国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

The regularity of Navier-Stokes equations in five-dimensional space

2017-05-18 11:59:59
關鍵詞:中國工程物理研究院馬西維空間

(Graduate School of China Academy of Engineering Physics, Beijing 100088, China)

The regularity of Navier-Stokes equations in five-dimensional space

MAXixia

(Graduate School of China Academy of Engineering Physics, Beijing 100088, China)

five dimensional space; Navier-Stokes; compact theorem; H?lder continuous

This paper is concerned with the partial regularity of weak solutions of incompressible Navier-Stokes equations in five dimensional space with unit viscosity and zero external force:

(1)

forx∈Ω?R5,t<0, and

(2)

The concepts of weak solutions of (1)-(2), and their regularity were already introduced in the fundamental paper of J.Leray. Pioneering works of J. Leray showed the existence of a functionuandpsuch that

(iii)usatisfies the Navier-Stokes equations in the distribution sense.

In the series of papers [1-2,4-5], when the spatial dimensiondis 3, Scheffer introduced the notions of suitable weak solutions and the generalized energy inequality. He also established various partial regularity results of such weak solutions. Scheffer’s results were further generalized and strengthened in the paper of Caffareli, Kohn and Nirenberg[2], ford=3.

Ford=4,V.Scheffer[6]provedthatthereexistsaweaksolutionuinR4×RsuchthatuiscontinuousoutsidealocallyclosedsetofR4×Rwhose3-DHausdorffmeasureisfinite.Ford=5,6,Struwe[2],DuandDong[3]obtainedthecorrespondingresultsinthesteadyNavier-Stokesequations.TianandXin[7]showedthepartialregularityforsmoothsolutionsandanyspatialdimensioninthesteadyNavier-Stokesequations.

1 The Compactness theorem

Definition 1 Let Ω be a open set in R5. We say that a pair (u,p)isasuitableweaksolutiontotheNavier-StokesequationsonthesetΩ×(-T1,0)ifitsatisfiestheconditions:

(i)

u∈L2,∞(Ω×(-T1,0))∩L2(-T1,0;H1(Ω)),

(3)

(ii)uandpsatisfytheNavier-Stokesequationsinthedistributionsense;

(iii)uandpsatisfythelocalenergyinequality

(4)

Theorem 1[5]LetX0,XandX1bethreeBanachspacesandXi(i=0,1)isreflectivesuchthat

X0?X?X1

theinjectionofXintoX1beingcontinuous;andtheinjectionofX0intoXiscompact.LetTbeafixednumber,andletα0,α1betwofinitenumberssuchthatαi≥1,i=0,1.

Weconsiderthespace

AndthespaceΥisprovidedwiththenorm

ThentheinjectionofΥintoLα(0,T;X)iscompact.

Lemma 1 Let (u,p)isaweaksolutionoftheCauchyproblemsoftheNavier-StokesequationsinΩwithu∈L2,∞(Ω×(-T1,0))∩L2(-T1,0;H1(Ω)).Inaddition,

u∈L4,∞(Ω×(-T1,0))

(5)

Proof First by using Holder inequality and Young inequality,

(6)

In fact, by interpolation inequality,

Andthenweknow

(7)

inanyopensetΩ?R5fora.e.t∈(-T,0).

By the elliptic regularity theory,

Theorem 2 Let (un,pn)isasequenceofweaksolutions(1)-(2)inΩ×(-T,0)satisfying:

(c) (un,pn)satisfy(4),whereE,E1somepositiveconstants.

Supposethat(u,p)isaweaklimitof(un,pn),then(u,p)isalsoasuitableweaksolutionof(1)-(2).

Proof In fact, we can choose a subsequence

(8)

(?tun,φ)=-(un·▽un,φ)-(▽un,▽φ)≤

Hence

In the following we prove in two steps.

asδ→0,o(1)→0

And

ο(1)asn→0,ο(1)→0

Accordingtotheweakcontinuousint,

asδ→0,ο(1)→0isindependentofn.

Hence,

FinallybyTheorem1,

un→u

(9)

convergesstronglyinL2(Ω×(-T,0)). Also,u∈L4,∞(Ω×(-T,0)),byinterpolationinequality,

Hencefrom(9),

un→u

(10)

convergesstronglyinL3(Ω×(-T,0)). Since (u,p)istheweaklimitof(un,pn), for any smoothφ>0compactlysupportedinΩ×(-T,0), we have that

From Lemma 1 and (10), the theorem is proved.

2 The Regularity theorem

Using the compactness theorem in the last section, we show the partial regularity of the weak solutions of (1)-(2). Here we give a result which characterizes H?lder continuous functions by the growth of their local integrals.

Theorem 3 Supposeu∈L2(Ω)satisfies

(11)

foranyBr(x)?Ωandα∈(0,1),where

thenu∈Cα(Ω).

Proof DenoteR0=dist(Ω′,?Ω),Ω′?Ω. For anyx0∈Ω′and0

andintegratingwithrespecttoxinBr1(x0)

from(11),

(12)

andthereforeforh

with

forany0

for anyx∈Ω′ andR≤R0. Henceuis bounded in Ω′withtheestimate

Then we have

The first two terms on the right sides are estimated in (11). For the last term we write

and integrating with respect toζoverB2R(x)∩B2R(y),whichcontainsBR(x),yields

Therefore,wehave

Inthefollowingweassume(u,p)isasuitableweaksolutionofNavier-StokesequationsinΩ×(-T1,0).

Lemma 2 Suppose (u,p)isasuitableweaksolutionof(1)-(2),ifthereexiststwopositiveconstantε0suchthat

(13)

and

u∈L4,∞(Ω×(-T,0))

(14)

then

(15)

for-θ2≤t≤0.DenoteQθ=Bθ×(-θ2,0).

Proof Suppose that Lemma 2 is false, then there is a subsequence of weak solutions (ui,pi)with

(16)

whereQ1=B1×(-1,0),andsuchthat(15)isnotvalidfor(ui,pi).Let

then

(17)

▽vi)

(18)

inQ1. By Fatou Lemma,

Sinceun→uisstrongconvergeinL3(Q), we have

(19)

for all sufficiently enoughi.

(20)

Here

(21)

and

Denote

thenbyCalderon-Zygmundestimateand(20),

(22)

Hencefrom(20),(22),(23),weget

(24)

Itisobviousfrom(24)that

(25)

Combining (19) and (25), we obtain a contraction and the lemma is proved.

Theorem 4 Under the assumptions of Lemma 2, then for any numberk,▽k-1uisH?ldercontinuousinsubsetK??Ω×(-T,0)andthefollowingboundisvalid:

wherec0isaconstantonlydependingonk.

Proof Let (u,p)beasuitableweaksolutionsuchthat

Let

Asimplecomputationyieldsthatis(u1,p1)asuitableweaksolutionof

▽u1+▽p1=0

Moreover,Lemma2impliesthat

WerepeatthesameargumentsasLemma2 ,itisconcludedthat

isboundedbyanabsoluteconstant.

Thecasek>1istreatedwiththehelpoftheregularitytheoryfortheStokesequationsandbootstraparguments.

Reference:

[1] ESCAURIAZA L, SEREGIN G, SVERáK V.OnL3,∞-solutions to the navier-stokes equations and backward uniqueness [J]. Retrieved from the University of Minnesota Digital Conservancy, 2002. http://hdl.handle.net/11299/3858.

[2] STRUWE M. On partial regularity results for the Navier-Stokes equations [J]. Comm Pure Appl Math, 1988,41(4):437-458.

[3] DONG H, DU D. Partial regularity of Solutions to four-dimmensional Navier-Stokes equations at the first blow-up time [J].Comm Math Phys, 2007, 273(3): 785-801.

[4] CAFFARELLI L, KOHN V, NIRENBERG L. Partial regularity of suitable weak solutions of the Navier-Stokes equations [J]. Comm Pure Appl Math, 1982, 35(6): 771-831.

[5] LIN F. A new proof of the Caffarelli-Kohn-Nirenberg theorem [J]. Comm Pure Appl Math, 1998, 51(3): 241-257.

[6] SCHEFFER V. Partial regularity of solutions to the Navier-Stokes equations[J]. Pacific Journal of Mathematics, 1976, 66(2):535-552.

[7] TIAN G, XIN Z. Gradient estimation on Navier-Stokes equations [J]. Comm Anal Geom, 1999, 7(2): 221-257.

[8] KATO T. StrongLp-solutions of the Navier-Stokes equations in Rm with applications to weak solutions [J]. Math Zeit, 1984, 187: 471-480.

[9] SEREGIN G. Differentiability properties of weak solutions to the Navier-Stokes equations [J]. Algebra and Analysis, 2002, 14: 193-237.

[12] SERRIN J. On the interior regularity of weak solutions of the Navier-Stokes equations [J]. Archive for Rational Mechanics and Analysis, 1962, 9(1):187-195.

[13] 張雙虎,馮兆永,楊凱波. 修正Camassa-Holm方程的Cauchy問題[J]. 中山大學學報(自然科學版), 2014, 53(4): 8-12. ZHANG S H, FENG Z Y, YANG K B. The Cauchy problem for the modified Camassa-Holm equations [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(4): 8-12.

[14] 趙繼紅,馮兆永. 具有臨界增長邊界條件的p-Laplace方程解的存在性[J]. 中山大學學報(自然科學版), 2010, 49(1):1-4. ZHAO J H, FENG Z Y. Existence of weak solutions for thep-Laplace equation with critical growth in boundary conditions [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(1):1-4.

[15] 關春霞,馮兆永. 弱耗散的Degasperis-Procesi方程弱解的存在性[J]. 中山大學學報(自然科學版), 2014, 53(2): 49-54. GUAN C X, FENG Z Y. The existence of global entropy weak solutions for a weakly dissipative Degasperis-Procesi equation [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(2): 49-54.

五維空間Navier-Stokes方程的正則性*

2016-09-19 基金項目:國家自然科學基金 (11671045)

馬西霞(1990年生),女;研究方向:流體方程 ;E-mail:kfmaxixia@163.com

馬西霞

(中國工程物理研究院研究生院,北京 100088)

五維空間;Navier-stokes方程;緊性定理;H?lder連續(xù)

O175.26;O175.29

A

0529-6579(2017)01-0096-06

10.13471/j.cnki.acta.snus.2017.01.016

猜你喜歡
中國工程物理研究院馬西維空間
基于目標航跡的引導誤差校正方法研究
應用光學(2023年5期)2023-09-21 04:39:16
中國工程物理研究院
軍工文化(2023年3期)2023-04-28 08:39:41
CeAuGa3的力學性質及磁性的第一性原理計算
Update on Fengyun Meteorological Satellite Program and Development*
基于四傳感器的弱信號源定位方法
傳感器世界(2019年9期)2019-03-17 18:52:46
從零維到十維的空間之旅
大眾科學(2016年11期)2016-11-30 15:28:35
十維空間的來訪者
科學啟蒙(2015年9期)2015-09-25 04:01:05
像蒙娜麗莎一樣
故事會(2012年7期)2012-03-28 12:56:06
Flood Response
Beijing Review(2010年17期)2010-03-15 07:19:24
新郑市| 永年县| 郯城县| 湄潭县| 辽宁省| 积石山| 普安县| 肃宁县| 高淳县| 济宁市| 乌审旗| 宾阳县| 华阴市| 满洲里市| 独山县| 镇安县| 阳泉市| 奉贤区| 全椒县| 文成县| 闽清县| 宜黄县| 多伦县| 沧州市| 乌什县| 屏东市| 武城县| 靖州| 竹山县| 和林格尔县| 商都县| 定日县| 苏尼特右旗| 长武县| 金华市| 开阳县| 博客| 阿拉善盟| 丹阳市| 灯塔市| 安图县|