沈方琳, 黃雙成,侯朋晨,耿安麗, 阮文權(quán)*
1(江南大學(xué) 環(huán)境與土木工程學(xué)院,江蘇 無錫,214122) 2(義安理工學(xué)院,生命科學(xué)與化學(xué)技術(shù)實(shí)驗(yàn)室,新加坡) 3(江蘇省厭氧生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫,214122)
釀酒酵母高效自主復(fù)制區(qū)的篩選與鑒定
沈方琳1,3, 黃雙成2,侯朋晨2,耿安麗2, 阮文權(quán)1,3*
1(江南大學(xué) 環(huán)境與土木工程學(xué)院,江蘇 無錫,214122) 2(義安理工學(xué)院,生命科學(xué)與化學(xué)技術(shù)實(shí)驗(yàn)室,新加坡) 3(江蘇省厭氧生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,江蘇 無錫,214122)
在酵母表達(dá)過程中,傳統(tǒng)的表達(dá)載體存在著拷貝數(shù)低以及穩(wěn)定性差的缺點(diǎn)。因此,找到一個(gè)可用于構(gòu)建復(fù)制整合型載體的高效酵母自動復(fù)制區(qū)(Autonomously Replicating Sequence,ARS)是解決問題的關(guān)鍵。研究中,從釀酒酵母基因組中擴(kuò)增得到4種不同的ARS(ARS304、ARS315、ARS735、ARS1512), 然后連接到整合載體pNTS2K中,得到4種復(fù)制整合型載體(pNTS2K-ARS304、pNTS2K-ARS315、 pNTS2K-ARS735、pNTS2K-ARS1512)。經(jīng)電轉(zhuǎn)化后,4種轉(zhuǎn)化子(36a(pNTS2K-ARS304)、36a(pNTS2K-ARS315)、36a(pNTS2K-ARS735)、36a(pNTS2K-ARS1512))都能在含有300 μg/mL G418的YPD平板上生長。然而,只有轉(zhuǎn)化子36a(pNTS2K-ARS315)能在含有500 μg/mL G418的YPD液體培養(yǎng)基里較快生長。經(jīng)過G418耐受性檢測后,36a(pNTS2K-ARS315)仍能在含有1 mg/mL G418的YPD培養(yǎng)基中很好地生長。此外,通過質(zhì)粒pNTS2K-ARS315表達(dá)熒光蛋白,其表達(dá)效果高于普通商業(yè)質(zhì)粒。實(shí)驗(yàn)結(jié)果證明,4種復(fù)制區(qū)都能在釀酒酵母中獨(dú)立自主復(fù)制,其中ARS315復(fù)制能力最強(qiáng)。因此,ARS315可用于構(gòu)建高拷貝且穩(wěn)定的重組質(zhì)粒,為構(gòu)建高表達(dá)且穩(wěn)定的工程酵母菌株奠定了基礎(chǔ)。
釀酒酵母;自動復(fù)制區(qū);高拷貝復(fù)制整合型質(zhì)粒;熒光蛋白
在酵母表達(dá)蛋白以及其他有機(jī)產(chǎn)物的過程中,通過增強(qiáng)轉(zhuǎn)化過程中的酶活性來加快產(chǎn)物生成是研究者公認(rèn)的觀點(diǎn),而高表達(dá)特異性酶是解決問題的主要途徑。尋找1個(gè)新穎匹配的啟動子或構(gòu)建1個(gè)高效表達(dá)系統(tǒng)是非常困難且需要大量的時(shí)間。向宿主細(xì)胞中引入大量目的基因是最先廣泛采用的方法。在酵母表達(dá)過程中,傳統(tǒng)的表達(dá)載體YEP,YCP和YIP常常被用來引入外源基因。但是,YCP和YIP存在低拷貝的缺點(diǎn),而YEP表達(dá)不穩(wěn)定[1]。高拷貝數(shù)地將目的基因整合入酵母基因組是高表達(dá)且穩(wěn)定的必要途徑。酵母自動復(fù)制區(qū)作為酵母染色體復(fù)制起點(diǎn),在染色體復(fù)制過程中起著至關(guān)重要的作用[2-3]。如果這些位點(diǎn)發(fā)生突變會導(dǎo)致ARS失去活性,進(jìn)而影響到復(fù)制起始的功能[4]。其活性還可能與其他諸如ARS側(cè)翼序列特征,染色體定位,染色體修飾等因素有關(guān)。每條染色體復(fù)制都是在間隔40~100 kb的多個(gè)位點(diǎn)起始的,每個(gè)起點(diǎn)在1個(gè)細(xì)胞周期的中期S期相繼被激活,起始1次染色體復(fù)制[5-7]。在酵母基因組中,存在著300多個(gè)自動復(fù)制區(qū),而找到高效的自動復(fù)制區(qū)是構(gòu)建高拷貝質(zhì)粒的前提。本實(shí)驗(yàn)在釀酒酵母整合載體pNTS2K中的NdeI和EcoRI之間(見圖1)分別引入4種ARS,篩選出高效的復(fù)制區(qū)ARS315,從而構(gòu)建了一種高效的復(fù)制整合型載體pNTS2K-ARS315。通過質(zhì)粒pNTS2K-ARS315表達(dá)熒光蛋白,其表達(dá)效果高于普通商業(yè)質(zhì)粒。因此,這種質(zhì)??梢栽贕418抗性基因KanMX兩側(cè),2個(gè)rDNA片段之間(見圖1)引入多個(gè)表達(dá)框。隨著G418抗性的選擇壓力,盡可能多的將外源基因表達(dá)框整合在酵母基因組多拷貝rDNA區(qū)域,為以后外源基因的高效穩(wěn)定表達(dá)奠定了基礎(chǔ)。
圖1 pNTS2K質(zhì)粒圖譜Fig.1 pNTS2K plasmid map
1.1 材料
1.1.1 質(zhì)粒與菌種
釀酒酵母整合載體pNTS2K由本實(shí)驗(yàn)室構(gòu)建,以pUC19為骨架,引入rDNA 整合區(qū)片段及KanMX表達(dá)框,如圖1所示。大腸桿菌(E.coli)DH5α,釀酒酵母(S.cerevisiae)Juk36a (URA3缺陷型)由本實(shí)驗(yàn)室保存。
1.1.2 酶和試劑
酵母基因組提取試劑盒、DNA聚合酶以及Phusion高保真酶購買于Thermo Scientific 公司;限制性內(nèi)切酶和T4連接酶購買于NEB公司;LB培養(yǎng)基、YPD培養(yǎng)基、氨芐青霉素(Amp)以及G418購買于Sigma公司,引物也由Sigma 公司合成。
1.2 方法
1.2.1 質(zhì)粒的構(gòu)建
用酵母基因組提取試劑盒提取Juk36a基因組DNA。由于ARS活性可能與諸如ARS側(cè)翼序列特征、染色體定位和染色體修飾等因素有關(guān)[8],所以根據(jù)NCBI上S288c基因組序列,針對各ARS序列上下游200 bp處設(shè)計(jì)4對特異性引物(見表1)分別擴(kuò)增ARS304、ARS315、ARS735和ARS1512片段,并在上下游引物5’末端引入NdeI和EcoRI酶切位點(diǎn)。PCR擴(kuò)增條件為98 ℃ 30 s;98 ℃ 10 s, 60 ℃ 20 s, 72 ℃ 1 min, 循環(huán)30次;72 ℃ 2 mins;4 ℃保存。用1%瓊脂糖凝膠電泳鑒定PCR產(chǎn)物,用膠回收試劑盒回收特異性條帶。用限制性內(nèi)切酶NdeI和EcoRI雙酶切膠回收產(chǎn)物和pNTS2K質(zhì)粒。純化酶切反應(yīng)液后,用T4連接酶連接,轉(zhuǎn)化DH5α感受態(tài)細(xì)胞。經(jīng)菌落PCR鑒定后,挑取陽性轉(zhuǎn)化子37 ℃過夜培養(yǎng)。然后提取質(zhì)粒,并用NdeI和EcoRI酶切鑒定。
表1 PCR引物序列
1.2.2 酵母轉(zhuǎn)化
將所得到的正確質(zhì)粒pNTS2K-ARS304、pNTS2K-ARS315、pNTS2K-ARS 735和 pNTS2K-ARS1512(如表2所示)用Nanodrop檢測濃度后,分別稀釋到100 ng/μL。按照Gene Pulser XcellTMElectroporation System 標(biāo)準(zhǔn)方法,分別將5 μL質(zhì)粒加入到40 μL酵母感受態(tài)細(xì)胞中進(jìn)行電轉(zhuǎn)[9],然后分別涂布于含有300 μg/mL G418的YPD平板上,培養(yǎng)3天后挑取轉(zhuǎn)化子。轉(zhuǎn)化率=轉(zhuǎn)化子數(shù)/質(zhì)粒DNA質(zhì)量。
表2 質(zhì)粒
1.2.3 轉(zhuǎn)化子的復(fù)篩及比較
最終OD600 nm的測量是衡量細(xì)菌產(chǎn)量的標(biāo)準(zhǔn),也是細(xì)菌生長率的體現(xiàn),是外源基因高表達(dá)的必要前提[10]。因此,從生長出的不同轉(zhuǎn)化子中(如表3所示)分別挑出5個(gè)最大的單克隆于2 mL YPD培養(yǎng)基中培養(yǎng)過夜,以O(shè)D600nm為0.05轉(zhuǎn)接到5 mL含有500 μg/mL G418的YPD培養(yǎng)基中培養(yǎng)48 h,測OD600nm吸光值。
表3 菌株
1.2.4 復(fù)制能力的比較及檢測
將生長能力最強(qiáng)的Juk36a(pNTS2K-ARS315)菌株分別接種于含有不同梯度的G418的YPD培養(yǎng)基的24孔培養(yǎng)板中,每孔培養(yǎng)體積為0.6 mL,放入InfiniteF200PRO (TECAN)中監(jiān)測40 h得到生長曲線。
1.2.5 質(zhì)粒的應(yīng)用及檢測
將得到的復(fù)制能力最強(qiáng)的質(zhì)粒pNTS2K-ARS315為骨架,以本實(shí)驗(yàn)室普通商業(yè)酵母表達(dá)載體pPY1(以2micron 為復(fù)制區(qū),由本實(shí)驗(yàn)室保存)作為對照,分別引入熒光蛋白表達(dá)框。經(jīng)過酶切、連接,轉(zhuǎn)化到DH5α感受態(tài)細(xì)胞中。經(jīng)菌落PCR鑒定后,挑取陽性轉(zhuǎn)化子37℃過夜培養(yǎng),提取重組質(zhì)粒pNTS2K-ARS315-EGFP和pPY1-EGFP(如表2所示)。然后將得到的質(zhì)粒轉(zhuǎn)化到釀酒酵母Juk36a(URA3缺陷型)中,檢測轉(zhuǎn)化子36a(pNTS2K-ARS315-EGFP)和36a(pPY1-EGFP)(如表3所示)的熒光強(qiáng)度。
2.1 ARS片段的獲得及質(zhì)粒的構(gòu)建
以釀酒酵母Juk36a基因組為模板擴(kuò)增ARS304(930 bp),ARS315(584 bp),ARS735(844 bp)和ARS1512(1042 bp)4條序列,采用1%的瓊脂糖凝膠電泳檢測PCR產(chǎn)物結(jié)果如圖2所示。從圖2中可以看出,目的條帶單一,大小與預(yù)期結(jié)果一致。
M-DNA標(biāo)記;1-ARS304 PCR片段;2-ARS315 PCR片段;3-ARS735 PCR片段;4-ARS1512 PCR片段圖2 自動復(fù)制區(qū)序列 PCR擴(kuò)增產(chǎn)物瓊脂糖凝膠電泳圖Fig.2 Agarose gel electrophoresis of ARS PCR production
將PCR產(chǎn)物回收后,分別用NdeI和EcoRI雙酶切,然后連接到整合載體pNTS2K上,轉(zhuǎn)化到大腸桿菌DH5α中,進(jìn)行大腸桿菌菌落PCR鑒定,挑取鑒定后的陽性克隆培養(yǎng),提取質(zhì)粒,NdeI和EcoRI雙酶切鑒定結(jié)果如圖3所示。
從圖3中可以看出,各重組質(zhì)粒經(jīng)雙酶切得到2條帶,對照質(zhì)粒pNTS2K得到1條帶,且大小都與預(yù)期相符.同時(shí),將所得陽性質(zhì)粒送往公司測后,NCBI比對與S288C釀酒酵母相關(guān)ARS序列一致。
M-DNA標(biāo)記;C-對照質(zhì)粒pNTS2K;1-質(zhì)粒pNTS2K-ARS304;2-質(zhì)粒pNTS2K-ARS315;3-質(zhì)粒pNTS2K-ARS735;4-質(zhì)粒pNTS2K-ARS1512圖3 重組質(zhì)粒酶切鑒定瓊脂糖凝膠電泳圖Fig.3 Digest verification of recombinant plasmid
2.2 酵母轉(zhuǎn)化子的獲得
在相同條件下,由于單細(xì)胞內(nèi)質(zhì)??截悢?shù)的多少直接影響細(xì)胞抗性能力的強(qiáng)弱,所以酵母轉(zhuǎn)化效率以及轉(zhuǎn)化子單克隆大小是鑒定ARS自主復(fù)制活性強(qiáng)弱的直接指標(biāo)。本實(shí)驗(yàn)以整合質(zhì)粒pNTS2K為陽性對照,將構(gòu)建好的含ARS復(fù)制區(qū)的復(fù)制整合型質(zhì)粒pNTS2K-304、pNTS2K-315、pNTS2K-735和pNTS2K-1512電轉(zhuǎn)化釀酒酵母Juk36a后,在YPD平板上篩選耐G418的轉(zhuǎn)化子。根據(jù)酵母轉(zhuǎn)化率以及克隆大小初步評估4種復(fù)制區(qū)自主復(fù)制能力,結(jié)果見圖4。從圖4中可以看出,4種重組質(zhì)粒轉(zhuǎn)化酵母后都能在含有300 μg/mL G418的YPD平板上產(chǎn)生大量的轉(zhuǎn)化子,且克隆明顯多且大于對照組。還可以看出,轉(zhuǎn)化子36a(pNTS2K-ARS315)和36a(pNTS2K-ARS1512)克隆大小較其他2組要大。上述結(jié)果說明這4條ARS都具有獨(dú)立自主復(fù)制能力,且ARS315和ARS1512復(fù)制能力可能較強(qiáng)。經(jīng)統(tǒng)計(jì)分析,各種重組質(zhì)粒轉(zhuǎn)化率如圖5所示。從圖5中可以看出,4種重組質(zhì)粒的轉(zhuǎn)化率(轉(zhuǎn)化子數(shù)/ng DNA)分別為63,57,41和32,明顯高于對照組。對照組pNTS2K的復(fù)制依賴于其整合到染色體DNA上,轉(zhuǎn)化率低(5個(gè)轉(zhuǎn)化子/ng DNA)。這也初步說明了4條ARS都具有獨(dú)立自主復(fù)制能力。轉(zhuǎn)化率只是代表質(zhì)粒是否存在于細(xì)胞中,可初步地判斷質(zhì)粒在細(xì)胞中的穩(wěn)定性,而單克隆的大小及抗性的強(qiáng)弱則代表拷貝數(shù)的多少及穩(wěn)定性。所以,雖然質(zhì)粒pNTS2K-315 的轉(zhuǎn)化率略低于pNTS2K-304,但轉(zhuǎn)化子單克隆明顯較大,這說明質(zhì)粒pNTS2K-315以更多的拷貝存在于單細(xì)胞中,表達(dá)特異性蛋白更多,對G418耐受性更強(qiáng)。這進(jìn)一步說明了ARS315復(fù)制能力可能會更強(qiáng)。
質(zhì)粒pNTS2K的酵母轉(zhuǎn)化子;36a(pNTS2K-ARS304):質(zhì)粒pNTS2K-ARS304的酵母轉(zhuǎn)化子;36a(pNTS2K-ARS315):質(zhì)粒pNTS2K-ARS315的酵母轉(zhuǎn)化子;36a(pNTS2K-ARS735):質(zhì)粒pNTS2K-ARS735的酵母轉(zhuǎn)化子;36a(pNTS2K-ARS1512):質(zhì)粒pNTS2K-ARS1512的酵母轉(zhuǎn)化子圖4 轉(zhuǎn)化子在含300 μg/mL G418的YPD平板上生長情況Fig.4 Transformants growth on the YPD plate with 300 μg/mL
C-對照質(zhì)粒pNTS2K轉(zhuǎn)化率;ARS304-重組質(zhì)粒pNTS2K-ARS304轉(zhuǎn)化率;ARS315-重組質(zhì)粒pNTS2K-ARS315轉(zhuǎn)化率;ARS735-重組質(zhì)粒pNTS2K-ARS735轉(zhuǎn)化率;ARS1512-重組質(zhì)粒pNTS2K-ARS1512轉(zhuǎn)化率圖5 重組質(zhì)粒轉(zhuǎn)化率(轉(zhuǎn)化率=轉(zhuǎn)化子數(shù)/質(zhì)粒DNA的質(zhì)量)Fig.5 Transformation rate of recombinant plasmids (Transformation rate=Number of transformants/quality of plasmid DNA)
2.3 四種轉(zhuǎn)化子抗性生長比較
為了進(jìn)一步篩選出復(fù)制能力最強(qiáng)的ARS,從所得到的轉(zhuǎn)化子中各挑取5個(gè)最大的單克隆于2 mL YPD 培養(yǎng)基中培養(yǎng)過夜,以O(shè)D600nm為0.05轉(zhuǎn)接到含有500 μg/mLG418的5 mL YPD培養(yǎng)基中培養(yǎng)48 h后,分別測OD600nm處的吸光值,結(jié)果如圖6所示。含pNTS2K-ARS315重組質(zhì)粒的轉(zhuǎn)化子生長OD最高,平均為8.55;對照組pNTS2K質(zhì)粒的轉(zhuǎn)化子生長OD最低,平均為0.57。這也進(jìn)一步說明了4條ARS都具有獨(dú)立自主復(fù)制能力,其中ARS315復(fù)制能力最強(qiáng)。
C-對照轉(zhuǎn)化子36a(PNTS2K)吸光值;ARS304-轉(zhuǎn)化子36a(pNTS2K-ARS304)吸光值;ARS315-轉(zhuǎn)化子36a(pNTS2K-ARS315)吸光值;ARS735-轉(zhuǎn)化子36a(pNTS2K-ARS735)吸光值;ARS1512-轉(zhuǎn)化子36a(pNTS2K-ARS1512)吸光值圖6 四種轉(zhuǎn)化子抗性生長比較(該數(shù)值為5組獨(dú)立實(shí)驗(yàn)的平均值和標(biāo)準(zhǔn)差)Fig.6 The resistance comparison of the four transformants (Values are given as the average and standard deviation of five independent experiments)
2.4 ARS315復(fù)制能力的檢測
為了檢測ARS315的獨(dú)立自主復(fù)制能力,將轉(zhuǎn)化子36a(pNTS2K-ARS315)接種于含不同梯度的G418的YPD培養(yǎng)基中,在InfiniteF200PRO中監(jiān)測生長曲線,結(jié)果如圖7所示。從圖7可以看出,36a(pNTS2K-ARS315)在含1 mg/mL G418以下濃度的YPD中均能很好地生長,在含1 mg/mL G418以上濃度的YPD中生長明顯受到抑制。這說明pNTS2K-ARS315能夠在釀酒酵母中高表達(dá)且能抵御1 mg/mL 高濃度G418的毒性,進(jìn)一步說明了pNTS2K-ARS315有很強(qiáng)的復(fù)制能力且以高拷貝的形式存在于酵母細(xì)胞中。
圖7 轉(zhuǎn)化子36a (pNTS2K-ARS315)不同濃度梯度G418耐受性檢測(該數(shù)值為5組獨(dú)立實(shí)驗(yàn)的平均值和標(biāo)準(zhǔn)差)Fig.7 The tolerance of transformant 36a (pNTS2K-ARS315) to different concentrations of G418(Values are given as the average and standard deviation of five independent experiments)
2.5 復(fù)制整合型載體pNTS2K-ARS315表達(dá)能力檢測
為了檢測質(zhì)粒pNTS2K-ARS315是否能正常表達(dá)其它蛋白及其表達(dá)能力。將得到的含熒光蛋白的質(zhì)粒pNTS2K-ARS315-EGFP和pPY1-EGFP轉(zhuǎn)化酵母后,都能得到發(fā)熒光的轉(zhuǎn)化子36a(pNTS2K-ARS315-EGFP)和36a(pPY1-EGFP),如圖8所示。
圖8 轉(zhuǎn)化子在熒光顯微鏡下,放大1 000倍的發(fā)光狀態(tài)Fig.8 The fluorescence performance of transformants under fluorescence microscope magnified 1 000 times
在熒光顯微鏡下,以ARS315為復(fù)制區(qū)的表達(dá)載體表達(dá)的熒光蛋白的轉(zhuǎn)化子36a(pNTS2K-ARS315-EGFP)產(chǎn)生的熒光強(qiáng)度明顯較強(qiáng)。此外,使用流式細(xì)胞儀進(jìn)一步檢測兩種轉(zhuǎn)化子,結(jié)果如圖9所示,從圖9可以看出,轉(zhuǎn)化子36a(pNTS2K-ARS315-EGFP)所產(chǎn)生的帶熒光的細(xì)胞較36a(pPY1-EGFP) 明顯多且強(qiáng)[11]。這說明以高效復(fù)制能力的ARS315為復(fù)制區(qū)的表達(dá)載體表達(dá)水平更高。
圖9 流式細(xì)胞儀檢測轉(zhuǎn)化子熒光強(qiáng)度Fig.9 The fluorescence idensity of transformants measured by flow cytometry
為了進(jìn)一步檢查表達(dá)水平的穩(wěn)定性,將帶有熒光的轉(zhuǎn)化子分別挑取10個(gè)單克隆,接種于YPD培養(yǎng)基中培養(yǎng)48 h,在InfiniteF200PRO中檢測比熒光強(qiáng)度(FIC)和OD595nm,結(jié)果如圖10所示。從圖10可以看出,轉(zhuǎn)化子36a(pNTS2K-ARS315-EGFP)在YPD中培養(yǎng)48h后,產(chǎn)生的比熒光強(qiáng)度較36a(pPY1-EGFP)強(qiáng)3倍。這也進(jìn)一步證明了pNTS2K-ARS315有很強(qiáng)的復(fù)制能力且以高拷貝的形式穩(wěn)定存在于酵母細(xì)胞中。
圖10 轉(zhuǎn)化子比熒光強(qiáng)度的檢測(該數(shù)值為10個(gè)單克隆菌株獨(dú)立實(shí)驗(yàn)的平均值和標(biāo)準(zhǔn)差)Fig.10 The measurement of transformants fluorescence density rate (Values are given as the average and standard deviation of ten single colonies independent experiments)
在釀酒酵母的每個(gè)復(fù)制周期中,實(shí)際被激活的復(fù)制區(qū)較少。雖然大多數(shù)ARS都能被復(fù)制起始識別復(fù)合體(Origin recognition complex, ORC)結(jié)合[12],但其中有些復(fù)制區(qū)被激活的頻率比其他要高,ARS315能在約90%的細(xì)胞循環(huán)中啟動復(fù)制[13]。當(dāng)這些復(fù)制區(qū)克隆到載體上時(shí),這些序列也能行使獨(dú)立自主復(fù)制的功能[14]。而來自轉(zhuǎn)座子Tn903的G418抗性基因KanMX應(yīng)用較為廣泛,并能通過提高G418的濃度篩選出高拷貝的轉(zhuǎn)化子[15]。構(gòu)建一種既能獨(dú)立自主復(fù)制,又能將外源基因整合到染色體的載體,優(yōu)點(diǎn)是可以自由調(diào)節(jié)外源基因在宿主中的拷貝數(shù)[16],從而達(dá)到代謝路徑通暢且代謝平衡。本實(shí)驗(yàn)證實(shí)四種復(fù)制區(qū)都能在釀酒酵母中獨(dú)立自主復(fù)制,其中ARS315復(fù)制能力最強(qiáng),其轉(zhuǎn)化子36a(pNTS2K-ARS315)能在含高達(dá)1 mg/mL G418的YPD培養(yǎng)基中正常生長, 而且該質(zhì)粒能高效表達(dá)熒光蛋白。因此,ARS315可用于構(gòu)建高拷貝且穩(wěn)定的重組質(zhì)粒,為釀酒酵母進(jìn)行基因工程改造建立了技術(shù)平臺。
[1] YAMADA R,TANAKA T,OGINO C,et al.Gene copy number and polyploidy on products formation in yeast[J].Applied Microbiology and Biotechnology, 2010,88(4):849-857.
[2] DESHPANDE A M,NEWLON C S.The ARS consensus sequence is required for chromosomal origin function inSaccharomycescerevisiae[J]. Molecular and Cellular Biology,1992,12(10):4 305-4 313.
[3] YANG C,THEIS J F,NEWLON C S.Conservation of ARS elements and chromosomal DNA replication origins on chromosomes III ofSaccharomycescerevisiaeandS.carlsbergensis[J].Genetics,1999,152(3):933-941.
[4] THEIS J F,NEWLON C S.Two compound replication origins inSaccharomycescerevisiaecontain redundant origin recognition complex binding sites[J].Molecular and Cellular Biology, 2001,21(8):2 790-2 801.
[5] FENG W, COLLINGWOOD D, BOECK M E,et al.Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication[J].Nature Cell Biology, 2006,8(2):148-155.
[6] YABUKI N,TERASHIMA H,KITADA K.Mapping of early firing origins on a replication profile of budding yeast[J].Genes to Cells,2002,7(8):781-789.
[7] WYRICK J J,APARICIO J G,CHEN T, et al.Genome-wide distribution of ORC and MCM proteins inS.cerevisiae: high-resolution mapping of replication origins[J].Science,2001,294(5 550):2 357-2 360.
[8] EATON M L,GALANI K,KANG S,et al.Conserved nucleosome positioning defines replication origins[J].Genes & Development,2010,24(8):748-753.
[9] SUGA M,HATAKEYAMA T.High-efficiency electroporation by freezing intact yeast cells with addition of calcium[J]. Current Genetics,2003,43(3):206-211.
[10] KIM B, DU J, ERIKSEN D T, et al. Combinatorial design of a highly efficient xylose-utilizing pathway inSaccharomycescerevisiaefor the production of cellulosic biofuels[J]. Applied and Environmental Microbiology, 2013, 79(3): 931-941.
[11] SHI Shuo-bo,LIANG You-yun,ZHANG Ming-zi M,et al.A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways inSaccharomycescerevisiae[J].Metabolic Engineering,2016,33: 19-27.
[12] SANTOCANALE C,DIFFLEY J F.ORC-and Cdc6-dependent complexes at active and inactive chromosomal replication origins inSaccharomycescerevisiae[J].The EMBO Journal,1996,15(23):6 671.
[13] NEWLON C S, COLLINS I, DERSHOWITZ A, et al. Analysis of replication origin function on chromosome III ofSaccharomycescerevisiae[C].Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Laboratory Press, 1993, 58: 415-423.
[14] VUJCIC M,MILLER C A,KOWALSKI D.Activation of silent replication origins at autonomously replicating sequence elements near the HML locus in budding yeast[J].Molecular and Cellular Biology,1999,19(9):6 098-6 109.
[15] SCORER C A,CLARE J J,MCCOMBIE W R,et al.Rapid selection using G418 of high copy number transformants ofPichiapastorisfor high-level foreign gene expression[J].Nature Biotechnology,1994,12(2):181-184.
[16] SHEN Y, MURAMATSU S I, IKEGUCHI K,et al.Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson's disease[J].Human Gene Therapy,2000,11(11):1 509-1 519.
A high effective autonomous replicative sequence inSaccharomycescerevisiae
SHEN Fang-lin1,3, HUANG Shuang-cheng2, HOU Peng-chen2, GENG An-li2, RUAN Wen-quan1,3*
1(School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China) 2(School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore) 3(Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China)
In the case of yeast expression, low-copy number of transformed genes and low stability are disadvantages of the conventional types of expression vectors. Therefore, finding a high effectiveSaccharomycescerevisiaeautonomously replicative sequence (ARS) that can be used for construction of replicative/ integrated plasmid is significantly important. In this study, four different ARSs (ARS304, ARS315, ARS735, and ARS1512) were amplified fromSaccharomycescerevisiaeand inserted into integrated yeast vector pNTS2K and four plasmids pNTS2K-ARS304, pNTS2K-ARS315, pNTS2K-ARS735, pNTS2K-ARS1512 were obtained. All the four plasmids were successfully transformed intoS.cerevisiaeand all transformants were able to grow on YPD plate containing 300 μg/mL of G418. However, only transformant containing plasmid pNTS2K-ARS315 was able to grow well in the YPD medium containing 500 μg/mL of G418. After G418 tolerance detection, 36a (pNTS2K-ARS315) still could grow well in YPD medium containing 1 mg/mL of G418. Furthermore, the expression of the fluorescent protein by the plasmid pNTS2K-ARS 315 was higher than that by the ordinary commercial plasmid. It can be concluded that all of the four ARSs functioned and the ARS315 had the highest replicate ability inS.cerevisiae. Consequently, ARS315 can be potentially used for high expression and stable recombinant strain construction and metabolic engineering ofS.cerevisiae.
Saccharomycescerevisiae; autonomously replicative sequence; high copy number replicative/ integrated plasmid;fluorescent protein
碩士研究生(阮文權(quán)教授為通訊作者,E-mail: wqruan@jiangnan.edu.cn)。
Science and Engineering Research Council of the Agency for Science, Technology and Research(A*STAR)(029 139 0035)
2016-09-23,改回日期:2016-12-07