周沛飛,胡 東,張 巖,劉 昊,田發(fā)明,邢 磊
(1.寧波市象山縣西周中心衛(wèi)生院, 浙江 寧波 315722;2.華北理工大學附屬醫(yī)院, 河北 唐山 063000;3.華北理工大學醫(yī)學實驗研究中心, 河北 唐山 063000)
研究報告
辛伐他汀對尾懸吊再負重大鼠長骨骨量恢復的影響
周沛飛1,胡 東1,張 巖2,劉 昊2,田發(fā)明3,邢 磊2
(1.寧波市象山縣西周中心衛(wèi)生院, 浙江 寧波 315722;2.華北理工大學附屬醫(yī)院, 河北 唐山 063000;3.華北理工大學醫(yī)學實驗研究中心, 河北 唐山 063000)
目的 觀察尾懸吊大鼠再負重骨量的變化及辛伐他汀干預對該過程的影響及機制。方法 5月齡大鼠24只分為4組,每組6只:正常對照組(CL組)、尾懸吊6周組(UL組)、尾懸吊3周再負重3周組(UL+RL組)、尾懸吊3周再負重加辛伐他汀干預3周組(10 mg/kg/d,UL+RL+SIM組);實驗持續(xù)6周,處死大鼠取左側股骨進行骨密度分析,取左側脛骨行骨組織形態(tài)計量學分析;取右側股骨經生物力學試驗分析最大載荷和彈性模量;取右側脛骨制備組織勻漿,提取RNA和蛋白,分別采用real-time PCR和western blot檢測I型膠原(Col I)的表達。結果 (1)骨密度:CL組顯著高于其余3組(P< 0.05),UL+RL組和UL+RL+SIM組均顯著高于UL組(P<0.05);(2)骨組織形態(tài)計量學:BV/TV:CL組顯著高于其余3組(P<0.05),UL+RL組和UL+RL+SIM組均顯著高于UL組(P<0.05);Tb.N:CL組顯著高于其余三組(P<0.05);Tb.Th:CL組顯著高于UL組(P<0.05);Tb.Sp:CL組顯著低于其余三組(P<0.05),UL+RL組和UL+RL+SIM組均顯著低于UL組(P<0.05)。(3)生物力學檢測結果:CL組最大載荷、彈性模量顯著高于其他3組(P<0.05)。(4)Realtime PCR檢測結果:各組間ColⅠ的mRNA表達水平無顯著差別。(5)Western blot: UL組ColⅠIOD 值顯著低于CL組(P<0.05),其余組間差異無顯著性。 結論 大鼠尾懸吊誘發(fā)下肢骨量丟失、微結構退變、力學性能下降、I型膠原含量減少,而再負重后上述指標可得到部分恢復,辛伐他汀干預不能促進這一過程。
辛伐他汀;尾懸吊;骨密度;骨組織形態(tài)計量學;生物力學;I型膠原
一定的應力刺激可以促進骨的生長,而應力缺失則會導致骨形成能力下降、骨量減少,而誘因包括長期臥床、制動和失重等[1, 2]。研究表明每在太空飛行1個月可導致骨密度下降約1.5%,與絕經后女性1年丟失骨量相當[3-5],而對于宇航員的進一步觀察發(fā)現(xiàn),重新負重雖然骨量會有所恢復,但過程緩慢,重新后1年其骨折發(fā)生率仍高于正常人群[6, 7]。因此對其適當干預預防骨量丟失或促進骨量恢復至關重要。
辛伐他汀作為臨床一線降脂類藥物,因為表現(xiàn)出促進骨形成的作用潛能而備受關注[8-10]。然而,辛伐他汀能否促進失重后骨量恢復尚不明確。尾懸吊大鼠是較為常用的模擬失重造成的應力缺失進而誘發(fā)骨質疏松的模型[11-13],本研究擬以尾懸吊再負重大鼠為干預對象,通過影像學、骨組織形態(tài)計量學、生物力學等指標的分析,觀察辛伐他汀干預能否促進該模型骨量的恢復。
1.1 設備與材料
5月清潔級雌性SD大鼠24只,(購自北京維通利華實驗動物中心,動物合格證號SCXK(京)20130002號),體重(355±20)g。骨密度分析儀(美國Norland公司),AG-IS 型生物力學分析系統(tǒng)(日本島津公司),辛伐他汀(西之達,浙江瑞邦藥業(yè)有限公司生產)。
1.2 方法
1.2.1 動物分組及處理:所有大鼠采用數字表法隨機分為4組,每組6只:對照組(CL)、尾懸吊非負重組(UL)、尾懸吊3周再負重3周組(UL+RL組)、尾懸吊3周再負重加辛伐他汀干預3周組(UL+RL+SIM組);UL+RL+SIM組再負重同時給予辛伐他汀干預(辛伐他汀研磨成粉按照10 mg/mL溶于生理鹽水水制成混懸液,給藥劑量10 mg/kg/d)灌胃。實驗持續(xù)6周,結束后所有大鼠采用脫頸法處死,取左側股骨進行骨密度分析,取左側脛骨行骨組織形態(tài)計量學分析;取右側股骨經生物力學試驗分析最大載荷和彈性模量;取右側脛骨制備組織勻漿,提取RNA和蛋白,Western blot檢測I型膠原(Col I)的表達。1.2.2 左側股骨骨密度:應用 Norland-XR36 DEXA,采用小物體掃描模式,準確度 0.01%,掃描速度 60 mm/s,分辨率(resolution)1.0 mm × 1.0 mm,掃描寬度 5.0 cm的參數值,檢測左側股骨,采用小動物掃描模式進行掃描。掃描結束后,用儀器自選工具選定興趣區(qū),讀出每個標本的骨密度值。
1.2.3 左側脛骨骨組織形態(tài)計量學分析:取大鼠左側脛骨,經10%多聚甲醛固定24 h,轉入70%乙醇保存,逐級脫水、脫脂并經甲基丙烯酸甲酯包埋、硬組織切片機制備5 μm不脫鈣切片后,行Giemsa染色。用Leica DMLB2熒光/光學顯微鏡及Leica DC300數碼攝像系統(tǒng)進行觀察與攝取圖像。骨組織形態(tài)計量學參數測量范圍在距離干骺端生長板1 mm以下4 mm以上的松質骨,分內、中、外3點隨機選取圖像錄入微機,每個標本選取6個圖像,然后采用Leica QWin多功能彩色病理圖象分析軟件進行骨組織形態(tài)計量學參數測定,測量面積、長度、距離等相關數據,經公式計算得出骨小梁相對體積比(BV/TV)、骨小梁數量(Tb.N)、骨小梁厚度(Tb.Th)、骨小梁分離度(Tb.Sp)。
1.2.4 右側股骨生物力學分析:取所有大鼠的右側股骨行三點彎曲試驗,支點跨距(L) 為20 mm,中央垂直(股骨與載荷成90°角)施加載荷,速率10 mm/min,直至股骨斷裂,記錄并分析最大壓縮載荷及彈性模量。
1.2.5 右側脛骨I型膠原的表達:Real-time PCR:右側脛骨制成勻漿,Trizol法提取RNA,測定RNA濃度和質量后,-80℃凍存?zhèn)溆?。Col I及內參GAPDH引物參照以往研究[],由上海生物生工有限公司合成:Col I引物序列:上游5’-CTCAGCCCT CTGTGCCT-3’;下游:5’-AACCTTCGCTTCCATACT C-3’;GAPDH引物序列:上游5’-ACCATGGTGGAG ATCATCGC-3’;下游:5’-GCCATGACGGTAACCAC GG-3’。首先經逆轉錄合成第一鏈cDNA,隨后配置PCR反應液:總體積50 μL,包括:Real-time PCR MasterMix 25 μL,引物(10 μmol/L)各2 μL,,cDNA模板2.5 μL。PCR反應條件:95℃ 30 s;95℃5s,60℃ 30 s,40個循環(huán)。循環(huán)結束后得出相應循環(huán)閾值(Ct),并采用2-ΔΔCt法計算各組與CL表達水平比值,作為最終統(tǒng)計量。
Western blot:右側脛骨組織勻漿中加入RIPA蛋白裂解液,4℃ 12 000 r/min離心15 min,取上清液,-80℃保存。采用考馬斯亮藍法進行蛋白定量,加入電泳緩沖液、上樣、SDS-聚丙烯酰胺凝膠電泳、轉膜、室溫封閉2 h、分別加入目的蛋白Col I,和內參蛋白β-actin抗體,4℃孵育過夜。次日加入相應二抗,37℃孵育2 h、沖洗、BCIP/NBT 顯色。PVDF膜經計算機掃描后,自動圖像分析系統(tǒng)進行半定量分析,在同一條件下測定目標條帶積分光密度值,計算出各組樣品目標條帶與內參(β-actin) 的積分光密度的比值進行統(tǒng)計分析。
1.3 統(tǒng)計學方法
實驗數據建立Excel數據庫,資料用SPSS 20.0來處理。各組數據經過Shapiro-Wilk正態(tài)性檢驗和Bartlett方差齊次檢驗后,利用單因素方差分析比較各組之間的差異,LSD-t 檢驗比較兩組間差異,P<0.05為差異有顯著性意義。
2.1 動物死亡情況
各組動物均無死亡,最終各組6只動物均納入最終結果。
2.2 骨密度
各組骨密度檢測結果如圖1所示,CL組顯著高于其余3組(P<0.05),UL+RL組和UL+RL+SIM組均顯著高于UL組(P<0.05);UL+RL組與UL+RL+SIM組比較,差異無統(tǒng)計學意義(P>0.05)。(圖1)
圖1 左側股骨骨密度檢測結果Fig.1 Results of BMD assessment of the rat left femur Note. *P<0.05 vs. the CL group;#P<0.05 vs. the UL group.
2.3 骨組織形態(tài)計量學檢測結果
如圖2所示,各組左側脛骨松質骨骨組織形態(tài)計量學參數比較結果如下:
BV/TV:CL組顯著高于其余3組(P<0.05),UL+RL組和UL+RL+SIM組均顯著高于UL組(P<0.05);UL+RL組與UL+RL+SIM組比較,差異無統(tǒng)計學意義(P>0.05)。
Tb.N: CL組顯著高于其余3組(P< 0.05),UL組、UL+RL組與UL+RL+SIM組間兩兩比較,差異無統(tǒng)計學意義(P>0.05)。
Tb.Th:CL組顯著高于UL組(P<0.05),其余任意兩組間比較,差異無統(tǒng)計學意義(P>0.05)。
Tb.Sp:CL組顯著低于其余3組(P<0.05),UL+RL組和UL+RL+SIM組均顯著低于UL組(P<0.05);UL+RL組與UL+RL+SIM組比較,差異無統(tǒng)計學意義(P>0.05)。
圖2 左側脛骨骨組織形態(tài)計量學結果Fig.2 Results of bone histomorphometric analysis of the rat left tibiaNote. *P<0.05 vs. the CL group; #P<0.05 vs. the UL group.
2.4 生物力學檢測結果
如圖3所示:各組間兩兩比較,最大載荷和彈性模量差異趨勢相同,兩兩比較結果:CL組顯著高于其余3組(P<0.05),其余任意兩組間比較,差異無統(tǒng)計學意義(P>0.05)。
圖3 生物力學檢測結果Fig.3 Results of biomechanical test of the rat right femursNote. *P<0.05 vs. the CL group
2.5 Col I表達水平檢測結果
Real-time PCR:各組Col I mRNA表達水平及比較結果如圖4所示,各組間比較差異均無統(tǒng)計學意義(P>0.05)。
Western blot:各組Col I蛋白表達水平如圖5所示,UL組顯著低于CL組、UL+RL組和UL+RL+SIM組(P<0.05);其余各組間比較,差異無統(tǒng)計學意義(P>0.05)。
圖4 Real-time PCR檢測結果Fig.4 Results of the real-time PCR analysis
圖5 Western blot檢測結果 A.電泳圖 B. IOD分析結果Fig.5 Results of western blot. A. Electrophoresis map. B. IOD analysisNote. *P<0.05 vs. CL group; #P<0.05 vs. UL group.
因失用造成應力缺失可導致成骨細胞和破骨細胞功能失衡,骨骼鈣鹽代謝失衡[14],進而誘發(fā)骨量丟失是長期臥床或制動的臨床患者發(fā)生骨質疏松的主要原因。而正常負重或一定的額外負荷可刺激骨形成能力,增加骨量。失重后再重新負重后,骨形成能力會逐漸恢復,而在一定時期內,骨吸收能力下降,因此,骨量得以逐漸緩慢恢復[15]。本研究采用尾懸吊大鼠模擬人類失重誘發(fā)骨質疏松模型,結果發(fā)現(xiàn),尾懸吊6周大鼠骨量丟失顯著,而尾懸吊3周再負重3周大鼠骨量得到一定的恢復,但仍未達到正常水平,而辛伐他汀干預3周并未加速該模型大鼠骨量的恢復。
尾懸吊大鼠模型是較為常用的模擬失用性骨質疏松的動物模型之一,其骨量丟失速度及重新負重后的骨量恢復速度與尾懸吊時間及大鼠鼠齡相關,3月齡或更年輕大鼠骨丟失及恢復速度都較快,而6月齡大鼠骨量丟失及恢復都較慢[16],本研究采用5月齡大鼠,發(fā)現(xiàn)尾懸吊3周再負重3周后骨密度、微觀結構以及生物力學性能均得到一定程度恢復,但仍未達到正常對照組水平。
辛伐他汀作為臨床一線降脂類藥物,主要用于高脂血癥和冠心病的治療,而近年對于其非降脂作用主要包括抗癌[17]及促進骨形成的研究逐漸成為相關熱點之一。其成骨作用潛能的探討始于1999年Mundy團隊[18],隨后相關學者開展了相關的基礎研究和臨床試驗,除體外直接干預細胞的研究結果較為肯定外[19-21],臨床試驗和體內動物研究均未能得到一致結論[22-24]。有研究發(fā)現(xiàn)辛伐他汀口服可部分阻止卵巢切除大鼠椎體骨質量的下降[25],但不能阻止尾懸吊大鼠骨量丟失[26],然而,辛伐他汀對于尾懸吊大鼠重新負重后骨量的恢復有否促進作用,不得而知。本研究采用較高劑量辛伐他汀于尾懸吊大鼠重新負重同時開始干預,3周后與未干預組大鼠相比,其骨量、微觀結構、生物力學性能等多項指標均無顯著差別。其原因,一方面與藥物作用時間較短有關,另一方面,則是由于辛伐他汀灌胃干預后,作用到骨組織局部的濃度較低,作用相對較弱有關[27-29]。
而通過對骨組織中I型膠原含量的檢測,我們發(fā)現(xiàn)雖然骨密度檢測結果提示重新負重3周大鼠骨礦物質含量尚未恢復到正常水平,但I型膠原水平卻與正常對照組無顯著差別,提示骨吸收活性受抑制,膠原降解減少,而骨形成能力的恢復使得膠原水平的恢復早于鈣鹽的礦化,當然,這一推測尚有待進一步研究證實。
綜合以上,在本研究劑量和干預周期下,辛伐他汀未能促進尾懸吊再負重大鼠骨量的恢復,但由于本研究劑量和干預時間較單一,因此,辛伐他汀對該類骨丟失的作用效果尚有待進一步研究。
[1] Lau RY, Guo X. A review on current osteoporosis research: with special focus on disuse bone loss [J]. J Osteoporos, 2011, 2011: 293808.
[2] Takata S, Yasui N. Disuse osteoporosis [J]. J Med Invest, 2001, 48(3-4): 147-156.
[3] LeBlanc A, Schneider V, Shackelford L, et al. Bone mineral and lean tissue loss after long duration space flight [J]. J Musculoskelet Neuronal Interact, 2000, 1(2): 157-160.
[4] Lang TF, Leblanc AD, Evans HJ, et al. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight [J]. J Bone Miner Res, 2006, 21(8): 1224-1230.
[5] Riggs BL, Khosla S, Melton LJ 3rd. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men [J]. J Bone Miner Res, 1998, 13(5): 763-73.
[6] Caillot-Augusseau A, Vico L, Heer M, et al. Space flight is associated with rapid decreases of undercarboxylated osteocalcin and increases of markers of bone resorption without changes in their circadian variation: observations in two cosmonauts [J]. Clin Chem, 2000, 46(8 Pt 1): 1136-1143.
[7] Lang T, LeBlanc A, Evans H, et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight [J]. J Bone Miner Res, 2004, 19(6): 1006-1012.
[8] Monteiro LO, Macedo AP, Shimano RC, et al. Effect of treatment with simvastatin on bone microarchitecture of the femoral head in an osteoporosis animal model [J]. Microsc Res Tech, 2016, 79(8): 684-690.
[9] Yang N, Cui Y, Tan J, et al. Local injection of a single dose of simvastatin augments osteoporotic bone mass in ovariectomized rats [J]. J Bone Miner Metab, 2014, 32(3): 252-260.
[10] Tan J, Yang N, Fu X, et al. Single-dose local simvastatin injection improves implant fixation via increased angiogenesis and bone formation in an ovariectomized rat model [J]. Med Sci Monit, 2015, 21: 1428-1439.
[11] Xin M, Yang Y, Zhang D, et al. Attenuation of hind-limb suspension-induced bone loss by curcumin is associated with reduced oxidative stress and increased vitamin D receptor expression [J]. Osteoporos Int, 2015, 26(11): 2665-2676.
[12] Tou JC. Evaluating resveratrol as a therapeutic bone agent: preclinical evidence from rat models of osteoporosis [J]. Ann N Y Acad Sci. 2015, 1348(1): 75-85.
[13] Jing D, Cai J, Wu Y, et al. Moderate-intensity rotating magnetic fields do not affect bone quality and bone remodeling in hindlimb suspended rats [J]. PLoS One, 2014, 9(7): e102956.
[14] Takata S, Yasui N. Disuse osteoporosis [J]. J Med Invest, 2001, 48(3-4): 147-156.
[15] Basso N, Jia Y, Bellows CG, et al. The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics: studies in hind limb unloaded rats [J]. Bone, 2005, 37(3): 370-378.
[16] Boudignon BM, Bikle DD, Kurimoto P, et al. Insulin-like growth factor I stimulates recovery of bone lost after a period of skeletal unloading [J]. J Appl Physiol (1985), 2007, 103(1): 125-131.
[17] Afzali M, Vatankhah M, Ostad SN. Investigation of simvastatin-induced apoptosis and cell cycle arrest in cancer stem cells of MCF-7 [J]. J Cancer Res Ther, 2016, 12(2): 725-730.
[18] Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins [J]. Science, 1999, 286(5446): 1946-1949.
[19] Pagkalos J, Cha JM, Kang Y, et al. Simvastatin induces osteogenic differentiation of murine embryonic stem cells [J]. J Bone Miner Res, 2010, 25(11): 2470-2478.
[20] Chen PY, Sun JS, Tsuang YH, et al. Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway [J]. Nutr Res, 2010, 30(3): 191-199.
[21] Pullisaar H, Reseland JE, Haugen HJ, et al. Simvastatin coating of TiO2scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells [J]. Biochem Biophys Res Commun, 2014, 447(1): 139-144.
[22] Uzzan B, Cohen R, Nicolas P, et al. Effects of statins on bone mineral density: a meta-analysis of clinical studies [J]. Bone. 2007, 40(6): 1581-1587.
[23] Moshiri A, Sharifi AM, Oryan A. Role of Simvastatin on fracture healing and osteoporosis: a systematic review on in vivo investigations [J]. Clin Exp Pharmacol Physiol, 2016, 43(7): 659-684.
[24] Oryan A, Kamali A, Moshiri A. Potential mechanisms and applications of statins on osteogenesis: Current modalities, conflicts and future directions [J]. J Control Release, 2015, 215: 12-24.
[25] 張巖, 劉昊, 邢磊, 等.辛伐他汀干預卵巢切除大鼠骨密度和生物力學性能的變化 [J]. 中國組織工程研究, 2016, 20(7): 981-986.
[26] 田發(fā)明, 張柳, 邢磊. 辛伐他汀部分阻止尾懸吊大鼠股骨近端骨量的丟失 [J].中國骨質疏松, 2013, 19 (12): 1228-1231.
[27] Corsino A, Bellosta S, Baetta R, et al. New insights into the pharmacodynamic and pharmacokinetic properties of statins [J]. Pharmacol Ther, 1999, 84(3): 413-428.
[28] Reinoso RF, Sanchez Navarro A, Garcia MJ, et al. Preclinical pharmacokinetics of statins [J]. Methods Fin Clin Pharmacol, 2002, 24(9): 593-613.
[29] William D, Feely J. Pharmacokinetic-pharmacodynamic drug interaction with HMG-CoA reductase inhibitors [J]. Clin Pharmacokinet, 2002, 41(5): 343-370.
Effect of simvastatin on bone mass recovery in rats with reloading after tail-suspension
ZHOU Pei-fei1, HU Dong1, ZHANG Yan2, LIU Hao2, TIAN Fa-ming3, Xing Lei2.
(1.Health Center of Xizhou Center, Xiangshan country, Ningbo, Zhejiang 315722, China;2. Affiliated Hospital of the North China University of Science and Technology, Tangshan, Hebei 063000;3. Medical Research Center, North China University of Science and Techonology, Tangshan, Hebei 063000)
Objective To observe the changes of bone mass in reloaded rats after tail-suspension, and the effect and mechanism of simvastatin on this process. Methods Twenty-four 5-month old rats were divided into 4 groups of 6 animals in each group: Control (CL) group without tail-suspension, unloaded (UL) group with tail-suspension for 6 weeks, other 12 rats received tail-suspension for 3 weeks, then reloaded for subsequent 3 weeks (UL+RL) or combined with simvastatin treatment (UL+RL+SIM) at a dose of 10 mg/kg/d. All rats were sacrificed 6 weeks later, and the left femur was used for examination of bone mineral density, left tibia was used for bone histomorphometry analysis, the right femur and tibia were harvested for biomechanical test, and expression levels of type I collagen by real-time PCR and Western blot, respectively. Results 1. BMD of the CL group was significantly higher than those of the other three groups (P<0.05), and was markedly lower than those in the UL+RL and UL+RL+SIM groups (P<0.05). 2. The bone histomorphometry showed that BV/TV in the CL group was significantly higher than those in the other 3 groups, and the UL+RL and UL+RL+SIM groups showed a significantly higher BV/TV than that of UL group (P<0.05). The Tb.Th was significantly higher in the CL group than in the UL group. The Tb.Sp in the CL group was significantly lower than those in the other 3 groups (P<0.05). The UL+RL and UL+RL+SIM groups showed significantly lower Tb.Sp than that of the UL group (P<0.05). 3. Biomechanical test showed that the maximal load and elastic modulus in the CL groups were significantly higher than those of the other three groups (P<0.05). 4. Real-time PCR showed that no significant difference in the mRNA expression level of Col I was found between any two groups. 5. Western blot showed that the IOD of Col I is significantly lower than that in the CL group. Conslusions Bone loss, destruction of trabecular bone micro-architecture and biomechanical properties and reduction of type 1 collagen are present in tail-suspension treated rats, which are partially restored after reloading, and this recovery process is not enhanced by simvastatin treatment.
Simvastatin; Tail-suspension; Bone mineral density; Bone histomorphometry; Biomechanical test; Collagen type I.
河北省高等學??茖W研究計劃(QN20131007)、河北省自然科學基金(H2013209255)。
周沛飛,主治醫(yī)師,主要從事骨與關節(jié)退行性疾病的研究。E-mail: peifeizhou@163.com。
邢磊,副教授,碩士研究生導師,E-mail: xlpangdun001@163.com。
R-33
A
1671-7856(2017) 04-0020-06
10.3969.j.issn.1671-7856. 2017.04.004
2016-11-21