chinese children[J]. PLoS One, 2014, 9(3): e92020.
[10] Lewis R S, Noor S M, Fraser F W,etal. Regulation of embryonic hematopoiesis by a cytokine-inducible SH2 domain homolog in zebrafish[J]. J Immunol, 2014, 192(12): 5739-5748.
[11] Yang X O, Zhang H, Kim B S,etal. The signaling suppressor CIS controls proallergic T cell development and allergic airway inflammation[J]. Nat Immunol, 2013, 14(7): 732-740.
[12] Palmer D C, Guittard G C, Franco Z,etal.Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance[J]. J Exp Med, 2015, 212(12): 2095-2113.
A Study on the Gene Expression of Cytokine-inducible SH2-containing Protein (CISH) in Hepatocyte LO2 and the Regulation of Its Inflammatory Factors
LiLamei1,YangXuemei2,WuYangping3,ChenJie2,HuZhangyong2△.
1.SchoolofBasicMedicalSciences,ChengduMedicalCollege,Chengdu610083,China; 2.TheFirstAffiliatedHospital,ChengduMedicalCollege,Chengdu610500,China; 3.StateKeyLaboratoryofBiotherapy,SichuanUniversity,Chengdu610041,China
Objective To establish the hepatocyte models up-regulated and down-regulated by cytokine-inducible SH2-containing protein (CISH) gene and investigate the expression of CISH gene in the normal hepatocyte and the regulation of its inflammatory factors. Methods The experiment groups consisted of the groupinfected by CISH siRNA and that infected by CISH over-expression plasmid; while the control groups involved the negative group infected by empty plasmid and the uninfected blank group. The hepatocyte LO2 was transfected with CISH over-expression plasmid and CISH siRNA by Lipo 2000to establish the hepatocyte models up-regulated and down-regulated by CISH gene. Real-time Fluorescence Quantitative PCR and Western Blotting were used to detect the level changes of CISH mRNA and protein and Enzyme-linked immunosorbent assay (ELISA) was adopted to detect the effect of the CISH gene expression change on the levels of the inflammatory factors TNF-α and IL-1β in hepatocyte LO2.Results According to the results of Real-time Fluorescence Quantitative PCR and Western Blotting, the cells infected by CISH over-expression plasmid up-regulated the expression of CISH gene and those infected by CISH siRNA down-regulated the expression of CISH gene when compared with the uninfected hepatocyte LO2.The results of ELISA indicated that the levels of the inflammatory factors TNF-α and IL-1β secreted by the cells infected by CISH over-expression plasmid decreased and those secreted by the cells infected by CISH siRNA increased when compared with the uninfected hepatocyte LO2.Conclusion Thehepatocyte LO2 cell lines up-regulated and down-regulated by CISH gene are established successfully, and the changes of the CISH gene expression can affect the secretion of inflammatory factors in hepatocyte LO2 cell lines.
Chronic hepatitis B; Hepatocyte LO2; CISH gene; Inflammatory factor
http://www.cnki.net/kcms/detail/51.1705.R.20170221.2247.004.html
10.3969/j.issn.1674-2257.2017.01.011
四川省科技廳資助項目(No:2016JY0207)
R363.1
A
△通信作者:胡章勇,E-mail:chendu47@163.com