周游
(湖南財(cái)政經(jīng)濟(jì)學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南 長(zhǎng)沙 410205)
趣味生動(dòng)化的全概率公式教學(xué)設(shè)計(jì)研究
周游
(湖南財(cái)政經(jīng)濟(jì)學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南 長(zhǎng)沙 410205)
本文對(duì)全概率公式的新型教學(xué)模式進(jìn)行研究,讓授課更為趣味化、生動(dòng)化.通過設(shè)置游戲、播放影片、設(shè)計(jì)調(diào)查問卷等新穎方式引入、闡述以及探究問題.選取學(xué)生感興趣的實(shí)際問題,啟發(fā)引導(dǎo)學(xué)生參與解決,使學(xué)生深化對(duì)全概率公式理解,掌握全概率公式應(yīng)用技巧.
全概率公式;趣味生動(dòng);應(yīng)用技巧
全概率公式是概率論與數(shù)理統(tǒng)計(jì)課程中一個(gè)非常重要的內(nèi)容,在教學(xué)中要做到“法理相融”,即全概率的“算法”和“算理”的滲透理解.按照傳統(tǒng)的教學(xué)模式,學(xué)生對(duì)該公式難以深入理解和掌握[1].因此,本次教學(xué)通過一個(gè)游戲的設(shè)置以及相關(guān)影片的放映,極大地激起學(xué)生的興趣,與學(xué)生高度互動(dòng),讓學(xué)生在玩樂中理解全概率公式的思想.典型問題教學(xué)啟發(fā)、步步推導(dǎo)、與學(xué)生產(chǎn)生共鳴,增強(qiáng)學(xué)生的感知認(rèn)識(shí);選取學(xué)生感興趣的彩票購買中獎(jiǎng)、敏感性問題調(diào)查方式等問題,積極實(shí)施提問誘導(dǎo),引導(dǎo)學(xué)生參與解決實(shí)際問題中,進(jìn)一步深化對(duì)全概率公式理解,掌握全概率公式應(yīng)用技巧[2-3].
1.1 情境創(chuàng)設(shè),游戲引入
教師準(zhǔn)備三個(gè)不透明的箱子和一張百元鈔票.把錢放入某一個(gè)箱子中(只有教師知道錢在哪),現(xiàn)在請(qǐng)大家猜測(cè).假如有同學(xué)猜測(cè)是1號(hào)箱,先不著急打開它,而從剩下的兩個(gè)箱子當(dāng)中,挑選一個(gè)沒有錢的箱子,比如說2號(hào)箱,打開.這時(shí)候,給同學(xué)一個(gè)改選的機(jī)會(huì),是堅(jiān)持1號(hào)箱還是改選成3號(hào)箱?
思考:當(dāng)教師首次打開一個(gè)沒有錢的箱子時(shí),同學(xué)是否應(yīng)該改變初次選擇?
1.2 師生互動(dòng),進(jìn)行游戲
選擇幾位同學(xué)來進(jìn)行游戲.并鼓勵(lì)大家在課后進(jìn)行這樣的游戲,經(jīng)過多次實(shí)驗(yàn),把實(shí)驗(yàn)結(jié)果記錄下來——總的試驗(yàn)次數(shù)是多少,堅(jiān)持選擇贏錢的次數(shù)和改變選擇贏錢的次數(shù)分別是多少,嘗試找到統(tǒng)計(jì)規(guī)律性.
1.3 播放影片,啟發(fā)誘導(dǎo)
這看似是一個(gè)簡(jiǎn)單的游戲,實(shí)際上是一個(gè)嚴(yán)格的概率統(tǒng)計(jì)問題.這個(gè)問題興起于上個(gè)世紀(jì)90年代,曾經(jīng)在美國引起了非常廣泛的興趣和討論,甚至還引起了美國中央情報(bào)局的關(guān)注,他們認(rèn)為這個(gè)問題的分析解答可以應(yīng)用到情報(bào)分析當(dāng)中.播放《決勝21點(diǎn)》里面關(guān)于三門問題的一個(gè)片段.說明之前做的游戲?qū)嵸|(zhì)上就是一個(gè)三門問題,即三個(gè)箱子表示三扇門,有錢代表門后有車,否則表示門后是羊[4].
電影給出了正確答案,但是大部分學(xué)生還沒有完全理解,接下來教師給出數(shù)學(xué)推導(dǎo).
1.4 問題求解,闡述思想
這個(gè)問題要解決的是是否改變初次選擇,而是否改選取決于哪種情況下選中汽車的概率更大.
把改選“選中汽車”看作目標(biāo)事件A,把初次選擇的結(jié)果分別記為B1和B2,A受B1和B2的影響,即A=AB1∪AB2,由于這兩個(gè)事件不可能同時(shí)發(fā)生,也就是說兩者互不相容,根據(jù)互不相容事件并集的概率等于概率之和,A的概率就是這兩部分的和.
A=AB1∪AB2
結(jié)論:當(dāng)初次打開一扇有山羊的門時(shí),是否應(yīng)該改變初次選擇?盡管不能保證一定能獲得汽車,但是至少可以將獲得汽車的概率從提高到.
內(nèi)容小結(jié):實(shí)際上,如果遇到一個(gè)復(fù)雜事件,直接去求概率可能比較困難,不妨將這個(gè)復(fù)雜事件分解為若干個(gè)簡(jiǎn)單事件來進(jìn)行求解.這個(gè)問題的求解過程就是將一個(gè)復(fù)雜事件A分解為較為簡(jiǎn)單的兩個(gè)事件AB1和AB2,然后將概率的加法公式和乘法公式結(jié)合起來,從而求得A事件的概率.全概率公式就是基于這樣一種分解的思想.
2.1 闡述分解過程(PPT動(dòng)畫展示分解圖示)
一般地,對(duì)于一個(gè)復(fù)雜事件A,要對(duì)其進(jìn)行分解,首先要把整個(gè)樣本空間分解為n個(gè)事件B1,B2, LBn,要求這n個(gè)事件之間是互斥的,并集是整個(gè)樣本空間,也就是說B1,B2,LBn是樣本空間S的一個(gè)完備事件組(劃分).由于樣本空間的分解,事件A也被分解成了n個(gè)互斥的事件ABi(i=1,2,L,n),因此,A可以表示這n個(gè)事件的并
2.2 推導(dǎo)公式(黑板演示推導(dǎo)過程)
2.3 全概率公式
定理 設(shè)事件組B1,B2,L,Bn是一個(gè)完備事件組,P(Bi)>0,i=1,2,L,n,則對(duì)于任一事件A,
稱為全概率公式[5].
說明:若把事件A看作結(jié)果,B1,B2,L,Bn就是導(dǎo)致該結(jié)果發(fā)生的原因,故全概率公式也稱由因?qū)Ч?其實(shí)質(zhì)是結(jié)果在各原因下的條件概率的加權(quán)平均.
注意:全概率公式的思想是復(fù)雜問題的分解;關(guān)鍵是找到合適的劃分.
3.1 實(shí)例引出
通過具體的實(shí)例來引導(dǎo)學(xué)生概括應(yīng)用全概率公式解題的步驟.
引例 一位同學(xué)趕來上課,他可能乘坐地鐵、公交或是出租車,乘坐這三種交通工具的概率分別為50%,30%和20%.已知乘坐這三種交通工具遲到的概率分別為0.05,0.2,0.1,求該同學(xué)遲到的概率.
分析:顯然,乘坐這三種交通工具都有可能導(dǎo)致上課遲到,我們可以將遲到這一事件看作結(jié)果,記為事件A,它產(chǎn)生的原因有這三個(gè),分別記為B1, B2,B3,而且,題目已知B1,B2,B3發(fā)生的概率,以及在B1,B2,B3發(fā)生的條件下A事件發(fā)生的概率,這是一個(gè)典型的已知原因求結(jié)果的問題,用全概率公式.
3.2 總結(jié)步驟
一、找到合適的完備事件組Bi(i=1,2,…,n);二、求P(Bi);三、求P(A|Bi);四、利用全概率公式求目標(biāo)事件A發(fā)生的概率.
4.1 彩票問題
生活中,同學(xué)們對(duì)彩票并不陌生.大家是否思考過這樣一個(gè)問題:購買彩票的先后次序不同是否影響購買者的中獎(jiǎng)概率?針對(duì)這個(gè)問題,引入下面簡(jiǎn)化的摸獎(jiǎng)模型:
例1(摸獎(jiǎng)模型) 設(shè)在10張彩票中有兩張獎(jiǎng)券,求第一個(gè)人和第二個(gè)人摸到獎(jiǎng)券的概率分別是多少?
擴(kuò)展:第三個(gè)人中獎(jiǎng)的概率是多少?(復(fù)合實(shí)驗(yàn))
注意:在這個(gè)問題的解答當(dāng)中可以看出,除了典型的已知原因求結(jié)果的問題,在這樣的復(fù)合試驗(yàn)中也可以利用全概率公式,我們可以將最后一次的實(shí)驗(yàn)結(jié)果看作目標(biāo)事件,前幾次試驗(yàn)結(jié)果的交叉為樣本空間的一個(gè)劃分,根據(jù)全概率公式的思想,利用加法公式和乘法公式進(jìn)行推導(dǎo),得到全概率公式的拓展形式.
說明:中獎(jiǎng)概率與購買次序無關(guān).同樣地,對(duì)于抽簽問題,這個(gè)結(jié)論也是成立的.因此,無論是摸獎(jiǎng)還是抽簽,由于每個(gè)人獲獎(jiǎng)的機(jī)會(huì)都是相同的,大家無需爭(zhēng)先恐后,安靜地排好隊(duì)依次抽取就好.
4.2 射擊問題
學(xué)生練習(xí):甲、乙、丙三人同時(shí)獨(dú)立地對(duì)飛機(jī)進(jìn)行射擊,飛機(jī)被一人、兩人、三人擊中的概率分別為0.36,0.4和0.14,根據(jù)經(jīng)驗(yàn),飛機(jī)被一人擊中而被擊落的概率為0.2,被兩人擊中而被擊落的概率為0.6,若三人都擊中,飛機(jī)必定被擊落.求飛機(jī)被擊落的概率.
分析:飛機(jī)被擊落是結(jié)果,原因分別是有一人、兩人、三人擊中飛機(jī),直接用全概率公式計(jì)算.
將原題改為:
例2 甲、乙、丙三人同時(shí)獨(dú)立地對(duì)飛機(jī)進(jìn)行射擊,三人中的概率分別為0.4,0.5,0.7.飛機(jī)被一人擊中而被擊落的概率為0.2,被兩人擊中而被擊落的概率為0.6,若三人都擊中,飛機(jī)必定被擊落.求飛機(jī)被擊落的概率[6].
分析:在該問題中,顯然飛機(jī)被擊落是結(jié)果,原因是有一人、兩人、三人擊中飛機(jī),但是這三個(gè)原因的概率未知,還要先求解出來.
內(nèi)容小結(jié):在解決這一類問題的時(shí)候,一定要區(qū)分原因和結(jié)果.這里的原因就是樣本空間的劃分.
要調(diào)查期末考試當(dāng)中學(xué)生的作弊情況,直接利用是否作弊這種簡(jiǎn)單的調(diào)查問卷調(diào)查,其結(jié)果差強(qiáng)人意.對(duì)于敏感性問題,涉及到個(gè)人隱私,大家都不愿意說真話.現(xiàn)在請(qǐng)同學(xué)幫忙設(shè)計(jì)一種調(diào)查的方式,盡可能地保護(hù)大家的隱私.
教師提供一種方案:被測(cè)試者進(jìn)入一個(gè)無人的房間,房中有一個(gè)箱子,箱子里有裝有若干紅球和白球,他從這個(gè)箱子隨機(jī)抽出一個(gè)球,看過顏色后放回.如果取得白球,就回答:你的生日是在7月1日前嗎?如果取得紅球,就回答:你在期末考試中作弊了嗎?將結(jié)果勾在一張只有“是”和“否”的答卷上.
請(qǐng)同學(xué)思考:為什么用這種方式大家愿意說真話?又怎樣通過調(diào)查結(jié)果得到期末考試作弊率?
這節(jié)課講授了全概率公式這一重要公式.全概率公式是由加法公式和乘法公式結(jié)合起來的,公式應(yīng)用的思想是復(fù)雜事件的分解,分解的關(guān)鍵是找到合適的劃分.全概率公式也叫做由因?qū)Ч剑绻山Y(jié)果來探究產(chǎn)生的原因,那就要用到下一節(jié)內(nèi)容——貝葉斯公式.
本次教學(xué)設(shè)計(jì)本著“讓生活走進(jìn)數(shù)學(xué)課堂、讓數(shù)學(xué)回歸生活”的理念,落實(shí)“以教師為主導(dǎo),以學(xué)生為主體”的理念,在教學(xué)中盡可能突破傳統(tǒng)模式,讓授課更為趣味化、生動(dòng)化.讓學(xué)生在發(fā)現(xiàn)問題、分析問題、解決問題的過程中,建立了“用數(shù)學(xué)”的意識(shí),培養(yǎng)了“用數(shù)學(xué)”的能力,體驗(yàn)了“用數(shù)學(xué)”的樂趣,教學(xué)效果良好.
〔1〕趙云平.關(guān)于全概率公式的教學(xué)探析[J].農(nóng)村經(jīng)濟(jì)與科技,2016,27(22):239-241.
〔2〕馮衛(wèi)東.情境教學(xué)操作全手冊(cè)[M].南京:江蘇教育出版社,2010.
〔3〕秦玉芳,丁艷鳳,鄭小琪.淺談情境教學(xué)法在概率統(tǒng)計(jì)中的應(yīng)用[J].高教學(xué)刊,2016(15):113-114.
〔4〕張慧.關(guān)于“概率論與數(shù)理統(tǒng)計(jì)”課程中案例教學(xué)的研究[J].求知導(dǎo)刊,2015,24:136.
〔5〕劉宏超.概率論與數(shù)理統(tǒng)計(jì)[M].北京:清華大學(xué)出版社,2011.
〔6〕吉家鋒.在課堂上巧妙嵌入有趣教學(xué)實(shí)例,提高學(xué)生學(xué)習(xí)全概率公式的興趣和質(zhì)量[J].高等教育研究,2014,31(3):32-34.
G642.4
A
1673-260X(2017)04-0219-03
2017-02-03
湖南省教育廳科學(xué)研究項(xiàng)目(14C0192);湖南財(cái)政經(jīng)濟(jì)學(xué)院教學(xué)改革項(xiàng)目(2016xjjg006)