(Graduate School of China Academy of Engineering Physics, Beijing 100088, China)
The regularity of Navier-Stokes equations in five-dimensional space
MAXixia
(Graduate School of China Academy of Engineering Physics, Beijing 100088, China)
five dimensional space; Navier-Stokes; compact theorem; H?lder continuous
This paper is concerned with the partial regularity of weak solutions of incompressible Navier-Stokes equations in five dimensional space with unit viscosity and zero external force:
(1)
forx∈Ω?R5,t<0, and
(2)
The concepts of weak solutions of (1)-(2), and their regularity were already introduced in the fundamental paper of J.Leray. Pioneering works of J. Leray showed the existence of a functionuandpsuch that
(iii)usatisfies the Navier-Stokes equations in the distribution sense.
In the series of papers [1-2,4-5], when the spatial dimensiondis 3, Scheffer introduced the notions of suitable weak solutions and the generalized energy inequality. He also established various partial regularity results of such weak solutions. Scheffer’s results were further generalized and strengthened in the paper of Caffareli, Kohn and Nirenberg[2], ford=3.
Ford=4,V.Scheffer[6]provedthatthereexistsaweaksolutionuinR4×RsuchthatuiscontinuousoutsidealocallyclosedsetofR4×Rwhose3-DHausdorffmeasureisfinite.Ford=5,6,Struwe[2],DuandDong[3]obtainedthecorrespondingresultsinthesteadyNavier-Stokesequations.TianandXin[7]showedthepartialregularityforsmoothsolutionsandanyspatialdimensioninthesteadyNavier-Stokesequations.
Definition 1 Let Ω be a open set in R5. We say that a pair (u,p)isasuitableweaksolutiontotheNavier-StokesequationsonthesetΩ×(-T1,0)ifitsatisfiestheconditions:
(i)
u∈L2,∞(Ω×(-T1,0))∩L2(-T1,0;H1(Ω)),
(3)
(ii)uandpsatisfytheNavier-Stokesequationsinthedistributionsense;
(iii)uandpsatisfythelocalenergyinequality
(4)
Theorem 1[5]LetX0,XandX1bethreeBanachspacesandXi(i=0,1)isreflectivesuchthat
X0?X?X1
theinjectionofXintoX1beingcontinuous;andtheinjectionofX0intoXiscompact.LetTbeafixednumber,andletα0,α1betwofinitenumberssuchthatαi≥1,i=0,1.
Weconsiderthespace
AndthespaceΥisprovidedwiththenorm
ThentheinjectionofΥintoLα(0,T;X)iscompact.
Lemma 1 Let (u,p)isaweaksolutionoftheCauchyproblemsoftheNavier-StokesequationsinΩwithu∈L2,∞(Ω×(-T1,0))∩L2(-T1,0;H1(Ω)).Inaddition,
u∈L4,∞(Ω×(-T1,0))
(5)
Proof First by using Holder inequality and Young inequality,
(6)
In fact, by interpolation inequality,
Andthenweknow
(7)
inanyopensetΩ?R5fora.e.t∈(-T,0).
By the elliptic regularity theory,
Theorem 2 Let (un,pn)isasequenceofweaksolutions(1)-(2)inΩ×(-T,0)satisfying:
(c) (un,pn)satisfy(4),whereE,E1somepositiveconstants.
Supposethat(u,p)isaweaklimitof(un,pn),then(u,p)isalsoasuitableweaksolutionof(1)-(2).
Proof In fact, we can choose a subsequence
(8)
(?tun,φ)=-(un·▽un,φ)-(▽un,▽φ)≤
Hence
In the following we prove in two steps.
asδ→0,o(1)→0
And
ο(1)asn→0,ο(1)→0
Accordingtotheweakcontinuousint,
asδ→0,ο(1)→0isindependentofn.
Hence,
FinallybyTheorem1,
un→u
(9)
convergesstronglyinL2(Ω×(-T,0)). Also,u∈L4,∞(Ω×(-T,0)),byinterpolationinequality,
Hencefrom(9),
un→u
(10)
convergesstronglyinL3(Ω×(-T,0)). Since (u,p)istheweaklimitof(un,pn), for any smoothφ>0compactlysupportedinΩ×(-T,0), we have that
From Lemma 1 and (10), the theorem is proved.
Using the compactness theorem in the last section, we show the partial regularity of the weak solutions of (1)-(2). Here we give a result which characterizes H?lder continuous functions by the growth of their local integrals.
Theorem 3 Supposeu∈L2(Ω)satisfies
(11)
foranyBr(x)?Ωandα∈(0,1),where
thenu∈Cα(Ω).
Proof DenoteR0=dist(Ω′,?Ω),Ω′?Ω. For anyx0∈Ω′and0 andintegratingwithrespecttoxinBr1(x0) from(11), (12) andthereforeforh with forany0 for anyx∈Ω′ andR≤R0. Henceuis bounded in Ω′withtheestimate Then we have The first two terms on the right sides are estimated in (11). For the last term we write and integrating with respect toζoverB2R(x)∩B2R(y),whichcontainsBR(x),yields Therefore,wehave Inthefollowingweassume(u,p)isasuitableweaksolutionofNavier-StokesequationsinΩ×(-T1,0). Lemma 2 Suppose (u,p)isasuitableweaksolutionof(1)-(2),ifthereexiststwopositiveconstantε0suchthat (13) and u∈L4,∞(Ω×(-T,0)) (14) then (15) for-θ2≤t≤0.DenoteQθ=Bθ×(-θ2,0). Proof Suppose that Lemma 2 is false, then there is a subsequence of weak solutions (ui,pi)with (16) whereQ1=B1×(-1,0),andsuchthat(15)isnotvalidfor(ui,pi).Let then (17) ▽vi) (18) inQ1. By Fatou Lemma, Sinceun→uisstrongconvergeinL3(Q), we have (19) for all sufficiently enoughi. (20) Here (21) and Denote thenbyCalderon-Zygmundestimateand(20), (22) Hencefrom(20),(22),(23),weget (24) Itisobviousfrom(24)that (25) Combining (19) and (25), we obtain a contraction and the lemma is proved. Theorem 4 Under the assumptions of Lemma 2, then for any numberk,▽k-1uisH?ldercontinuousinsubsetK??Ω×(-T,0)andthefollowingboundisvalid: wherec0isaconstantonlydependingonk. Proof Let (u,p)beasuitableweaksolutionsuchthat Let Asimplecomputationyieldsthatis(u1,p1)asuitableweaksolutionof ▽u1+▽p1=0 Moreover,Lemma2impliesthat WerepeatthesameargumentsasLemma2 ,itisconcludedthat isboundedbyanabsoluteconstant. Thecasek>1istreatedwiththehelpoftheregularitytheoryfortheStokesequationsandbootstraparguments. Reference: [1] ESCAURIAZA L, SEREGIN G, SVERáK V.OnL3,∞-solutions to the navier-stokes equations and backward uniqueness [J]. Retrieved from the University of Minnesota Digital Conservancy, 2002. http://hdl.handle.net/11299/3858. [2] STRUWE M. On partial regularity results for the Navier-Stokes equations [J]. Comm Pure Appl Math, 1988,41(4):437-458. [3] DONG H, DU D. Partial regularity of Solutions to four-dimmensional Navier-Stokes equations at the first blow-up time [J].Comm Math Phys, 2007, 273(3): 785-801. [4] CAFFARELLI L, KOHN V, NIRENBERG L. Partial regularity of suitable weak solutions of the Navier-Stokes equations [J]. Comm Pure Appl Math, 1982, 35(6): 771-831. [5] LIN F. A new proof of the Caffarelli-Kohn-Nirenberg theorem [J]. Comm Pure Appl Math, 1998, 51(3): 241-257. [6] SCHEFFER V. Partial regularity of solutions to the Navier-Stokes equations[J]. Pacific Journal of Mathematics, 1976, 66(2):535-552. [7] TIAN G, XIN Z. Gradient estimation on Navier-Stokes equations [J]. Comm Anal Geom, 1999, 7(2): 221-257. [8] KATO T. StrongLp-solutions of the Navier-Stokes equations in Rm with applications to weak solutions [J]. Math Zeit, 1984, 187: 471-480. [9] SEREGIN G. Differentiability properties of weak solutions to the Navier-Stokes equations [J]. Algebra and Analysis, 2002, 14: 193-237. [12] SERRIN J. On the interior regularity of weak solutions of the Navier-Stokes equations [J]. Archive for Rational Mechanics and Analysis, 1962, 9(1):187-195. [13] 張雙虎,馮兆永,楊凱波. 修正Camassa-Holm方程的Cauchy問題[J]. 中山大學學報(自然科學版), 2014, 53(4): 8-12. ZHANG S H, FENG Z Y, YANG K B. The Cauchy problem for the modified Camassa-Holm equations [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(4): 8-12. [14] 趙繼紅,馮兆永. 具有臨界增長邊界條件的p-Laplace方程解的存在性[J]. 中山大學學報(自然科學版), 2010, 49(1):1-4. ZHAO J H, FENG Z Y. Existence of weak solutions for thep-Laplace equation with critical growth in boundary conditions [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(1):1-4. [15] 關春霞,馮兆永. 弱耗散的Degasperis-Procesi方程弱解的存在性[J]. 中山大學學報(自然科學版), 2014, 53(2): 49-54. GUAN C X, FENG Z Y. The existence of global entropy weak solutions for a weakly dissipative Degasperis-Procesi equation [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(2): 49-54. 五維空間Navier-Stokes方程的正則性* 2016-09-19 基金項目:國家自然科學基金 (11671045) 馬西霞(1990年生),女;研究方向:流體方程 ;E-mail:kfmaxixia@163.com 馬西霞 (中國工程物理研究院研究生院,北京 100088) 五維空間;Navier-stokes方程;緊性定理;H?lder連續(xù) O175.26;O175.29 A 0529-6579(2017)01-0096-06 10.13471/j.cnki.acta.snus.2017.01.016