国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Ni-W/SiC納米復(fù)合鍍層的制備與其耐蝕性

2017-05-09 01:59:10李保松環(huán)宇星劉林林
腐蝕與防護(hù) 2017年4期
關(guān)鍵詞:晶胞耐蝕性鍍層

張 文,李保松,環(huán)宇星,劉林林,董 嘉

(河海大學(xué) 力學(xué)與材料學(xué)院,南京 211100)

試驗(yàn)研究

Ni-W/SiC納米復(fù)合鍍層的制備與其耐蝕性

張 文,李保松,環(huán)宇星,劉林林,董 嘉

(河海大學(xué) 力學(xué)與材料學(xué)院,南京 211100)

通過(guò)電沉積方法制備了Ni-W/SiC納米復(fù)合鍍層,利用掃描電子顯微鏡(SEM)、能譜分析(EDS)和X射線衍射分析(XRD)研究了SiC含量對(duì)該復(fù)合鍍層結(jié)構(gòu)和性能的影響,采用電化學(xué)方法研究了Ni-W/SiC納米復(fù)合鍍層在質(zhì)量分?jǐn)?shù)為3.5% NaCl溶液中的耐蝕性。結(jié)果表明:SiC納米顆粒能促進(jìn)鍍層晶粒的形核及生長(zhǎng),顯著改變鍍層的晶體結(jié)構(gòu),提高鍍層的硬度、耐磨性及耐蝕性;SiC含量過(guò)低對(duì)鍍層耐磨性提高有限,含量過(guò)高又容易導(dǎo)致SiC納米顆粒團(tuán)聚,影響其分散性,因此當(dāng)SiC的質(zhì)量濃度為6~9 g/L時(shí)所制備的Ni-W/SiC納米復(fù)合鍍層具有最佳的性能。

納米SiC;Ni-W/SiC納米復(fù)合鍍層;電沉積;耐蝕性

隨著復(fù)合電沉積技術(shù)的不斷發(fā)展,納米復(fù)合鍍層被廣泛應(yīng)用于電子、航空航天、海工機(jī)械、石油化工及家用裝飾等領(lǐng)域[1-2]。Ni-W合金因其具有高硬度、低應(yīng)力、優(yōu)異的耐熱和耐蝕性,被廣泛應(yīng)用于海工機(jī)械的防護(hù)[3-4]。Quiroga等[5]研究了碳鋼表面Ni-W鍍層的力學(xué)性能和耐蝕性。結(jié)果表明,在含硫酸鹽電解質(zhì)中,Ni-W鍍層能對(duì)碳鋼提供良好的防護(hù)作用。姚穎悟等[6]研究了電沉積Ni-W合金在NaCl溶液中的腐蝕行為,發(fā)現(xiàn)Ni-W非晶態(tài)合金的耐蝕性遠(yuǎn)優(yōu)于Ni-W晶態(tài)合金的。龔睿等[7]通過(guò)電沉積方法在Cu基體上制備了Ni-W合金鍍層,發(fā)現(xiàn)隨著W含量的增加,Ni-W合金鍍層的耐蝕性明顯提高。Pramod等[8]研究了香草醛對(duì)電沉積Ni-W合金鍍層結(jié)構(gòu)及其耐蝕性的影響。雖然,目前關(guān)于Ni-W合金鍍層的研究取得了許多重要的成果,但對(duì)于Ni-W合金鍍層在多因素嚴(yán)苛條件下的長(zhǎng)效防護(hù)性能研究不多[9-10]。SiC顆粒具有耐高溫、高硬度、耐磨蝕等特點(diǎn),且對(duì)鍍層具有強(qiáng)化作用,能提高鍍層的硬度、耐磨性及耐蝕性[11-12]。本工作采用SiC納米顆粒對(duì)Ni-W合金鍍層進(jìn)行改性,制備了耐蝕、耐磨的Ni-W/SiC納米復(fù)合鍍層,并研究了SiC含量對(duì)復(fù)合鍍層結(jié)構(gòu)及其耐蝕性的影響。

1 試驗(yàn)

1.1 試樣制備

電沉積法制備Ni-W/SiC納米復(fù)合鍍層(以下稱復(fù)合鍍層)和Ni-W合金鍍層。電解液組成為:0.15 mol/L NiSO4·6H2O,0.2 mol/L Na2WO4·2H2O,0.35 mol/L Na3C6H5O7·2H2O,0.5 mol/L NH4Cl。在電磁攪拌下向電解液中分別加入0,3,6,9,12 g/L粒徑為150 nm的SiC納米顆粒,攪拌24 h。以鎳板為陽(yáng)極,銅片為陰極,依次經(jīng)過(guò)打磨、拋光、清洗、晾干等步驟得到表面平整、光滑的待鍍銅基體。通過(guò)水浴加熱控制電沉積溫度為60 ℃,用氫氧化鈉溶液調(diào)節(jié)電解液pH至8.5。電沉積試驗(yàn)在250 mL電解槽中進(jìn)行,采用DKKII電源為電沉積電源,兩極距離為35 mm,電流密度為1~4 A/dm2,試驗(yàn)過(guò)程中不斷進(jìn)行電磁攪拌。

1.2 試驗(yàn)方法

采用HITACHI-S3400N型掃描電子顯微鏡(SEM)觀察各鍍層的微觀形貌;利用Oxford INCA能譜儀(EDS)分析各鍍層的組成元素及含量;通過(guò)德國(guó)布魯克D8Advance型X射線衍射儀(XRD)分析各鍍層的化學(xué)成分和組織結(jié)構(gòu),其中輻射源為銅靶Kα射線(λ=0.154 05 nm),工作電壓40 kV,掃描速率10 (°)·min-1,掃描范圍(2θ)20°~100°;采用劃痕試驗(yàn)來(lái)檢測(cè)各鍍層與基體之間的結(jié)合強(qiáng)度。

電化學(xué)試驗(yàn)采用三電極體系:工作電極為各鍍層試樣(工作面積10 mm×10 mm,非工作面用環(huán)氧樹脂密封),輔助電極為鉑電極,參比電極為飽和甘汞電極(SCE)。試驗(yàn)前通氮?dú)?0 min,通過(guò)極化曲線和電化學(xué)阻抗譜(EIS)測(cè)試樣在3.5% NaCl(質(zhì)量分?jǐn)?shù))溶液中的耐蝕性。極化掃描速率為1 mV/s;EIS掃描頻率0.01 Hz~100 kHz,振幅10 mV。以上試驗(yàn)均在室溫下進(jìn)行。

2 結(jié)果與討論

2.1 鍍層表面微觀形貌及元素組成

由圖1可見,隨電解液中SiC含量的增加,復(fù)合鍍層的晶粒逐步增大,局部表面含有晶胞聚集的顆粒;Si質(zhì)量濃度為6 g/L時(shí),復(fù)合鍍層晶粒最大,晶胞聚集也最多。產(chǎn)生晶胞聚集的原因可能有以下兩點(diǎn):一是SiC作為活性形核點(diǎn),能誘導(dǎo)鎳晶成核及生長(zhǎng),形成堆疊狀晶胞聚集區(qū);二是由于SiC在溶液中團(tuán)聚,鍍層沉積完畢后,表面仍粘附有納米顆粒。對(duì)晶胞進(jìn)行EDS分析(圖略)可知,晶胞中含有SiC納米顆粒,但晶胞并非SiC顆粒,而是SiC作為活性晶核粒子生成的Ni-W/SiC晶粒。由此可見,SiC加入顯著改變了鍍層表面的組織結(jié)構(gòu)。在與腐蝕環(huán)境接觸過(guò)程中,這種晶胞結(jié)構(gòu)凸出表面最先與腐蝕介質(zhì)接觸,能夠有效阻隔并延長(zhǎng)腐蝕介質(zhì)傳遞路徑,從而提高鍍層抗海水滲透性,增強(qiáng)其耐蝕性,對(duì)基底材料起到明顯的屏蔽及緩蝕作用[13]。

由表1可知,當(dāng)電解液中SiC的質(zhì)量濃度為0 g/L時(shí),制備的鍍層為Ni-W合金,其中Ni及W元素的質(zhì)量分?jǐn)?shù)分別為72.79%和27.21%;當(dāng)電解液中SiC的質(zhì)量濃度為6 g/L時(shí),鍍層中Ni元素的含量最低,其質(zhì)量分?jǐn)?shù)為69.68%,Si元素的質(zhì)量分?jǐn)?shù)為1.05%,而C元素的質(zhì)量分?jǐn)?shù)最高,為4.85%,這表明此時(shí)鍍層中SiC含量最多。這與SEM分析結(jié)果一致。由此可見,SiC納米顆粒的加入對(duì)鍍層中Ni,W元素的含量有一定影響。

(a) 0 g/L (b) 3 g/L (c) 6 g/L

(d) 9 g/L (e) 12 g/L圖1 在不同SiC含量條件下制備鍍層的表面SEM形貌Fig. 1 SEM images of the surface of coatings prepared in different content conditions of SiC

表1 在不同SiC含量條件下制備鍍層的EDS 分析結(jié)果(質(zhì)量分?jǐn)?shù))Tab. 1 EDS results of coatings prepared in different content conditions of SiC (mass) %

2.2 鍍層的組織結(jié)構(gòu)

由圖2可見,Ni-W合金鍍層和Ni-W/SiC復(fù)合鍍層都表現(xiàn)出典型的面心立方(fcc)晶體結(jié)構(gòu),且均以鎳的面心立方(fcc)結(jié)構(gòu)為主[14-15]。Ni-W合金鍍層的形成是W原子置換了部分Ni原子,進(jìn)入Ni的原子晶格形成合金固溶體,復(fù)合鍍層則主要由Ni-W合金固溶體和SiC組成。由圖2還可見,在2θ為45°,50°,90°附近,Ni-W合金鍍層的特征峰為晶態(tài)的尖銳峰,而復(fù)合鍍層的特征峰為饅頭峰,說(shuō)明SiC納米顆粒能改變Ni-W合金的晶態(tài)結(jié)構(gòu),甚至形成非晶鑲嵌納米晶相、納米陶瓷SiC相的多相多尺度多界面結(jié)構(gòu)。

圖2 在不同SiC含量條件下制備鍍層的XRD譜Fig. 2 XRD patterns of coatings prepared in different content conditions of SiC

2.3 鍍層與基體的結(jié)合強(qiáng)度

服役期內(nèi)鍍層與基體的結(jié)合力是鍍層防護(hù)性能的關(guān)鍵因素,它會(huì)影響鍍層下界面的電化學(xué)腐蝕過(guò)程[16-17]。由表2可見,當(dāng)SiC質(zhì)量濃度為0 g/L,3 g/L時(shí),脫落率為5%~15%,結(jié)合力等級(jí)為3B;SiC質(zhì)量濃度為6 g/L,9 g/L,12 g/L時(shí),脫落率在5%以下,結(jié)合力等級(jí)為4B。由此可見,SiC能改變鍍層晶粒結(jié)構(gòu),改善鍍層與金屬基底之間的作用力,對(duì)鍍層與金屬基底的結(jié)合力有明顯的增強(qiáng)作用。這是因?yàn)镾iC顆粒在復(fù)合鍍層中起到了聯(lián)接骨架的作用;同時(shí)SiC為納米尺寸,Ni-W合金的晶胞尺寸為微米級(jí),遠(yuǎn)大于SiC顆粒的,因此納米SiC粒子可以填充Ni-W晶粒間的孔隙,使復(fù)合鍍層更致密,提高其密實(shí)性。

表2 劃痕試驗(yàn)結(jié)果Tab. 2 Results of scratch test

2.4 鍍層的耐蝕性

圖3為各鍍層在3.5% NaCl溶液中浸泡不同時(shí)間的Nyquist圖。圖4為各鍍層在3.5% NaCl溶液中浸泡720 h的Bode圖。各鍍層的Nyquist圖都呈現(xiàn)出單一容抗弧,而Bode圖也都是單一峰,即各鍍層在3.5% NaCl溶液中都只存在一個(gè)時(shí)間常數(shù)。研究表明[18-19],鍍層耐蝕性與容抗弧半徑有關(guān),容抗弧半徑越大,鍍層的耐蝕性越好。從Nyquist譜圖中可以看出,在浸泡時(shí)間相同條件下,SiC質(zhì)量濃度為6 g/L時(shí)的容抗弧半徑均為最大,表明此時(shí)鍍層的阻抗值最高,鍍層耐蝕性最好,對(duì)基底材料保護(hù)作用也最強(qiáng)。此外,隨著浸泡時(shí)間的延長(zhǎng),鍍層的阻抗值逐漸減小,鍍層的耐蝕性逐漸降低;浸泡時(shí)間為720 h時(shí),Ni-W合金鍍層的容抗弧半徑明顯小于4種Ni-W/SiC復(fù)合鍍層的,這表明SiC的加入能有效延長(zhǎng)和阻礙腐蝕介質(zhì)對(duì)基底材料的侵蝕,對(duì)基體材料起到明顯的緩蝕作用。

圖5為各鍍層在3.5% NaCl溶液中浸泡720 h時(shí)的極化曲線。由外推法計(jì)算得到鍍層相應(yīng)的自腐蝕電位(Ecorr)、自腐蝕電流密度(Jcorr)和極化電阻(Rp)值,結(jié)果如表3所示。結(jié)果表明,Ni-W合金鍍層的自腐蝕電位最低(-0.463 8 V),加入SiC納米顆粒后,復(fù)合鍍層的自腐蝕電位升高,當(dāng)SiC質(zhì)量濃度為6 g/L時(shí),自腐蝕電位最高(-0.405 5 V)。與腐蝕環(huán)境接觸時(shí),自腐蝕電位越高,鍍層越不容易發(fā)生氧化還原反應(yīng),越容易在表面形成一層鈍化膜,從而防止金屬與腐蝕介質(zhì)相接觸,提高鍍層的耐蝕性[20]。當(dāng)SiC質(zhì)量濃度為6 g/L時(shí),鍍層的自腐蝕電流密度最低(1.836×10-7A·cm-2),極化電阻最大(1.328×105Ω·cm2)。極化電阻越大,越能有效阻礙電子從金屬向氧化劑傳遞,起到電子傳遞的屏障作用,延長(zhǎng)基體材料使用壽命,使鍍層具有更優(yōu)異的綜合防護(hù)性能。

(a) 1 h (b) 240 h

(c) 480 h (d) 720 h圖3 在不同SiC含量條件下制備鍍層在3.5% NaCl溶液中浸泡不同時(shí)間時(shí)的Nyquist圖Fig. 3 Nyquist plots of coatings prepared in different content conditions of SiC and immersed in 3.5% NaCl solution for different times

圖4 在不同SiC含量條件下制備鍍層在3.5% NaCl 溶液中浸泡720 h的Bode圖Fig. 4 Bode plots of coatings prepared in different content conditions of SiC and immersed in 3.5 % NaCl solution for 720 h

圖5 在不同SiC含量條件下制備鍍層在3.5% NaCl 溶液中浸泡720 h時(shí)的極化曲線Fig. 5 Polarization curves of coatings prepared in different content conditions of SiC and immersed in 3.5% NaCl solution for 720 h

3 結(jié)論

(1) SiC納米顆粒的加入可形成均勻鑲嵌SiC納米粒子的Ni-W/SiC復(fù)合鍍層, 從而提高該復(fù)合鍍層的硬度、耐磨性和耐蝕性。

表3 圖5中各極化曲線的擬合結(jié)果Tab. 3 Fitted results of polarization curves in figure 5

(2) SiC的存在能促進(jìn)鍍層的形核和長(zhǎng)大,提高鍍層的硬度和耐蝕性,在3.5% NaCl溶液中,Ni-W/SiC復(fù)合鍍層的耐腐蝕性優(yōu)于Ni-W合金鍍層的。但SiC的含量對(duì)鍍層也具有重要影響,當(dāng)SiC納米顆粒的質(zhì)量濃度為6~9 g/L時(shí),復(fù)合鍍層的耐蝕性最佳,含量過(guò)低對(duì)鍍層耐蝕性的提高作用不明顯,含量過(guò)高將導(dǎo)致納米粒子的團(tuán)聚問題,影響鍍液穩(wěn)定性和分散性。

[1] KUMAR C M P,VENKATESHA T V,SHABADI R. Preparation and corrosion behavior of Ni and Ni-graphene composite coatings[J]. Materials Research Bulletin,2013,48(4):1477-1483.

[2] HASHEMI M,MIRDAMADI S,REZAIE H R. Effect of SiC nanoparticles on microstructure and wear behavior of Cu-Ni-W nanocrystalline coating[J]. Electrochimica Acta,2014,138:224-231.

[3] SASSI W,DHOUIBI L,BERCOT P,et al. Effect of pyridine on the electrocrystallization and corrosion behavior of Ni-W alloy coated from citrate-ammonia media[J]. Applied Surface Science,2012,263:373-381.

[4] HU F T,WANG H Z,YANG S,et al. Effects of Ni-W(Au) coated Cu microcones on the bonding interfaces[J]. Applied Surface Science,2015,353:774-780.

[5] QUIROGA A M P,RIBOTTA S B,FOLQUER M E,et al. Ni-W coatings electrodeposited on carbon steel:Chemical composition,mechanical properties and corrosion resistance[J]. Electrochimica Acta,2011,56:5898-5903.

[6] 姚穎悟,姚素薇,宋振興. 電沉積Ni-W合金在NaCl溶液中的腐蝕行為[J]. 材料工程,2006(9):42-56.

[7] 龔睿,柳林. 鎢含量對(duì)Ni-W合金鍍層結(jié)構(gòu)及耐蝕性能的影響[J]. 稀有金屬材料與工程,2008,37(1):130-134.

[8] PRAMOD K U,JOSEPH K C. Influence of vanillin on the corrosion behavior of Ni-W alloy electrodeposits and its properties[J]. Journal of Electroanalytical Chemistry,2016,782:67-75.

[9] ALLAHYARZADEH M H,ALIOFKHAZRAEI M,SABOUR R A R,et al. Gradient electrodeposition of Ni-Cu-W(alumina) nanocomposite coating[J]. Materials and Design,2016,107:74-81.

[10] FU A Q,FENG Y R,CAI R,et al. Downhole corrosion behavior of Ni-W coated carbon steel in spent acid & formation water and its application in fullscale tubing[J]. Engineering Failure Analysis,2016,66:566-576.

[11] BAKHIT B,AKBARI A. Effect of particle size and co-deposition technique on hardness and corrosion properties of Ni-Co/SiC composite coatings[J]. Surface and Coatings Technology,2012,206(23):4964-4975.

[12] WU Z,SHEN B,LIU L. Effect of α-Al2O3coatings on the interface of Ni/SiC composites prepared by electrodeposition[J]. Surface and Coatings Technology,2012,206(14):3173-3178.

[13] SHAKIBI N N,CREUS J,FEAUGAS X,et al. Influence of metallurgical parameters on the electrochemical behavior of electrodeposited Ni and Ni-W nanocrystalline alloys[J]. Applied Surface Science,2016,370:149-159.

[14] BELTOWSKA L E,INDYKA P,BIGOS A,et al. Electrodeposition of nanocrystalline Ni-W coatings strengthened by ultrafine alumina particles[J]. Surface and Coatings Technology,2012,211(42):62-66.

[15] ELIAS L,CHITHARANJAN H A. Electrodeposition of laminar coatings of Ni-W alloy and their corrosion behavior[J]. Surface and Coatings Technology,2015,283:61-69.

[16] WANG B,BOURNE G R,KORENYI B A L,et al. Method to evaluate the adhesion behavior of aluminum-based alloys on various materials and coatings for lube-free die casting[J]. Journal of Materials Processing Technology,2016,237:386-393.

[17] HU F T,WANG H Z,YANG S. Effects of Ni-W(Au) coated Cu microcones on the bonding interfaces[J]. Applied Surface Science,2016,353:774-780.

[18] 袁國(guó)偉. 電化學(xué)阻抗譜在電沉積研究中的應(yīng)用(三)[J]. 電鍍與涂飾,2008,27(3):1-3.

[19] YANG Y,CHENG Y F. Electrolytic deposition of Ni-Co-SiC nano-coating for erosion-enhanced corrosion of carbon steel pipes in oilsand slurry[J]. Surface and Coatings Technology,2011,205(10):3198-3204.

[20] SASSI W,DHOUIBI L,BER?OT P,et al. Effect of pyridine on the electrocry stallization and corrosion behavior of Ni-W alloy coated from citrate-ammonia media[J]. Applied Surface Science,2012,263:373-381.

Preparation and Corrosion Resistance of Ni-W/SiC Nano-composite Coatings

ZHANG Wen, LI Bao-song, HUAN Yu-xing, LIU Ling-ling, DONG Jia

(College of Mechanics and Materials, Hohai University, Nanjing 211100, China)

Ni-W/SiC nano-composite coatings were prepared by electrodeposition method. The effects of SiC content on the microstructure and properties of Ni-W/SiC composite coatings were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The corrosion resistance of the composite coating in 3.5 wt.% NaCl solution was studied by electrochemical method. The results show that the addition of SiC nanoparticles could promote the nucleation and growth of crystals in the coatings, and could change the crystal structure, which would improve the microhardness, wear resistance and corrosion resistance. Ni-W/SiC nano-composite coating prepared in SiC concentration of 6 to 9 g/L had the best properties. Because higher concentration of SiC would lead to agglomeration of nanoparticles and thus impair their dispersibility. And the improvement of wear resistance was not ideal, if concentration of SiC was too low.

Nano SiC; Ni-W/SiC nano-composite coating; electrodeposition; corrosion resistance

10.11973/fsyfh-201704001

2016-11-24

國(guó)家自然科學(xué)基金(51301061; 51679076)

李保松(1979-),副教授,博士,從事防腐蝕涂層研究,025-83786751,bsli@hhu.edu.cn

TQ153.2

A

1005-748X(2017)04-0247-05

猜你喜歡
晶胞耐蝕性鍍層
晶胞考查角度之探析
四步法突破晶體密度的計(jì)算
淺談晶胞空間利用率的計(jì)算
兩種Ni-Fe-p鍍層的抗氫氟酸腐蝕性能比較
磷對(duì)鋅-鎳合金耐蝕性的影響
Ni-P-SiC復(fù)合鍍層性能的研究
AZ31B鎂合金復(fù)合鍍鎳層的制備及其耐蝕性研究
超薄金剛石帶鋸鍍層均勻性研究
超級(jí)奧氏體不銹鋼254SMo焊接接頭耐蝕性能
焊接(2016年9期)2016-02-27 13:05:20
哪些錫合金鍍層需進(jìn)行表面鈍化處理?
黄大仙区| 土默特右旗| 乡城县| 吴江市| 托克逊县| 常宁市| 赤峰市| 东源县| 古交市| 金溪县| 夏津县| 陇川县| 文水县| 青阳县| 通江县| 廊坊市| 旌德县| 满洲里市| 阜平县| 嘉鱼县| 昌乐县| 友谊县| 西乌珠穆沁旗| 襄樊市| 平山县| 探索| 城市| 团风县| 报价| 湖口县| 孟村| 鹤壁市| 霍州市| 永福县| 页游| 襄垣县| 饶平县| 内丘县| 河间市| 岗巴县| 张家界市|