汪洪,宋書會,張金堯,劉云霞
(中國農(nóng)業(yè)科學院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/耕地培育技術國家工程實驗室/農(nóng)業(yè)部植物營養(yǎng)與肥料重點實驗室,北京 100081)
土壤磷形態(tài)組分分級及31P-NMR 技術應用研究進展
汪洪,宋書會,張金堯,劉云霞
(中國農(nóng)業(yè)科學院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/耕地培育技術國家工程實驗室/農(nóng)業(yè)部植物營養(yǎng)與肥料重點實驗室,北京 100081)
農(nóng)田生態(tài)系統(tǒng)中土壤磷形態(tài)轉化,影響土壤磷對作物的有效供應。土壤磷分為無機磷和有機磷兩大部分?;瘜W連續(xù)提取法 (chemical sequential fractionation,CSF) 研究土壤磷形態(tài)分級,采用不同的化學提取劑,分級提取土壤中組成或分解能力接近的有機無機含磷化合物,是目前表征土壤磷素形態(tài)的重要方法。但該方法雖歷經(jīng)改進,仍難以確切反映土壤磷的實際組成,提取的不同磷形態(tài)間存在重疊,有機磷和無機磷組分分級存在一定的誤差;不同分級磷組分對作物的有效性,需謹慎評估。核磁共振波譜技術 (nuclear magnetic resonance,NMR) 根據(jù)核磁共振波譜圖上共振峰的位置、強度和精細結構來研究土壤中含磷化合物的分子結構。液相31PNMR 可以同吋檢測出土壤中多種磷組分,如正磷酸鹽、磷酸單酯、磷酸二酯、膦酸脂、焦磷酸鹽和多聚磷酸鹽,識別土壤提取物磷形態(tài),可將有機磷與無機磷分開。本文綜述了應用31P-NMR 技術研究土壤磷形態(tài)組分的一些進展,總結了樣品制備過程、NMR 測試參數(shù)及在土壤磷形態(tài)轉化研究中的應用。二維31P-NMR 技術發(fā)展為鑒定分析土壤中更多種類的含磷化合物提供了契機。
土壤磷形態(tài);化學連續(xù)提取法;土壤磷組分;31P-核磁共振波譜技術
31P nuclear magnetic resonance (31P-NMR)
磷是生命體中多種生物大分子如 DNA、RNA、ATP、磷脂的組分元素,對能量貯存、遷移和轉化過程具有重要作用[1]。自然界中磷主要存在于土壤和海洋兩大庫中,大氣中含量較少[2-3]。土壤缺磷曾是作物生產(chǎn)上限制因素之一,但多年來,磷肥施用量持續(xù)增加,耕地土壤有效磷含量顯著提高[4-5]。用于生產(chǎn)磷肥的磷礦資源不可再生,預測全球磷礦資源在 50~100 年內(nèi)將面臨耗竭[6-7]。土壤中磷移動性較差,易被吸附固定,作物當季磷肥利用率不高。研究土壤磷分級方法,有助于科學地認識、利用土壤磷,防止過量施用磷肥,減少磷礦資源浪費,降低土壤磷流失對環(huán)境構成的污染風險[8-9]。
土壤全磷 (P) 含量約 10~1000 g/kg,與土層、質(zhì)地、發(fā)育、利用方式與強度等有關。土壤磷分為無機磷和有機磷兩大部分,含量比一般在 0.1~3 之間[3,10]。
土壤無機磷以正磷酸鹽為主,焦磷酸鹽、無機聚磷酸鹽、偏磷酸鹽等少量存在,又可分為礦物態(tài)、水溶態(tài)和吸附態(tài)三種形態(tài)[11-14]。土壤無機磷約有99% 以礦物態(tài)存在,難被植物吸收利用;石灰性土壤中礦物態(tài)磷主要是羥基磷灰石或氟磷灰石,酸性土壤中以鐵鋁氧化物及氫氧化物結合態(tài)磷為主[15-18]。土壤溶液中 H2PO4-和 HPO42-離子,占全磷 < 0.1%,在土體中主要通過擴散作用遷移,是植物吸收利用的有效形態(tài)[11,19]。吸附態(tài)磷是指通過范德華力、化學鍵能等吸附在粘土礦物、有機物等固相表面的磷,以陰離子交換吸附和配位吸附 (專性吸附) 為主[11,17]。
根據(jù)分子結構差異,土壤有機磷分為磷酸酯、膦酸鹽、多聚磷酸酯、微生物量磷等,還包括吸附在有機物表面和與有機物形成配合物的磷酸鹽[10,20-24]。磷酸酯類有機磷較易分解,在土壤有機磷中占很大比例,包括磷酸單酯類和磷酸二酯類:磷酸單酯通過羥基酯化,與 C 鏈相連,形成磷酸酯 (C-O-P) 形式,如磷酸糖類、單核苷酸、肌醇六磷酸 (植酸)[10];磷酸二酯以 C-O-P-O-C 形式橋接,如磷脂類、核酸、脂磷壁酸等,農(nóng)田土壤中磷酸二酯含量通常低于 10%[10,25-26]。膦酸鹽含碳磷鍵 (C-P),如 2-氨基乙基膦酸、抗生素磷霉素、農(nóng)藥草甘膦 (N-膦酰基甲基-甘氨酸) 等。膦酸鹽比磷酸酯鍵更穩(wěn)定,在寒冷、濕潤或酸性環(huán)境下容易累積。煙酰胺腺嘌呤二核苷酸磷酸和三磷酸腺苷 (ATP) 具有磷酸單酯和膦酸鹽結構,有學者歸之為多聚磷酸酯[10,24]。微生物量磷是土壤中所有活體微生物細胞內(nèi)所含的磷,在農(nóng)田中約占土壤全磷的 0.4%~2.5%,草地土壤中,可達全磷的 7.5%[27]。微生物量磷含核酸 (75%) 、酸溶解性磷酯類 (20%) 、磷脂 (5%),是土壤有機磷中較為活躍的部分,是植物磷素營養(yǎng)的重要來源[28-29]。Meta 分析結果表明,全球土壤微生物量 C∶N∶P 約為60∶7∶1[30]。土壤中有機磷成分復雜,受浸提、分析技術限制,仍有大量組分未被鑒別[31]。
土壤磷化學分級是指用化學連續(xù)提取法表征土壤磷素形態(tài),即用不同的化學提取劑分級提取土壤中化學組成相近或分解礦化能力較接近的無機或有機磷化合物[12,14,32-34]。
Chang 和 Jackson[35]提出了酸性土壤無機磷分級方法,后經(jīng) Peterson 和 Corey[36]改進,該分級體系將土壤無機磷分為易溶態(tài)磷 (提取劑 1 mol/L NH4Cl) 、鋁磷酸鹽 (0.5 mol/L NH4F)、鐵磷酸鹽 (0.1 mol/L NaOH) 、鈣磷酸鹽 (0.5 mol/L H2SO4) 、閉蓄態(tài)磷 (0.3 mol/L 檸檬酸鈉-0.5 g/L 連二硫酸鈉-0.1 mol/L 氫氧化鈉)。該法不能很好地區(qū)分石灰性土壤中不同形態(tài)的鈣磷酸鹽 Ca-P。蔣柏藩和顧益初[37]提出石灰性土壤無機磷分級方法,把 Chang-Jackson 方法中 Ca-P按溶解度和有效性又分為 3 級,分別是磷酸二鈣型Ca2-P (提取劑 0.25 mol/L NaHCO3) 、磷酸八鈣型 Ca8-P (1 mol/L NH4OAc) 和磷石灰型 Ca10-P (0.5 mol/L H2SO4)。將鐵磷酸鹽 (Fe-P) 改為 0.1 mol/L NaOHNa2CO3提取,這一方法在我國石灰性土壤磷形態(tài)研究中廣泛應用。這些土壤磷分級方法主要缺陷是分級較粗,未包括有機磷組分,難以了解土壤磷總體變化。
測定土壤有機磷總量主要采用差減法,利用高溫灼燒土樣,促使有機磷分解,用酸提取,提取磷量減去未灼燒土壤樣品提取磷量即為有機磷總量[38]。灼燒法操作簡單,是測定有機磷總量經(jīng)典方法,缺點是高溫灼燒過程中礦物態(tài)磷溶解度可能發(fā)生變化,部分有機磷揮發(fā)損失。Bowman 和 Cole[39]將土壤有機磷分為活性、中等活性、中穩(wěn)性和穩(wěn)定性四種形態(tài)有機磷,分別用 0.5 mol/L NaHCO3、1.0 mol/L H2SO4和 0.5 mol/L NaOH 按順序浸提;NaOH 浸提液經(jīng)調(diào)酸后,沉淀部分為高穩(wěn)性有機磷 (胡敏酸態(tài)有機磷),不為酸所沉淀部分是中穩(wěn)性有機磷 (富啡酸態(tài)有機磷)。Ivanoff 等[40]增加了微生物量磷組分,將中等活性有機磷的提取劑改為 1 mol/L HCl?;钚杂袡C磷易礦化而為植物吸收,中等活性有機磷較易礦化,中穩(wěn)性有機磷較難礦化,難被植物吸收利用,高穩(wěn)性有機磷很難礦化,基本上不被植物所吸收[14,20]。
Hedley 等[41]提出土壤磷分級方法,被國內(nèi)外學者普遍采用[12,14,32-34]。該法將土壤磷分為 7 大類,部分類別又分為有機態(tài) (Po) 和無機態(tài) (Pi):1) 樹脂交換態(tài)磷 陰離子交換樹脂交換浸提出的磷,主要是與土壤溶液中的磷處于平衡狀態(tài)的土壤膠體吸附的無機磷,可被作物吸收;2) NaHCO3提取態(tài)磷 包括無機態(tài)和有機態(tài)兩部分,對植物有效;3) 微生物量磷主要是來自微生物體內(nèi)磷溶解浸提,包括有機和無機兩部分,在適宜條件下,微生物量磷可較快地礦化后為植物利用;4) NaOH 提取態(tài)磷 包括有機和無機兩部分;5) 土壤團聚體內(nèi)磷 土壤經(jīng)超聲波分散,再用 0.1 mol/L NaOH 提取的磷,包括有機和無機兩部分,主要是指存在于土壤團聚體內(nèi)表面上的磷;6) HCl 提取態(tài)磷 在石灰性土壤中主要提取的是磷灰石型磷,高度風化的酸性土壤中能提取出部分閉蓄態(tài)磷;7) 殘渣態(tài)磷 指以上試劑不能提取的較穩(wěn)定的磷。
Condron 和 Goh[42]在 Hedley 分級方法基礎上進行了改動,省去了微生物量磷測定,即 0.1 mol/L NaOH浸提后用 1.0 mol/L HCl 浸提,樣品不經(jīng)超聲波分散,直接用 0.5 mol/L NaOH 提取,省去土壤團聚體內(nèi)磷這一形態(tài)。Chen 等[43]在此基礎上又進行了部分修訂:1 mol/L NH4Cl 代替樹脂浸提;第二次 NaOH浸提濃度改為 0.5 mol/L;殘渣態(tài)磷改為用 HNO3-HClO4消煮。Tiessen 等[44]對 Hedley 分級法也進行了修正,共分為 6 個大類 9 個分級,將 Hedley 分級法中含量較低的微生物量磷和團聚體內(nèi)磷省去,在 0.1 mol/L 稀鹽酸浸提后再用濃鹽酸浸提,以充分提取殘留態(tài)中的部分有機磷。Hedley 磷素分級及其修訂的方法,為了充分提取土壤中磷,浸提液需在 25000 × g 下超高速離心,同時利用 0.45 μm 濾膜過濾,提取過程費時,測試成本較高,這些限制了方法的應用。Guppy 等[45]對 Hedley 分級方法進行改進,省去了微生物量磷測定,在浸提劑中添加 4 mol/L NaCl溶液提高離子強度,增加土壤膠體絮凝性,離心力只需 900 × g 即可,無需過濾便得上清液,操作簡便,測試成本較低。該法還采用孔雀綠或鉬藍比色法測定無機磷,孔雀綠比色法靈敏度更高;各形態(tài)全磷消煮后,用電感耦合等離子體發(fā)射光譜法測定,Guppy 法中各形態(tài)磷回收率達到了 95%。
化學連續(xù)提取法是通過選擇浸提劑對土壤中磷進行區(qū)分提取,但浸提劑缺乏專一性,浸提過程中可能出現(xiàn)腐殖質(zhì)沉淀、有機磷水解以及沉淀與螯合反應,導致一些無機磷和有機磷組分在浸提過程中難以真正完全區(qū)分開。浸提液中磷濃度測定多用鉬藍比色法,該方法簡單易行,但鉬藍比色法測得磷(molybdate-reactive phosphorus,MRP) 僅是與鉬酸鹽反應的正磷酸鹽,聚磷酸鹽、焦磷酸鹽不與鉬酸鹽反應,難以被檢出,被歸入鉬酸鹽非反應磷(molybdate-unreactive phosphorus,MUP),MRP 與MUP 并不能和無機磷與有機磷一一等同[46]。因此化學浸提方法提取的不同磷形態(tài)間存在重疊,有機磷和無機磷組分分級存在一定的誤差;不同分級磷組分對植物的有效性,需謹慎評估[10,14]。
3.131P-NMR 技術基本原理
NMR 技術基于磁性原子自旋共振現(xiàn)象,是根據(jù)譜圖上共振峰位置、強度和精細結構研究樣品分子結構[47-48]。原子核是帶正電荷具有質(zhì)量的粒子,能自旋的原子核具有循環(huán)電流,產(chǎn)生磁場,形成磁矩(μ)。無外加磁場時,自旋核取向是任意的。當自旋核處于磁感應強度 B0的外磁場中,繞磁場運動,稱為拉莫爾進動,角速度 ω0= 2πν0= γB0,式中 ν0是進動頻率,γ 為磁旋比。磷原子核自旋量子數(shù) I = 1/2,γ = 10.829 × 107rad/T/s,μ = 1.9581。在外磁場作用下自旋量子數(shù) I 值 1/2 的核有兩種取向,用自旋磁量子數(shù) m 表示,m = + 1/2 和-1/2,這兩種狀態(tài)間存在能量差;當接受一定頻率電磁波輻射,輻射能量等于自旋核兩種不同取向的能量差時,處于低能態(tài)自旋核躍遷到高能態(tài),稱為 NMR。因此 NMR 基本條件是:頻率為 ν射射頻照射自旋核,射頻能量 E射= hν射= ΔE = γhB0/2π,即 ν射= 拉莫爾進動頻率 ν0= γB0/2π,檢測電磁輻射被吸收的情況得到 NMR 波譜[47]。不同化合物中磷原子核的化學環(huán)境不同,核外電子繞核運動產(chǎn)生與外部磁場方向相反的感應磁場,對原子核產(chǎn)生一定的屏蔽作用,核實際處于磁場強度 B0(1-σ) 的狀態(tài),σ 為屏蔽常數(shù),發(fā)生 NMR 時,拉莫爾進動頻率 ν0=γB0(1-σ)/2π[47-48]。核外電子對核的屏蔽作用不同導致不同磷化合物共振頻率有微小移動,稱為化學位移 δ。通過核磁共振儀測出 δ,可對不同化學環(huán)境的原子核進行定性[47-48];磷 NMR 譜強度與磷原子核的濃度呈正比,通過譜圖上特征峰積分對磷化合物進行定量分析。實際操作時,磁場強度 B0難以準確測定,δ 值確定常以待測物中磷原子核相對于參考物 (如 85% H3PO4) 磷原子核的吸收頻率表示,δ=[(ν樣-ν標樣)/ν0] × 106,單位為 ppm[21-22]。31P是自然界中磷元素唯一的天然穩(wěn)定性同位素,自然豐度為 100%,理論上講,樣品中所有磷形態(tài)均可被NMR 檢測,但是土壤異質(zhì)性、磷含量相對較低、磷易與順磁性鐵錳離子結合,導致土壤樣品31P-NMR分析較復雜[10,49]。
3.2 土壤31P-NMR 技術參數(shù)
Newman 和 Tate[50]首次將31P-NMR 技術應用于土壤提取液中磷表征。3lP-NMR 技術包括固相和液相31P-NMR。固相31P-NMR 測定的樣品前處理只需干燥、研磨,無需浸提,但其分辨率和靈敏度較低,目前應用不普遍。液相31P-NMR 可檢測出多種磷化合物,有效區(qū)分土壤有機磷與無機磷化合物,因此液相31P-NMR 技術應用較廣泛,但土壤液相31PNMR 技術尚存在一些問題,如不適于分析微量樣品 , 提取及分 析 過程可能 出現(xiàn)磷化 合 物水解[10,21-22,51]。
應用液相31P-NMR 分析土壤磷組分的前提與關鍵是要進行樣品制備和磷化合物提取。樣品制備包括樣品前處理 (干燥、研磨),選擇合適的浸提條件(提取劑種類、提取時間及溫度、提取劑用量),樣品待 測 液處理[10,21-22,51], NMR 測試參數(shù) 設計包括 脈 沖角度、弛豫時間、采集時間、溫度、是否氫去偶等。Cade-Menun 等[10,21]綜述了土壤樣品31P-NMR 技術原理與應用,系統(tǒng)總結了樣品的制備過程, 包括樣品前處理方法、提取時間、提取劑比例以及核磁共振測試參數(shù) (表 1)。
樣品前處理包括樣品干燥、研磨。報道的樣品干燥方式有烘干[52-53]、自然風干[54-56]、冷凍干燥[57-58],也有直接利用新鮮土壤樣品[59-62],多數(shù)研究者使用自然風干 土 壤 樣 品[10,21,54-56,63]。樣品自然 風 干 可能會帶來正磷酸鹽和磷酸單酯含量增加,磷酸二酯含量降低,冷凍儲存新鮮樣品則更接近原樣品。對我國 43個湖泊表層沉積物進行研究,發(fā)現(xiàn)風干樣品較新鮮樣品磷的提取率更高,樣品風干增加了有機磷的水解,高溫下風干會低估有機磷的含量;風干樣品經(jīng)充分研磨可破壞沉積物結構,尤其是對含礦物質(zhì)多的沉積物,促進了磷的釋放[64]。在充入 N2條件下浸提新鮮土壤樣品,可防止樣品中原有磷形態(tài)被氧化[63]。
用于 NMR 分析的土壤樣品浸提劑有:0.1 mol/L NaOH%-0.4 mol/L NaF[63,65-66]、水[67]、水 + 0.4 mol/L NaOH[68]、0.5 mol/L NaHCO3和 1.0 mol/L HCl 連續(xù)浸提 后 用0.5 mol/L NaOH 浸 提[69]、 水 + 0.5 mol/L NaHCO3、NaOH-EDTA 連續(xù)浸提[70]、HCl-NaOH- 陽離 子 交 換 樹 脂 Chelex 多 步 提 取[62,71]、0.25 mol/L NaOH-50 mmol/L EDTA 兩步提取[72]。土壤中 Ca、Fe、Al、Mn 等與磷結合,NaOH 提取有機磷并不完全,選擇陽離子交換樹脂、連二亞硫酸鈉、NaF、稀酸、EDTA 等與 NaOH 一起聯(lián)用,去除或螯合金屬離子,釋放出磷,提高提取效率。陽離子交換樹脂去除陽離子過程中可能帶走多聚磷酸鹽,連二亞硫酸鈉 - 碳酸氫鈉將土壤 Fe3+轉化為可溶 Fe2+離子,NaF 螯合 Al,EDTA 對 Ca、Fe、Al、Mn 等具有螯合作用,對有機磷組分破壞小,降低多聚磷酸鹽水解,對有機磷的提取率較高[73]。土壤31P-NMR 研究中,0.25 mol/L NaOH-50 mmol/L EDTA 是常用提取劑[10, 21-22, 51]。
選用適當?shù)慕釀┡c土樣比例,對土壤磷提取效果及檢測靈敏度非常重要。相同情況下,浸提劑與土樣比例越高,各組分磷的濃度越低,被檢測出來的可能性越小[74]。Cade-Menun 和 Preston[75]選擇浸提劑體積與土樣質(zhì)量比例 (水土比) 20∶1,這一比例被廣泛應用[10],但其所用土樣是有機質(zhì)較高 (C 含量50%) 的森林淹水土壤,對于礦質(zhì)含量高的土樣,Cade-Menun 等[73,76-77]選擇水土比 10∶1。Doolette 等[61]報道,與水土比 20∶1 相比,水土比 10∶1 提高了總磷回收率和 NMR 信噪比,但研究結果并未顯示有機磷和正磷酸鹽回收率是否增加。Turner[78]利用熱帶土壤樣品,增加浸提水土比,浸提液 MRP 含量提高,MUP 未 增 加 。 對 于 低 磷 土 壤 , McLaren 等[79]認 為NaOH-EDTA 浸提水土比 4∶1 的 NMR 信號靈敏度好于水土比 10∶1。
浸提振蕩時間一般選擇常溫下振蕩提取 16 h。但也有 8 h[80]和 4 h[81-83]的報道。利用 NaOH-EDTA 浸提劑對熱帶森林土樣分別浸提 1、4 和 16 h,4 h 浸提的總 P 和 MUP 量比 1 h 稍高,16 h 浸提總磷和MRP 比 4 h 高,MUP 量并未增加,表明 16 h 浸提無機磷增多,有機磷并未增加[78]。浸提時間短可能會減少提取液中磷組分的水解和降解。除提取時間外,溫度、pH 等因素也一定程度上影響提取液中磷組分及 NMR 的檢測結果。溫度升高增加有機磷礦化率及無機磷釋放;氧氣充足情況下磷酸二酯易降解。采用 0.2 mol/L 草酸銨 (pH 3.0) 按水土比 40∶1 振蕩樣品 2 h,在 2000× g 下離心 10 min,NMR 可檢測到溫帶草地和森林土壤中肌醇六磷酸[84]。
提取完成后,浸提液需要進行濃縮以提高 NMR樣品管中磷濃度。若直接采用浸提樣品,每個樣品測試時掃描 112000 次,采集時間 0.4 s,弛豫時間2.1 s,每采集信號一次約需 2.5 s,這樣一個樣品的31P-NMR 分析時間約需要 78 h,無疑難以被接受[10]。以前研究者多采用冷凍干燥、40℃ 下氮吹、旋轉蒸發(fā)等濃縮措施[21-22],目前多采用離心和冷凍干燥濃縮浸提液為粉末樣品[10,74]。張艾明等[57]研究發(fā)現(xiàn),浸提液冷凍干燥過程中添加連二亞硫酸鹽緩沖液 (0.11 mol/L NaHCO3-0.11 mol/L Na2S2O4) 降低了31P-NMR譜圖化學位移偏移,提高了分辨率。Cade-Menun 等[85]報道 NaOH-EDTA 浸提液冷凍干燥后,含有的三聚磷酸鹽降解為正磷酸鹽和焦磷酸鹽;若浸提液 pH 中和至 7.0,三聚磷酸鹽就不會降解。事實上,土壤31P-NMR 圖譜上很少報道聚磷酸鹽,常見焦磷酸鹽譜峰。
表1 液相31P-NMR 土壤磷研究的核磁測試參數(shù)Table 1 Sample experiments parameters of solution phosphorus-31 nuclear magnetic resonance spectroscopy for soil analysis
續(xù)表 1 Table 1 continued
樣品制備完成后,冷凍儲存直至分析。31P-NMR分析前,取出冷凍濃縮樣品,重新溶解,變成液體樣品,準備待測樣品體積根據(jù) NMR 核磁樣品管體積而定,5 mm 核磁管進樣體積約 0.5~1 mL,10 mm核磁管進樣體積 2~3 mL。磁場漂移導致信號峰變寬,實驗對磁場穩(wěn)定性的要求可以通過鎖場實現(xiàn),鎖場目前常用氘信號作為參照信號,通過不間斷測量參照信號并與標準頻率進行比較,調(diào)節(jié)偏差反饋到磁體通過增加或減少輔助線圈電流來進行矯正。核磁管樣品中加入氘水 (D2O) 是土壤31P-NMR 常用鎖場方法[10]。
重新溶解冷凍濃縮樣品的溶劑:D2O[71,86-88]、氘代 氫 氧 化 鈉 (NaOD)[52,63]或 NaOD+D2O[68]、 純水+D2O[89-92]、D2O+NaOH-EDTA[93-96]、D2O+1mol/L NaOH[97-99]、 D2O+10mol/L NaOH[54,67,100-101]、D2O+NaOH-EDTA+10 mol/L NaOH[55,70,80], 不同 溶 劑對31P-NMR 分辨率和檢測結果有明顯影響[10]。Cade-Menun[21-22]認為最終樣品溶解液 pH>12,才能保證獲得分辨率良好的譜圖。核磁管中樣品液粘稠會影響譜峰分辨率,NaOH 或 NaOH-EDTA 重新溶解冷凍濃縮樣品,pH 高,會使溶液存在沉淀顆粒物,導致峰型變寬[10]。有研究者重新溶解冷凍濃縮樣品后,離心[56,70-71,99,102]或過濾[96],上清液加入適量 D2O 鎖定信號,移至核磁管中進行 NMR 檢測。
計算31P-NMR 圖譜不同組分的峰面積與所有磷化合物總峰面積的比例,可獲得該組分所占全磷的比例信息,在樣品測試時加入內(nèi)標,與內(nèi)標信號比對,可得到磷化合物絕對含量。亞甲基二膦酸鹽(methylene diphosphonic acid,MDP) 是常用內(nèi)標物,MDP 可在樣品冷凍濃縮后重新溶解時,加到核磁管中[97,103], 也可將MDP 加 到土 壤 樣品中 ,與樣 品進行同樣浸提過程[91-92,104-105]。
3.3 土壤31P-NMR 研究
土壤31P-NMR 圖譜中常見含磷化合物 (NaOHEDTA 提取) 的化學位移在 25~-25 ppm 間 (圖 1),分別為膦酸鹽 20 附近、正磷酸鹽 5~7、磷酸單酯3~6、磷酸二酯 2.5~-1、焦磷酸鹽-4~-5、多聚磷酸 鹽主鏈末端磷-4~-5、多聚磷酸鹽-20 附近。
31P-NMR 技 術 普 遍 用 于 土 壤 磷 組 分 分 析 。Madagascan 稻田土壤 NaOH-EDTA 提取磷中,有機磷占 19%~44%,多為磷酸單酯,DNA 少量,不到一半樣品中檢測到肌醇六磷酸 (Inositol Hexakisphosphate,IHP)[53]。在智利老成土上試驗發(fā)現(xiàn)[62],與燕麥/小麥輪作相比,羽扇豆/小麥輪作下土壤酸性磷酸酶活性增強,磷酸單酯比例增加;而燕麥/小麥輪作下正磷酸鹽含量增多。應用31P-NMR 技術研究我國東北地區(qū)土壤,結果發(fā)現(xiàn),棕壤和黑土中正磷酸鹽和磷酸單酯分別約占總磷一半,褐土中主要磷組分為正磷酸鹽,磷酸單酯占總磷 18%;棕壤和黑土中焦磷酸鹽含量較高。棕壤和褐土鑒定出 myo-IHP,黑土檢有scyllo-IHP[116]。污泥施用增加了磚紅壤和灰潮土土壤有機磷含量[117]。彭喜玲等[118]發(fā)現(xiàn),NaOH-EDTA 浸提土壤磷占 NaOH 熔融法測定總磷的 54%~93%,污泥施用后 14 d,土壤正磷酸鹽含量增加,磷酸單酯和焦磷酸鹽含量下降。
圖1 一個森 林 土 壤NaOH-EDTA 提取磷液相31P-NMR 圖譜[21,98]Fig. 1 Solution31P nuclear magnetic resonance spectrum of a forest floor sample extracted with NaOH-EDTA[21,98]
應用31P-NMR 技術研究土壤腐殖質(zhì)中磷形態(tài)。腐殖酸結合態(tài)磷以磷酸單酯為主,磷酸二酯次之,有少量膦酸鹽、正磷酸鹽和焦磷酸鹽;而富里酸結合態(tài)磷中磷酸二酯和正磷酸鹽的比例較高[119]。寒冷潮濕氣候條件下,高加索山地土壤腐殖酸中膦酸鹽和磷酸二酯含量較高[120]。菲律賓水稻田土壤游離腐殖酸中磷酸二酯隨水稻種植密度增加而累積,淹水種植三季水稻后,磷酸二酯含量占總磷比例達 42%,未淹稻田中占總磷 28%[121]。土壤游離腐殖酸和鈣結合腐殖酸中活性無機磷占 10%;有機磷以磷酸單酯為主,磷酸二酯次之,膦酸鹽少量 (< 3.7%),檢測到scyllo-IHP,未檢出焦磷酸鹽或多聚磷酸鹽[122]。
利用31P-NMR 技術研究肥料施用對土壤磷組分影響。美國 6 個州 10 處土壤施用磷肥,正磷酸鹽含量顯著增加,磷酸單酯影響不明顯[112]。施用有機肥 8年以上的土壤與對照相比,IHP 含量未出現(xiàn)明顯變化[98]。施用糞肥 11 年非鈣質(zhì)沙土剖面中,表層磷酸單酯累積,40~50 cm 土層正磷酸鹽含量較表層高,土壤對磷酸單酯固持能力可能相對較強,正磷酸鹽向 下 移 動 性 相 對 較 高[97]。 糞 肥 中 磷 主 要 以 無 機 態(tài) 為主,雞糞中 IHP 含量高于牛糞;潮土上施用糞肥,有機磷增加;隨時間延長,磷酸單酯含量降低,核酸等磷酸二酯含量增加[123]。加拿大有機肥施用 20 年以上的長期牧場土壤有機磷尤其是磷酸二酯所占比例高于傳統(tǒng)種植體系,其中磷酸二酯易礦化,可有效補充土壤磷供應,保證有機肥施用下土壤磷的有效供應[124]。向鈣質(zhì)土壤中添加 P 58 mg/kg IHP,十三周內(nèi)迅速減少至初始添加量的 12%,伴隨α及β甘油磷酸鹽含量上升,表明微生物代謝作用導致 IHP 礦化,IHP 可作為鈣質(zhì)土壤中一種潛在有機磷源[61]。
利用31P-NMR 技術與酶添加結合,深入研究有機磷組分分解礦化特性[70,125-126]。牛糞、堆肥和干污泥中有機磷組分不同,瑞士微酸性的淋溶土上 62 年施用牛糞、堆肥和干污泥,表層土壤中 myo-IHP、scyllo-IHP、焦磷酸鹽、磷脂類和核酸的降解產(chǎn)物等含量卻無明顯差異,可能與有機磷轉化分解和淋失有關;在 NaOH-EDTA 浸提液添加磷酸酶、植酸酶、核酸酶后,發(fā)現(xiàn)施用干污泥土壤中非水解磷積累[126]。
利用31P-NMR 研究耕作對土壤磷形態(tài)的影響。加拿大魁北克玉米/大豆輪作長期定位試驗結果表明,免耕小區(qū)深層土壤中磷酸單酯尤其是 scyllo-IHP和核酸含量較高,可能與這些有機磷化合物從表層向底層遷移有關[127]。黑土和潮土上,免耕和秸稈還田增加了土壤磷酸單酯和磷酸二酯含量及在 NaOHNa2EDTA 浸提磷中的比例[128]。
分析土壤磷形態(tài)多采用一維31P-NMR 技術,獲得譜線有些過于擁擠、重疊,一些含磷化合物難以分辨[3,51]。在實驗中通過改變脈沖序列,加入另一段自由演化時間,引入 2 個時間變量,采集不同演化時間長度的信號,經(jīng)過 2 次傅里葉變換后,得到兩個獨立的頻率變量及耦合產(chǎn)生的交叉信息,產(chǎn)生具有兩個獨立時間變量二維 NMR 譜,可降低譜線擁擠和重 疊 程 度 。 化 學 位 移 相 關 譜(correlation spectroscopy,COSY) 是常用的二維NMR譜,X-Y 兩個坐標軸都是化學位移信息,主要觀測彼此間存在J耦合作用的原子核。Petzold 等[129]建立31P-1H COSY譜,分析研究幽門螺桿菌細胞膜系統(tǒng)中磷脂組分,采 用Semiconstant-time 模 式,設 定 2Δ= 20 ms,t1,max= 60 ms,減少了弛豫時間,提高了31P 譜的信號分辨率,鑒定出磷脂酰乙醇胺、磷脂酰甘油、sn-2 溶血磷脂酰乙醇胺、磷脂酰甘油、卵磷脂、sn-2 溶血磷脂膽堿、sn-2 溶血磷脂酰乙醇胺血漿酶原、膽固醇基葡萄糖磷酸酯衍生物等。二維近程氫磷異核單量子 相 關 譜 (Two-Dimensional 2D31P-1H HSQC,Heteronuclear Single Quantum Correlation) 提供與磷核相耦合的烷基或烷基酯基團結構 P-O-CHn信息,為土壤磷化合物鑒定分析提供了技術基礎。
Vestergren 等[88]利用 2D31P-1H HSQC 技術鑒定出的北溫帶北部森林地區(qū)腐殖土有機磷化合物數(shù)量和種類明顯比一維液相31P-NMR 多。土壤浸提液冷凍干燥后,將樣品溶解于 D2O 中,添加 Na2S 溶液,室溫下放置 18~20 h,7000 g 下離心 30 min,沉淀去除 Fe 等順磁物質(zhì)干擾。經(jīng)過 Na2S 處理土壤浸提液1D31P-NMR 圖譜分辨率明顯好于未經(jīng) Na2S 處理的1D31P-NMR 圖譜,可將在一維譜圖上與 scyllo-IHP和α-磷酸甘油譜線重疊的化合物分開。Vincent 等[105]利用 2D31P-1H NMR 技術分析瑞典北溫帶北部森林地區(qū)具有 7800 年歷史的腐殖土層中磷,發(fā)現(xiàn)年輕土層中α-磷酸甘油、β-磷酸甘油、核酸、焦磷酸鹽含量較高;DNA、2-氨基乙基膦酸、多聚磷酸鹽含量在1200~2700 年歷史的土層中明顯較高;IHP 含量在不同年齡土層中波動變化。
土壤磷形態(tài)研究傳統(tǒng)方法常用化學連續(xù)浸提法,但浸提劑缺乏專一性,不同磷分級之間存在相互干擾等,難以確切反映土壤磷的真正組分,尤其對有機磷化合物種類無法區(qū)分。31P-NMR 技術可用于表征土壤中磷化合物,極大地促進了土壤磷形態(tài)及轉化機 制 研究[3,10,92],但在土 壤 磷提取、 NMR 制樣和測定過程,如何保證化合物不被降解,保持土壤中磷組分的原狀信息,同時又有效提高 NMR 對磷化合物的分辨能力,是今后31P-NMR 技術的重要研究內(nèi)容。2D31P-1H NMR 技術為鑒定分析土壤中更多種類的有機磷化合物提供了契機。
[1]Lambers H, Shane M W, Cramer M D, et al. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits[J]. Annals of Botany, 2006, 98(4): 693-713.
[2]Smil V. Phosphorus in the environment: natural flows and human interferences[J]. Annual Review of Energy and the Environment, 2000, 25(1): 53-88.
[3]Kruse J, Abraham M, Amelung W, et al. Innovative methods in soil phosphorus research: A review [J]. Journal of Plant Nutrition and Soil Science, 2015, 178: 43-88.
[4]Li H, Liu J, Li G, et al. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses[J]. Ambio, 2015, 44(2): 274-285.
[5]Ma J, He P, Xu X, et al. Temporal and spatial changes in soil available phosphorus in China (1990-2012)[J]. Field Crops Research, 2016, 192: 13-20.
[6]Cordell D, Drangert J O, White S. The story of phosphorus: global food security and food for thought [J]. Global Environmental Change, 2009, 19(2): 292-305.
[7]Obersteiner M, Pe?uelas J, Ciais P, et al. The phosphorus trilemma [J]. Nature Geoscience, 2013, 6(11): 897-898.
[8]Cordell D, Neset T S S. Phosphorus vulnerability: a qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity[J]. Global Environmental Change, 2014, 24: 108-122.
[9]Rowe H, Withers P J A, Baas P, et al. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security[J]. Nutrient Cycling in Agroecosystems, 2016, 104(3): 393-412.
[10]Cade-Menun B, Liu C W. Solution phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: A review of sample preparation and experimental parameters [J]. Soil Science Society of America Journal, 2014, 78(1): 19-37.
[11]尹遜霄, 華珞, 張 振賢, 等. 土壤中磷素 的有效性及 其循環(huán)轉化機制研究[J]. 首都師范大學學報(自然科學版), 2005, 26(3): 95-101. Yin X X, Hua L, Zhang Z X, et al. Study on the effectiveness of phosphorus and mechanism of its circle in soil[J]. Journal of CapitalNormal University (Natural Science Edition), 2005, 26: 95-101.
[12]丁懷香, 宇 萬 太. 土壤無機磷分級及生物有效性研究進展[J]. 土壤通報, 2008, 39(3): 681-686. Ding H X, Yu W T. Review on soil inorganic-P fractionation and the influential factors on P bio-availability[J]. Chinese Journal of Soil Science, 2008, 39(3): 681-686.
[13]Condron L M, Turner B L, Cade-Menun B J. Chemistry and dynamics of soil organic phosphorus[J]. Agronomy, 2005, 46:87-121.
[14]Condron L M, Newman S. Revisiting the fundamentals of phosphorus fractionation of sediments and soils[J]. Journal of Soils and Sediments, 2011, 11(5): 830-840.
[15]Bertrand I, Holloway R E, Armstrong R D, et al. Chemical characteristics of phosphorus in alkaline soils from southern Australia[J]. Soil Research, 2003, 41(1): 61-76.
[16]Arai Y, Sparks D L. Phosphate reaction dynamics in soils and soil components: A multiscale approach[J]. Advances in Agronomy, 2007, 94: 135-179.
[17]McLaughlin M J, McBeath T M, Smernik R, et al. The chemical nature of P accumulation in agricultural soils-implications for fertiliser management and design: an Australian perspective[J]. Plant and Soil, 2011, 349(1-2): 69-87.
[18]Shen J, Yuan L, Zhang J, et al. Phosphorus dynamics: from soil to plant[J]. Plant Physiology, 2011, 156(3): 997-1005.
[19]Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces[J]. New Phytologist, 2007, 173(1): 11-26.
[20]趙少華, 宇萬太, 張璐, 等. 土壤有機磷研究進展[J]. 應 用生態(tài)學報, 2004, 15(11): 2189-2194. Zhao S H, Yu W T, Zhang L, et al. Research advance in soil organic phosphorus.[J]. Chinese Journal of Applied Ecology, 2004, 15(11):2189-2194.
[21]Cade-Menun B J. Using phosphorus-31 nuclear magnetic resonance spectroscopy to characterize organic phosphorus in environmental samples[A]. Turner B L, Frossard E, Baldwin D S. Organic phosphorus in the environment[C]. Wallingford, UK: CAB International, 2005. 21-44.
[22]Cade-Menun B J. Characterizing phosphorus in environmental and agricultural samples by31P nuclear magnetic resonance spectroscopy[J]. Talanta, 2005, 66(2): 359-371.
[23]Haygarth P M, Sharpley A N. Terminology for phosphorus transfer[J]. Journal of Environmental Quality, 2000, 29(1): 10-15.
[24]Turner B L, Newman S. Phosphorus cycling in wetland soils[J]. Journal of Environmental Quality, 2005, 34(5): 1921-1929.
[25]Turner B L, Mahieu N, Condron L M. Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts[J]. Soil Science Society of America Journal, 2003, 67(2): 497-510.
[26]Turner B L, Mahieu N, Condron L M. The phosphorus composition of temperate pasture soils determined by NaOH-EDTA extraction and solution31P NMR spectroscopy[J]. Organic Geochemistry, 2003, 34(8): 1199-1210.
[27]Oberson A, Joner E J. Microbial turnover of phosphorus in soil[A]. Turner B I, Frossard E, Baldwin D S. Organic phosphorus in the environment[C]. Wallingford UK: CABI, 2005. 133-164.
[28]Richardson A E, Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus[J]. Plant Physiology, 2011, 156(3): 989-996.
[29]Webley D M, Jones D. Biological transformation of microbial residues in soil[J]. Soil Biochemistry, 1971, 2: 446-485.
[30]Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: is there a“Redfield ratio” for the microbial biomass?[J] Biogeochemistry, 2007, 85(3): 235-252.
[31]Turner B L, Cheesman A W, Godage H Y, et al. Determination of neo- and D-chiro-inositol hexakisphosphate in soils by solution31P NMR spectroscopy[J]. Environmental Science & Technology, 2012, 46(9): 4994-5002.
[32]向萬勝, 黃敏, 李學垣. 土 壤磷素的化學組分及其植物 有 效 性[J].植物營養(yǎng)與肥料學報, 2004, 10(6): 663-670. Xiang W S, Huang M, Li X Y. Progress on fractioning of soil phosphorous and availability of various phosphorous fractions to crops in soil[J]. Plant Nutrition & Fertilizing Science, 2004, 10(6):663-670.
[33]孫桂芳, 金繼運, 石元亮. 土壤磷素形態(tài)及其生物有效性研究進展[J]. 中國土壤與肥料, 2011, (2): 1-9. Sun G F, Jin J Y, Shi Y L. Research advance on soil phosphorous forms and their availability to crops in soil[J]. Soil & Fertilizer Sciences in China, 2011, (2): 1-9.
[34]Negassa W, Leinweber P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: A review[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(3): 305-325.
[35]Chang S C, Jackson M L. Fractionation of soil phosphorus[J]. Soil Science, 1957, 84(2): 133-144.
[36]Petersen G W, Corey R B. A modified Chang and Jackson procedure for routine fractionation of inorganic soil phosphates[J]. Soil Science Society of America Journal, 1966, 30(5): 563-565.
[37]蔣柏藩, 顧益初. 石灰性 土 壤 無 機 磷 分 級 體 系 的 研 究[J]. 中 國 農(nóng)業(yè)科學, 1989, 22(3): 58-66. Jiang B F, Gu Y C. A suggested fractionation scheme of inorganic phosphorus in calcareous soils[J]. Scientia Agricultura Sinica, 1989, 22(3): 58-66.
[38]Saunders W M H, Williams E G. Observations on the determination of total organic phosphorus in soils[J]. Journal of Soil Science, 1955, 6(2): 254-267.
[39]Bowman R A, Cole C V. An exploratory method for fractionation of organic phosphorus from grassland soils[J]. Soil Science, 1978, 125:95-101.
[40]Ivanoff D B, Reddy K R, Robinson S. Chemical fractionation of organic phosphorus in selected histosols[J]. Soil Science, 1998, 163(1): 36-45.
[41]Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976.
[42]Condron L M, Goh K M. Effects of long-term phosphatic fertilizer applications on amounts and forms of phosphorus in soils under irrigated pasture in New Zealand[J]. Journal of Soil Science, 1989, 40(2): 383-395.
[43]Chen C R, Condron L M, Davis M R, et al. Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil[J]. Plant and Soil, 2000, 220(1-2): 151-163.
[44]Tiessen H, Moir J O. Characterization of available P by sequentialextraction[A]. Carter M R. Soil sampling and methods of analysis[C]. Boca Raton: Puldisher Lewis, 1993. 75-86.
[45]Guppy C N, Menzies N W, Moody P W, et al. A simplified, sequential, phosphorus fractionation method[J]. Communications in Soil Science and Plant Analysis, 2000, 31(11-14): 1981-1991.
[46]Turner B L. Optimizing phosphorus characterization in animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy[J]. Journal of Environmental Quality, 2004, 33(2):757-766.
[47]高漢賓, 張振芳. 核磁共振原理與實驗方法[M]. 武 漢 : 武漢大學出版社, 2008. Gao H B, Zhang Z F. Principles and experimental methods of nuclear magnetic resonance[M]. Wuhan: Wuhan University Press, 2008.
[48]Keeler J. Understanding NMR spectroscopy[M]. John Wiley & Sons, 2011.
[49]Majed N, Li Y, Gu A Z. Advances in techniques for phosphorus analysis in biological sources[J]. Current Opinion in Biotechnology, 2012, 23(6): 852-859.
[50]Newman R H, Tate K R. Soil phosphorus characterisation by31P nuclear magnetic resonance[J]. Communications in Soil Science & Plant Analysis, 1980, 11(9): 835-842.
[51]Cade-Menun B J. Improved peak identification in31P-NMR spectra of environmental samples with a standardized method and peak library [J]. Geoderma, 2015, 257/258: 102-114.
[52]Bol R, Amelung W, Haumaier L. Phosphorus-31-nuclear magnetic resonance spectroscopy to trace organic dung phosphorus in a temperate grassland soil[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(1): 69-75.
[53]Turner B L. Organic phosphorus in Madagascan rice soils[J]. Geoderma, 2006, 136(1): 279-288.
[54]Smith M T E, Cade-Menun B J, Tibbett M. Soil phosphorus dynamics and phytoavailability from sewage sludge at different stages in a treatment stream[J]. Biology and Fertility of Soils, 2006, 42(3): 186-197.
[55]Cade-Menun B J, Carter M R, James D C, et al. Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: A phosphorus-31 nuclear magnetic resonance study[J]. Journal of Environmental Quality, 2010, 39(5): 1647-1656.
[56]Soinne H, Uusitalo R, Sarvi M, et al. Characterization of soil phosphorus in differently managed clay soil by chemical extraction methods and31P NMR spectroscopy[J]. Communications in Soil Science and Plant Analysis, 2011, 42(16): 1995-2011.
[57]張艾明, 陳 振 華, 陳利軍, 等. 冷凍干 燥 過程中pH調(diào)節(jié), 緩 沖液添加對土壤31P核磁共振譜圖的影響[J]. 土壤通報, 2013, 44(2):328-332. Zhang A M, Chen Z H, Chen L J, et al. Resolution of31P-NMR spectroscopy influenced by pH adjustment and buffer addition during lyophilization of soil extraction[J]. Chinese Journal of Soil Science, 2013, 44(2): 328-332.
[58]Turner B L, Newman S, Newman J M. Organic phosphorus sequestration in subtropical treatment wetlands[J]. Environmental Science & Technology, 2006, 40(3): 727-733.
[59]Sundareshwar P V, Richardson C J, Gleason R A, et al. Nature versus nurture: Functional assessment of restoration effects on wetland services using nuclear magnetic resonance spectroscopy[J]. Geophysical Research Letters, 2009, 36(3).
[60]Cheesman A W, Dunne E J, Turner B L, et al. Soil phosphorus forms in hydrologically isolated wetlands and surrounding pasture uplands[J]. Journal of Environmental Quality, 2010, 39(4):1517-1525.
[61]Doolette A L, Smernik R J, Dougherty W J. Rapid decomposition of phytate applied to a calcareous soil demonstrated by a solution31P NMR study[J]. European Journal of Soil Science, 2010, 61(4):563-575.
[62]Redel Y D, Escudey M, Alvear M, et al. Effects of tillage and crop rotation on chemical phosphorus forms and some related biological activities in a Chilean Ultisol[J]. Soil Use and Management, 2011, 27(2): 221-228.
[63]Lehmann J, Lan Z, Hyland C, et al. Long-term dynamics of phosphorus forms and retention in manure-amended soils[J]. Environmental Science & Technology, 2005, 39(17): 6672-6680.
[64]白秀玲, 周云凱, 李斌, 等. 利用31P核磁共振技術優(yōu)化太 湖沉積物有機磷的化學提取方法[J]. 環(huán)境科學學報, 2011, 31(5): 996-1003. Bai X L, Zhou Y K, Li B, et al. Optimizing chemical extraction of organic phosphorus from sediment using31P nuclear magnetic resonance spectroscopy[J]. Acta Scientiae Circumstantiae, 2011, 31(5): 996-1003.
[65]Rückamp D, Amelung W, Theisz N, et al. Phosphorus forms in Brazilian termite nests and soils: relevance of feeding guild and ecosystems[J]. Geoderma, 2010, 155(3): 269-279.
[66]Kovalev I V, Kovaleva N O. Organophosphates in agrogray soils with periodic water logging according to the data of31P NMR spectroscopy[J]. Eurasian Soil Science, 2011, 44(1): 29-37.
[67]McDowell R W, Stewart I. Peak assignments for phosphorus-31 nuclear magnetic resonance spectroscopy in pH range 5-13 and their application in environmental samples[J]. Chemistry and Ecology, 2005, 21(4): 211-226.
[68]Shafqat M N, Pierzynski G M, Xia K. Phosphorus source effects on soil organic phosphorus: a31P NMR study[J]. Communications in Soil Science and Plant Analysis, 2009, 40(11-12): 1722-1746.
[69]Turner B L, Newman S, Reddy K R. Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry[J]. Environmental Science & Technology, 2006, 40(10):3349-3354.
[70]He Z, Honeycutt C W, Cade-Menun B J, et al. Phosphorus in poultry litter and soil: Enzymatic and nuclear magnetic resonance characterization[J]. Soil Science Society of America Journal, 2008, 72(5): 1425-1433.
[71]Brice?o M, Escudey M, Galindo G, et al. Comparison of extraction procedures used in determination of phosphorus species by31PNMR in chilean volcanic soils[J]. Communications in Soil Science and Plant Analysis, 2006, 37(11-12): 1553-1569.
[72]張文強, 單保慶, 張洪, 等. 基于 液相31P核磁共振技術的 河流沉積物有機磷提取劑選擇研究[J]. 環(huán)境科學學報, 2014, 34(1):194-201. Zhang W Q, Shan B Q, Zhang H, et al. Characterization and optimization of the extractants for solution31P-nuclear magnetic resonance analysis of organic phosphorus in river sediments[J]. Acta Scientiae Circumstantiae, 2014, 34(1): 194-201.
[73]Cade-Menun B J, Liu C W, Nunlist R, et al. Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy[J]. Journalof Environmental Quality, 2002, 31(2): 457-465.
[74]陸瑾, 王海文, 郝紅, 等. 環(huán)境磷形態(tài)分析中的磷-31核磁共振技術[J]. 土壤科學, 2013, 1(3): 15-20. Lu J, Wang H W, Hao H.31P nuclear magnetic resonance in environmental phosphorus analysis[J]. Hans Journal of Soil Science, 2013, 1(3): 15-20.
[75]Cade-Menun B J, Preston C M. A comparison of soil extraction procedures for31P NMR spectroscopy[J]. Soil Science, 1996, 161(11): 770-785.
[76]Cade-Menun B J, Berch S M, Preston C M, et al. Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. I. A comparison of two forest types[J]. Canadian Journal of Forest Research, 2000, 30: 1714-1725.
[77]Cade-Menun B J, Berch S M, Preston C M, et al. Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. II. The effects of clear-cutting and burning[J]. Canadian Journal of Forest Research, 2000, 30: 1726-1741.
[78]Turner B L. Soil organic phosphorus in tropical forests: an assessment of the NaOH-EDTA extraction procedure for quantitative analysis by solution31P NMR spectroscopy[J]. European Journal of Soil Science, 2008, 59(3): 453-466.
[79]Mclaren T I, Smernik R J, Simpson R J, et al. Spectral sensitivity of solution31P NMR spectroscopy is improved by narrowing the soil to solution ratio to 1∶4 for pasture soils of low organic P content[J]. Geoderma, 2015, (257-258): 48-57.
[80]Hill J E, Cade-Menun B J. Phosphorus-31 nuclear magnetic resonance spectroscopy transect study of poultry operations on the Delmarva Peninsula[J]. Journal of Environmental Quality, 2009, 38(1): 130-138.
[81]McDowell R W, Cade-Menun B, Stewart I. Organic phosphorus speciation and pedogenesis: analysis by solution31P nuclear magnetic resonance spectroscopy[J]. European Journal of Soil Science, 2007, 58(6): 1348-1357.
[82]Cheesman A W, Turner B L, Inglett P W, et al. Phosphorus transformations during decomposition of wetland macrophytes[J]. Environmental Science & Technology, 2010, 44(24): 9265-9271.
[83]Turner B L, Engelbrecht B M J. Soil organic phosphorus in lowland tropical rain forests[J]. Biogeochemistry, 2011, 103(1-3): 297-315.
[84]J?rgensen C, Turner B L, Reitzel K. Identification of inositol hexakisphosphate binding sites in soils by selective extraction and solution31P NMR spectroscopy[J]. Geoderma, 2015, 257: 22-28.
[85]Cade-Menun B J, Navaratnam J A, Walbridge M R. Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy[J]. Environmental Science & Technology, 2006, 40(24): 7874-7880.
[86]El-Rifai H, Heerboth M, Gedris T E, et al. NMR and mass spectrometry of phosphorus in wetlands[J]. European Journal of Soil Science, 2008, 59(3): 517-525.
[87]Turrion M, Lafuente F, Aroca M, et al. Characterization of soil phosphorus in a fire-affected forest Cambisol by chemical extractions and31P-NMR spectroscopy analysis[J]. Science of the Total Environment, 2010, 408(16): 3342-3348.
[88]Vestergren J, Vincent A G, Jansson M, et al. High-resolution characterization of organic phosphorus in soil extracts using 2D1H-31P nmr correlation spectroscopy[J]. Environmental Science & Technology, 2012, 46(7): 3950-3956.
[89]McDowell R W, Condron L M, Stewart I, et al. Chemical nature and diversity of phosphorus in New Zealand pasture soils using31P nuclear magnetic resonance spectroscopy and sequential fractionation[J]. Nutrient Cycling in Agroecosystems, 2005, 72(3):241-254.
[90]Smernik R J, Dougherty W J. Identification of phytate in phosphorus-31 nuclear magnetic resonance spectra: The need for spiking[J]. Soil Science Society of America Journal, 2007, 71(3):1045-1050.
[91]Doolette A L, Smernik R J, Dougherty W J. Spiking improved solution phosphorus-31 nuclear magnetic resonance identification of soil phosphorus compounds[J]. Soil Science Society of America Journal, 2009, 73(3): 919-927.
[92]Doolette A L, Smernik R J. Soil organic phosphorus speciation using spectroscopic techniques[A]. Phosphorus in Action[C]. Heidelberg, Berlin: Springer, 2011. 3-36.
[93]Turner B L, Newman S, Cheesman A W, et al. Sample pretreatment and phosphorus speciation in wetland soils[J]. Soil Science Society of America Journal, 2007, 71(5): 1538-1546.
[94]Turner B L, Condron L M, Richardson S J, et al. Soil organic phosphorus transformations during pedogenesis[J]. Ecosystems, 2007, 10(7): 1166-1181.
[95]Murphy P N C, Sims J T. Effects of lime and phosphorus application on phosphorus runoff risk[J]. Water, Air, & Soil Pollution, 2012, 223(8): 5459-5471.
[96]Cheesman A W, Turner B L, Reddy K R. Soil phosphorus forms along a strong nutrient gradient in a tropical ombrotrophic wetland[J]. Soil Science Society of America Journal, 2012, 76(4):1496-1506.
[97]Koopmans G F, Chardon W J, McDowell R W. Phosphorus movement and speciation in a sandy soil profile after long-term animal manure applications[J]. Journal of Environmental Quality, 2007, 36(1): 305-315.
[98]Dou Z, Ramberg C F, Toth J D, et al. Phosphorus speciation and sorption-desorption characteristics in heavily manured soils[J]. Soil Science Society of America Journal, 2009, 73(1): 93-101.
[99]Ding S, Xu D, Li B, et al. Improvement of31P NMR spectral resolution by 8-hydroxyquinoline precipitation of paramagnetic Fe and Mn in environmental samples[J]. Environmental Science & Technology, 2010, 44(7): 2555-2561.
[100]McDowell R W, Stewart I, Cade-Menun B J. An examination of spin-lattice relaxation times for analysis of soil and manure extracts by liquid state phosphorus-31 nuclear magnetic resonance spectroscopy[J]. Journal of Environmental Quality, 2006, 35(1):293-302.
[101]Zhang A M, Chen Z H, Zhang G N, et al. Soil phosphorus composition determined by P-31 NMR spectroscopy and relative phosphatase activities influenced by land use[J]. European Journal of Soil Biology, 2012, 52: 73-77.
[102]Hamdan R, El-Rifai H M, Cheesman A W, et al. Linking phosphorus sequestration to carbon humification in wetland soils by31P and13C NMR spectroscopy[J]. Environmental Science & Technology, 2012, 46(9): 4775-4782.
[103]McDowell R W, Koopmans G F. Assessing the bioavailability of dissolved organic phosphorus in pasture and cultivated soils treated with different rates of nitrogen fertiliser[J]. Soil Biology &Biochemistry, 2006, 38(1): 61-70.
[104]Vincent A G, Turner B L, Tanner E V J. Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest[J]. European Journal of Soil Science, 2010, 61(1): 48-57.
[105]Vincent A G, Schleucher J, Gr?bner G, et al. Changes in organic phosphorus composition in boreal forest humus soils: The role of iron and alluminium[J]. Biogeochemistry, 2012, 108: 485-499.
[106]Backn?s S, Laine-Kaulio H, Kl?ve B. Phosphorus forms and related soil chemistry in preferential flow paths and the soil matrix of a forested podzolic till soil profile[J]. Geoderma, 2012, 189: 50-64.
[107]Bourke D, Dowding P, Tunney H, et al. The organic phosphorus composition of an Irish grassland soil[C]. Biology & Environment:Proceedings of the Royal Irish Academy. The Royal Irish Academy, 2008, 108(1): 17-28.
[108]Bünemann E K, Smernik R J, Marschner P, et al. Microbial synthesis of organic and condensed forms of phosphorus in acid and calcareous soils[J]. Soil Biology and Biochemistry, 2008, 40(4):932-946.
[109]Leytem A B, Smith D R, Applegate T J, et al. The influence of manure phytic acid on phosphorus solubility in calcareous soils[J]. Soil Science Society of America Journal, 2006, 70(5): 1629-1638.
[110]Li M, Zhang J, Wang G, et al. Organic phosphorus fractionation in wetland soil profiles by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy[J]. Applied Geochemistry, 2013, 33: 213-221.
[111]McDowell R W, Scott J T, Stewart I, et al. Influence of aggregate size on phosphorus changes in a soil cultivated intermittently:analysis by31P nuclear magnetic resonance[J]. Biology and Fertility of Soils, 2007, 43(4): 409-415.
[112]Ohno T, Hiradate S, He Z. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study[J]. Soil Science Society of America Journal, 2011, 75(5): 1704-1711.
[113]Vincent A G, Vestergren J, Gr?bner G, et al. Soil organic phosphorus transformations in a boreal forest chronosequence[J]. Plant and Soil, 2013, 367(1-2): 149-162.
[114]Wang Z D, Li S, Zhu J, et al. Phosphorus partitioning between sediment and water in the riparian wetland in response to the hydrological regimes[J]. Chemosphere, 2013, 90(8): 2288-2296.
[115]Young E O, Ross D S, Cade-Menun B J, et al. Phosphorus speciation in riparian soils: a phosphorus-31 nuclear magnetic resonance spectroscopy and enzyme hydrolysis study[J]. Soil Science Society of America Journal, 2013, 77: 1636-1647.
[116]張廣娜, 陳振華, 陳利軍, 等. 東北地區(qū)三種典型土壤磷組分的31P核磁共振研究及其與土壤磷酸酶活性的關系[J]. 土壤通報, 2013, 44(3): 617-623. Zhang G N, Chen Z H, Chen L J, et al. Soil phosphorus composition by31P NMR spectroscopy and soil phosphatase activities of three typical soils in Northeast China[J]. Chinese Journal of Soil Science, 2013, 44(3): 617-623.
[117]馬瑞, 方海蘭, 梁晶, 等. 利用31P 核磁共振技術研究不同磷肥施用方式對土壤磷形態(tài)的影響[J]. 上海農(nóng)業(yè)學報, 2013, 29(3):14-19. Ma R, Fang H L, Liang J, et al. Study on effects of different phosphorus fertilizer applications on soil phosphorus forms by31P-magnetic resonance spectroscopy[J]. Acta Agriculturae Shanghai, 2013, 29(3): 14-19.
[118]彭喜玲, 方海蘭, 占新華, 等. 利用31P 核磁共振技術研究污泥中磷在土壤中的形態(tài)轉換[J]. 農(nóng)業(yè)環(huán)境科學學報, 2009, 28(10):2104-2110. Peng X L, Fang H L, Zhan X H, et al. Transformation of phosphorus forms in soils with application of sewage sludge by using phosphorus-31-nuclear magnetic resonance spectroscopy[J]. Journal of Agro-Environment Science, 2009, 28(10): 2104-2110.
[119]Guggenberger G, Thomas R J, Zech W. Soil organic matter within earthworm casts of an anecic-endogeic tropical pasture community, Colombia[J]. Applied Soil Ecology, 1996, 3(3): 263-274.
[120]Makarov M, Haumaier L, Zech W. The nature and origins of diester phosphates in soils: a31P-NMR study[J]. Biology and Fertility of Soils, 2002, 35(2): 136-146.
[121]Mahieu N, Olk D C, Randall E W. Analysis of phosphorus in two humic acid fractions of intensively cropped lowland rice soils by31P NMR[J]. European Journal of Soil Science, 2000, 51: 391-402.
[122]He Z Q, Olk D C, Cade-Menun B J. Forms and liability of phosphorus in humic acid fractions of Hord silt loam soil[J]. Soil Science Society of America Journal, 2011, 75: 1712-1722.
[123]邢璐, 王火焰, 陳玉東, 周健民. 施加糞肥對潮土有機磷形態(tài)轉化的影響[J].土壤, 2013, 45(5): 845-849. Xing L, Wang H Y, Chen Y D, Zhou J M. Transformation of phosphorus forms in calcareous soils with manure application[J]. Soils, 2013, 45(5): 845-849.
[124]Schneider K D, Cade-Menun B J, Lynch D H, et al. Soil phosphorus forms from organic and conventional forage fields[J]. Soil Science Society of America Journal, 2016, 80(2): 328-340.
[125]Giles C D, Lee L G, Cade-Menun B J, et al. Characterization of organic phosphorus form and bioavailability in lake sediments using P nuclear magnetic resonance and enzymatic hydrolysis[J]. Journal of Environmental Quality, 2015, 44(3): 882-894.
[126]Annaheim K E, Doolette A L, Smernik R J, et al. Long-term addition of organic fertilizers has little effect on soil organic phosphorus as characterized by31P NMR spectroscopy and enzyme additions[J]. Geoderma, 2015, 257: 67-77.
[127]Abdi D, Cade-Menun B J, Ziadi N, et al. Long-term impact of tillage practices and phosphorus fertilization on soil phosphorus forms as determined by P nuclear magnetic resonance spectroscopy[J]. Journal of Environmental Quality, 2014, 43(4):1431-1441.
[128]Wei K, Chen Z H, Zhu A N, et al. Application of31P NMR spectroscopy in determining phosphatase activities and P composition in soil aggregates influenced by tillage and residue management practices[J]. Soil & Tillage Research, 2014, 138:35-43.
[129]Petzold K, Olofsson A, Arnqvist A, et al. Semiconstant-time P, HCOSY NMR: analysis of complex mixtures of phospholipids originating from Helicobacter pylori[J]. Journal of the American Chemical Society, 2009, 131(40): 14150-14151.
Research advance in soil phosphorus fractionations and their characterization by chemical sequential methods and31P-NMR techniques
WANG Hong, SONG Shu-hui, ZHANG Jin-yao, LIU Yun-xia
( National Engineering Laboratory for Improving Quality of Arable Land/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China )
Transformation of soil phosphorus (P) is an important part in P cycle in ecological system, which influences soil P availability for crops. Soil total P includes organic and inorganic P. Chemical sequential fractionation (CSF) methods with different chemical extraction solvents are often used to determine different forms of P in soils. Despite the extensive use of these CSF procedures, there are obvious shortcomings, e.g. less accurately distinguishing inorganic and organic forms of P. Nuclear magnetic resonance (NMR) can be used to identify exactly molecular forms of P in soils. Some reports of31P-NMR technique to study soil P forms and transformation were reviewed in this paper, and advances in the preparation process of soil samples and31P-NMR analysis parameters were summarized. Two-dimensional31P-NMR spectroscopy will be developed to improve P fractionation in quantification in soils.
soil phosphorus forms; chemical sequential fractionation; soil phosphorus fractions;
2016-02-23 接受日期:2016-08-11
國家重點基礎研究發(fā)展計劃(973計劃) 項目(2013CB127402)資助。
汪洪(1970—),男,安徽桐城人,博士,研究員,主要從事植物微量元素營養(yǎng)、土壤磷與農(nóng)化測試技術研究工作。
Tel:010-82105021;E-mail:wanghong01@caas.cn