蹇志和
【摘要】數(shù)學(xué)就是一門(mén)強(qiáng)調(diào)邏輯思維的學(xué)科,它來(lái)自生活,又為生活服務(wù),建模意識(shí)和創(chuàng)新能力既是近幾年高考熱點(diǎn)問(wèn)題,又有現(xiàn)實(shí)的意義和需要。筆者就自己的教學(xué)體會(huì),從理論上及實(shí)踐上闡述:(1)構(gòu)建數(shù)學(xué)建模意識(shí)的基本方法;(2)通過(guò)建模教學(xué),培養(yǎng)學(xué)生的創(chuàng)新能力。
【關(guān)鍵詞】高中數(shù)學(xué) 數(shù)學(xué)模型方法 數(shù)學(xué)建模意識(shí)
【中圖分類(lèi)號(hào)】G633.6 【文獻(xiàn)標(biāo)識(shí)碼】A 【文章編號(hào)】2095-3089(2017)10-0151-01
數(shù)學(xué)模型,是指對(duì)于現(xiàn)實(shí)世界的某一特定研究對(duì)象,為了某個(gè)特定的目的,在做了一些必要的簡(jiǎn)化假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)工具,并通過(guò)數(shù)學(xué)語(yǔ)言表述出來(lái)的一個(gè)數(shù)學(xué)結(jié)構(gòu)。各種數(shù)學(xué)公式、方程式、定理、理論體系等等,都是一些具體的數(shù)學(xué)模型。
一、數(shù)學(xué)建模的概念與數(shù)學(xué)建?;痉椒?/p>
我們的數(shù)學(xué)教學(xué)說(shuō)到底實(shí)際上就是教給學(xué)生前人給我們構(gòu)建的一個(gè)個(gè)數(shù)學(xué)模型和怎樣構(gòu)建模型的思想方法,以使學(xué)生能運(yùn)用數(shù)學(xué)模型解決數(shù)學(xué)問(wèn)題和實(shí)際問(wèn)題。具體的講,數(shù)學(xué)模型方法的操作程序大致上為:
由此,我們可以看到,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)建模解決實(shí)際問(wèn)題的能力關(guān)鍵是把實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,必須首先通過(guò)觀察分析、提煉出實(shí)際問(wèn)題的數(shù)學(xué)模型,然后再把數(shù)學(xué)模型納入某知識(shí)系統(tǒng)去處理,這不但要求學(xué)生有一定的抽象能力,而且要有相當(dāng)?shù)挠^察、分析、綜合、類(lèi)比能力。學(xué)生的這種能力的獲得不是一朝一夕的事情,需要把數(shù)學(xué)建模意識(shí)貫穿在教學(xué)的始終,也就是要不斷的引導(dǎo)學(xué)生用數(shù)學(xué)思維的觀點(diǎn)去觀察、分析和表示各種事物關(guān)系、空間關(guān)系和數(shù)學(xué)信息,從紛繁復(fù)雜的具體問(wèn)題中抽象出我們熟悉的數(shù)學(xué)模型,進(jìn)而達(dá)到用數(shù)學(xué)模型來(lái)解決實(shí)際問(wèn)題,使數(shù)學(xué)建模意識(shí)成為學(xué)生思考問(wèn)題的方法和習(xí)慣。
二、構(gòu)建數(shù)學(xué)建模意識(shí)的基本途徑
1.為培養(yǎng)學(xué)生的建模意識(shí),我們數(shù)學(xué)教師應(yīng)首先需要提高自己的建模意識(shí)。這不僅意味著我們?cè)诮虒W(xué)內(nèi)容和要求上的變化,更意味著教育思想和教學(xué)觀念的更新。我們要努力鉆研如何把中學(xué)數(shù)學(xué)知識(shí)應(yīng)用于現(xiàn)實(shí)生活。數(shù)學(xué)建模教學(xué)還應(yīng)與現(xiàn)行教材結(jié)合起來(lái)研究。教師應(yīng)研究在各個(gè)教學(xué)章節(jié)中可引入哪些模型問(wèn)題,如講立體幾何時(shí)可引入正方體模型或長(zhǎng)方體模型把相關(guān)問(wèn)題放入到這些模型中來(lái)解決;要經(jīng)常滲透建模意識(shí),學(xué)生可以從各類(lèi)大量的建模問(wèn)題中逐步領(lǐng)悟到數(shù)學(xué)建模的廣泛應(yīng)用,從而激發(fā)學(xué)生去研究數(shù)學(xué)建模的興趣,提高他們運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行建模的能力。
2.在教學(xué)中還要結(jié)合專(zhuān)題討論與建模法研究。我們可以選擇適當(dāng)?shù)慕?zhuān)題,如“代數(shù)法建?!薄ⅰ皥D解法建?!?、“直(曲)線擬合法建?!?,通過(guò)討論、分析和研究,熟悉并理解數(shù)學(xué)建模的一些重要思想,掌握建模的基本方法。
三、以“構(gòu)造”為載體,培養(yǎng)學(xué)生的創(chuàng)新能力
我們都知道“建模”就是構(gòu)造模型,但模型的構(gòu)造并不是一件容易的事,又需要有足夠強(qiáng)的構(gòu)造能力,而學(xué)生構(gòu)造能力的提高則是學(xué)生創(chuàng)造性思維和創(chuàng)造能力的基礎(chǔ):創(chuàng)造性地使用已知條件,創(chuàng)造性地應(yīng)用數(shù)學(xué)知識(shí)。
例1:2016年國(guó)家已全面放開(kāi)“二胎”政策,但考慮到經(jīng)濟(jì)問(wèn)題,很多家庭不打算生育二孩,為了解家庭收入與生育二孩的意愿是否有關(guān),現(xiàn)隨機(jī)抽查了新疆某市50個(gè)一孩家庭,它們中有二孩計(jì)劃的家庭頻數(shù)分布如下表:
(I)由以上統(tǒng)計(jì)數(shù)據(jù)完成如下2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為是否有二孩計(jì)劃與家庭收入有關(guān)?說(shuō)明你的理由。
解:依題意得:a=12,b=18,c=14,d=6
因此有95%的把握認(rèn)為是否有二孩計(jì)劃與家庭收入有關(guān)。
綜上,只要我們?cè)诮虒W(xué)中仔細(xì)地觀察,精心的設(shè)計(jì),通過(guò)現(xiàn)象除去非本質(zhì)的因素,從中構(gòu)造出最基本的數(shù)學(xué)模型,使問(wèn)題回到已知的數(shù)學(xué)知識(shí)領(lǐng)域,就能培養(yǎng)出學(xué)生的創(chuàng)新能力。我們的一切教學(xué)活動(dòng)必須以調(diào)動(dòng)學(xué)生的主觀能動(dòng)性,培養(yǎng)學(xué)生的創(chuàng)新思維為出發(fā)點(diǎn),引導(dǎo)學(xué)生自主活動(dòng),自覺(jué)的在學(xué)習(xí)過(guò)程中構(gòu)建數(shù)學(xué)建模意識(shí),只有這樣才能使學(xué)生分析和解決問(wèn)題的能力得到長(zhǎng)足的進(jìn)步,也只有這樣才能真正提高學(xué)生的創(chuàng)新能力,使學(xué)生學(xué)到有用的數(shù)學(xué)。
參考文獻(xiàn):
[1]章建躍.數(shù)學(xué)學(xué)習(xí)與智慧發(fā)展[J].中學(xué)數(shù)學(xué)教學(xué)參考, 2015(7):4-10.
[2]毛良忠.例談問(wèn)題探求中的信息解構(gòu)與知識(shí)建構(gòu)[J].中學(xué)數(shù)學(xué)教學(xué)參考,2015(11):27-30.
[3]何拓程.從高考數(shù)學(xué)北京卷客觀題的壓軸題說(shuō)起[J].中學(xué)數(shù)學(xué)教學(xué)參考,2015(11):47-50.