譚小兵戴青原
1.云南省第一人民醫(yī)院口腔內(nèi)科;2.昆明醫(yī)科大學(xué)第一附屬醫(yī)院心內(nèi)科,昆明 650032
人牙源性多能干細(xì)胞重編程前后微小RNAs差異表達(dá)譜系分析
譚小兵1戴青原2
1.云南省第一人民醫(yī)院口腔內(nèi)科;2.昆明醫(yī)科大學(xué)第一附屬醫(yī)院心內(nèi)科,昆明 650032
目的 對(duì)比研究?jī)煞N人牙源性多能干細(xì)胞重編程前后微小RNAs(m iRNAs)差異表達(dá),交集分析、篩選特異性m iRNAs。方法 利用仙臺(tái)病毒將人牙髓干細(xì)胞(DPSCs)和根尖乳頭干細(xì)胞(SCAP)重編程為誘導(dǎo)性多潛能干細(xì)胞(iPSCs),提取總RNA,m iRNAs標(biāo)記、雜交,掃描芯片、讀取圖像,篩選差異表達(dá)m iRNAs,交集分析。
結(jié)果 人DPSCs和SCAP均可重編程為iPSCs。m iRNAs芯片分析結(jié)果顯示人DPSCs重編程后有68個(gè)差異表達(dá)m iRNAs(倍數(shù)>10),其中37個(gè)表達(dá)上調(diào),31個(gè)表達(dá)下調(diào);人SCAP重編程后有107個(gè)差異表達(dá)m iRNAs(倍數(shù)>10),其中
68個(gè)表達(dá)上調(diào),39個(gè)表達(dá)下調(diào)。二者取交集,均上調(diào)的有miR-302e,下調(diào)的有m iR-29b-3p、m iR-181b-5p、m iR-4328、
m iR-22-5p、m iR-145-5p、m iR-4324、let-7b-5p、m iR-181a-5p、m iR-27b-3p(倍數(shù)>10)。結(jié)論 人DPSCs和SCAP重編程為iPSCs過(guò)程中有多種m iRNAs參與,多數(shù)與細(xì)胞周期、上皮-間充質(zhì)轉(zhuǎn)化、轉(zhuǎn)化生長(zhǎng)因子β信號(hào)通路等相關(guān)。
誘導(dǎo)性多潛能干細(xì)胞; 牙髓干細(xì)胞; 根尖乳頭干細(xì)胞; 重編程; 微小RNAs
近十年來(lái)干細(xì)胞研究領(lǐng)域的突破性進(jìn)展之一就是誘導(dǎo)性多潛能干細(xì)胞(induced pluripotent stem cells,iPSCs)的建立[1-2]。體細(xì)胞可通過(guò)多種方法重編程為iPSCs,主要分為病毒性載體和非病毒性載體,如RNA、微小RNAs(m icroRNAs,m iRNAs)轉(zhuǎn)染等[3]。學(xué)者[4]對(duì)iPSCs的復(fù)雜調(diào)節(jié)網(wǎng)絡(luò)、m RNA和m iRNAs進(jìn)行了全基因組研究,其中引起更多關(guān)注的就是m iRNAs。m iRNAs通過(guò)降解靶mRNA或阻止蛋白合成以調(diào)節(jié)多種目標(biāo)基因的表達(dá)。m iRNAs在各種細(xì)胞中均有表達(dá),包括胚胎干細(xì)胞(embryonic stem cells,ESCs)、iPSCs和體細(xì)胞。通過(guò)對(duì)不同人ESCs、iPSCs的m iRNAs及mRNA表達(dá)的研究,發(fā)現(xiàn)了許多共同表達(dá)的m iRNAs簇,如m iR-290、 m iR-302-367等[5]。
本課題組前期研究將人牙髓干細(xì)胞(dental pulp stem cells,DPSCs)和根尖乳頭干細(xì)胞(stem cells form apical papilla,SCAP)重編程為iPSCs[6],但重編程后DPSCs和SCAP的m iRNAs差異表達(dá)情況尚不清楚。為了更好地了解人牙源性干細(xì)胞重編程過(guò)程miRNAs的表達(dá)情況,本研究采用m iRNA芯片分析技術(shù),比較人DPSCs和SCAP重編程后m iRNA差異表達(dá)情況,通過(guò)交集分析篩選幾種特異性表達(dá)m iRNAs,為進(jìn)一步研究m iRNA在重編程中的作用機(jī)制提供實(shí)驗(yàn)基礎(chǔ)。
1.1 主要試劑和儀器
α-最低必需培養(yǎng)基(minimum essential medium,MEM)、Ⅰ型膠原酶、異硫氰酸熒光素(fluorescein isothiocyanate,F(xiàn)ITC)結(jié)合CD24/CD34/CD45/Stro-1、TRIzol試劑盒(Invitrogen公司,美國(guó)),胎牛血清(fetal bovine serum,F(xiàn)BS)(Hyclone公司,美國(guó)),Ⅱ型中性蛋白酶(Roche公司,瑞士),2.5 g·L-1胰蛋白酶/0.25 mmol·L-1EDTA(Gibco公司,美國(guó)),PE結(jié)合CD90/CD105/CD146/Oct-4(eBioscience公司,美國(guó)),RNeasy M ini Kit RNA提取試劑盒(QIAGEN公司,德國(guó)),m iRNAs標(biāo)記試劑盒m iRCURY? Hy3?/Hy5? Power labeling kit、miRNAs芯片雜交試劑盒miRCURYTMLNA Array(Exiqon公司,丹麥),NanoDrop ND-1000分光光度計(jì)(Thermo Fisher公司,美國(guó)),流氏細(xì)胞儀(Beckman公司,美國(guó))、Axon GenePix 4000B芯片掃描儀(Axon公司,美國(guó))。
1.2 人DPSCs 和SCAP體外分離培養(yǎng)及鑒定
收集云南省第一人民醫(yī)院口腔頜面外科因阻生拔除的下頜第三磨牙(患者年齡小于20歲),按照Gronthos等[7]的方法進(jìn)行原代培養(yǎng):收集牙髓和根尖乳頭組織,充分剪碎,3 mg·mL-1Ⅰ型膠原酶+4 mg·mL-1Ⅱ型中性蛋白酶消化液、37 ℃震蕩孵育60 m in,離心、棄上清,加入α-MEM完全培養(yǎng)基(α-MEM+ 15%FBS+1%谷氨酰胺+1%青/鏈霉素),過(guò)70 μm細(xì)胞濾器得到單細(xì)胞懸液,加入適量完全培養(yǎng)基,常規(guī)培養(yǎng),第2~5代細(xì)胞用于實(shí)驗(yàn)。本實(shí)驗(yàn)所有操作均符合云南省第一人民醫(yī)院倫理委員會(huì)標(biāo)準(zhǔn),取得患者書(shū)面同意。收集第3代DPSCs、SCAP,流式緩沖液吹打后加入10 μL相應(yīng)抗體(CD24、CD34、CD45、CD90、CD105、CD146、Stro-1),室溫避光孵育30 m in;加入1%多聚甲醛,上機(jī)檢測(cè)。Oct-4、大鼠IgG2aK-PE同型對(duì)照流式抗體處理:4%多聚甲醛-磷酸鹽緩沖液(phosphate buffer saline,PBS)固定液、室溫避光孵育20 m in,1 500 r·m in-1離心5 min,棄上清,加入1×細(xì)胞打孔液,室溫避光孵育10 m in,同樣條件離心、棄上清,加入對(duì)應(yīng)抗體10 μL,再加入杜氏磷酸鹽緩沖液(Dulbecco’s phosphate buffer saline,D-PBS)混勻,室溫避光孵育30 m in,加入1%多聚甲醛液,流氏細(xì)胞儀檢測(cè),Summ it 5.1軟件分析數(shù)據(jù)。
1.3 人DPSCs、SCAP的重編程
按照CytoTune-iPS仙臺(tái)病毒重編程試劑盒說(shuō)明書(shū)進(jìn)行如下操作:轉(zhuǎn)染前2 d,將第3代人DPSCs、SCAP鋪到6孔板內(nèi)(每孔1×105個(gè)),常規(guī)培養(yǎng)。轉(zhuǎn)染當(dāng)天(第0天),將適量仙臺(tái)病毒(Sendai virus,SeV)溶解到70 μL牙干細(xì)胞培養(yǎng)基內(nèi)開(kāi)始轉(zhuǎn)染,1 d后(第1天)再加入130 μL牙干細(xì)胞培養(yǎng)基,第2天換新鮮含SeV培養(yǎng)液繼續(xù)轉(zhuǎn)染。第3天將已轉(zhuǎn)染細(xì)胞轉(zhuǎn)移到基質(zhì)膠覆蓋6孔板內(nèi),重編程培養(yǎng)基繼續(xù)培養(yǎng),3周左右可以觀察到克隆出現(xiàn)??寺〕墒鞎r(shí),“十字法”分割克隆,轉(zhuǎn)移到新培養(yǎng)板內(nèi)(基質(zhì)膠覆蓋),記為iPSCs第一代(P1),PSC-easy培養(yǎng)基(含10 μmol·L-1Y27632,選擇性ROCK1抑制劑)繼續(xù)培養(yǎng),克隆90%融合時(shí),Ⅳ型膠原酶消化傳代,4~ 5 d傳代一次。隨機(jī)挑選部分克隆進(jìn)行長(zhǎng)期培養(yǎng)觀察。常規(guī)培養(yǎng)人ESCs(H9,第55代)作為標(biāo)準(zhǔn)對(duì)照。
1.4 逆轉(zhuǎn)錄聚合酶鏈反應(yīng)(reverse transcription poly- merase chain reaction,RT-PCR)鑒定人DPSCs- iPSCs和SCAP-iPSCs
收集DPSCs-iPSCs和SCAP-iPSCs(第12代),提取總RNA,5 μL RNA、逆轉(zhuǎn)錄試劑盒合成cDNA,反應(yīng)條件:25 ℃ 5 min,42 ℃ 30 min,85 ℃ 5 min,4 ℃保存。聚合酶鏈反應(yīng):95 ℃ 5 m in,35次循環(huán)(95 ℃ 30 s,55 ℃ 30 s,72 ℃ 30 s),72 ℃ 7 min,電泳檢測(cè)、成像。檢測(cè)iPSCs特異性標(biāo)記物Oct-4、Sox2、K lf4、c-M yc的表達(dá),GAPDH為管家基因,水為陰性對(duì)照(引物序列見(jiàn)表1)。
表 1 iPSCs特異性標(biāo)記物基因引物序列Tab 1 Base sequences of specific markers for iPSCs
1.5 人DPSCs、SCAP重編程前后m iRNAs差異表達(dá)分析
1.5.1 總RNA提取 常規(guī)培養(yǎng)人DPSCs、SCAP(第3代)和DPSCs-iPSCs、SCAP-iPSCs(第12代),90%融合時(shí)收集細(xì)胞,TRIzol試劑盒提取總RNA,RNeasy M ini Kit RNA提取試劑盒純化樣品,NanoDrop ND-1000分光光度計(jì)檢測(cè)RNA濃度。
1.5.2 RNA標(biāo)記與芯片雜交 1)miRCURY? Hy3?/ Hy5? Power labeling kit試劑盒對(duì)樣品miRNAs進(jìn)行標(biāo)記:1 μL總RNA加水至2 μL,加入1 μL小牛腸磷酸酶緩沖液(calf intestine phosphartase,CIP)和CIP酶,混合后置于37 ℃下30 m in,95 ℃ 5 m in終止反應(yīng),再加3 μL標(biāo)記緩沖液、1.5 μL免疫標(biāo)記劑(Hy3?)、2.0 μL二甲基亞砜(dimethylsulfoxide,DMSO)、2.0 μL標(biāo)記酶,16 ℃反應(yīng)1 h,65 ℃ 15 m in終止反應(yīng);2)芯片雜交:將Hy3?標(biāo)記樣品與m iRCURY?LNA Array雜交芯片雜交,Hy3?標(biāo)記的全部25 μL混合物與25 μL雜交緩沖液混合,95 ℃變性2 m in,然后置于冰上2 m in,56 ℃雜交16~20 h(Nimblegen系統(tǒng)平臺(tái),Roche公司,美國(guó)),清洗緩沖液試劑盒Wash buffer kit清洗芯片3次;3)Axon GenePix 4000B芯片掃描儀掃描芯片。
1.5.3 數(shù)據(jù)分析方法 使用GenePix Pro 6.0掃描分析軟件讀取芯片掃描圖像,并提取探針的信號(hào)值。相同的探針取中值合并。保留在所有樣品中均大于30.0的探針,對(duì)全部芯片進(jìn)行中值標(biāo)準(zhǔn)化,篩選差異表達(dá)探針,繪制散點(diǎn)圖。
使用倍數(shù)變化和P值篩選兩組樣品間(有重復(fù))的差異表達(dá)m iRNAs,使用倍數(shù)變化篩選兩個(gè)樣品間(沒(méi)有重復(fù))的差異表達(dá)m iRNAs,最后進(jìn)行交集分析。
2.1 人DPSCs和SCAP原代培養(yǎng)及鑒定
2種細(xì)胞體外分離培養(yǎng)4 d形成克隆,10 d左右鋪滿培養(yǎng)瓶(圖1)。流式細(xì)胞儀檢測(cè)結(jié)果顯示,DPSCs、SCAP均不表達(dá)CD34、CD45,幾乎100% DPSCs、SCAP均為CD90、CD105陽(yáng)性,CD146染色均為強(qiáng)陽(yáng)性(分別為28.4%、54.8%),Stro-1(分別為28.3%、12.4%)、Oct-4(分別為43.6%、58.0%)染色均為陽(yáng)性,僅SCAP表達(dá)CD24(10.9%)(圖2)。
圖 1 人DPSCs和SCAP原代培養(yǎng) 倒置相差顯微鏡 × 100 Fig 1 Primitive culture of human DPSCs and SCAP inverted phase contrast microscope × 100
圖 2 人DPSCs、SCAP特異性標(biāo)記物的表達(dá)Fig 2 The expression of specific markers of human DPSCs and SCAP
2.2 人DPSCs-iPSCs、SCAP-iPSCs細(xì)胞重編程及鑒定
轉(zhuǎn)染細(xì)胞接種到基質(zhì)膠,重編程培養(yǎng)3~4周后逐漸出現(xiàn)ES樣克隆,邊緣銳利清晰,此時(shí)ESCs樣克隆即為iPSCs原代細(xì)胞(P0,圖3)。
圖 3 人DPSCs-iPSCs、SCAP-iPSCs體外培養(yǎng) 倒置相差顯微鏡Fig 3 Culture of human DPSCs-iPSCs and SCAP-iPSCs in vitro inverted phase contrast m icroscope
RT-PCR結(jié)果顯示,重編程得到的iPSCs特異性表達(dá)干細(xì)胞標(biāo)記物Oct-4、Sox2、K lf4、c-M yc與人ESCs細(xì)胞系H9相同,證明得到的為已完全重編程的iPSCs(圖4)。
圖 4 人牙源性iPSCs特異性標(biāo)記物RT-PCR分析結(jié)果Fig 4 RT-PCR analyses for human iPSCs specific marker genes Oct-4, Sox2, K lf4 and c-M yc
2.3 人DPSCs和SCAP重編程前后m iRNAs差異表達(dá)分析
共分析了2 085個(gè)miRNAs,其中人DPSCs重編程后有68個(gè)差異表達(dá)m iRNAs(倍數(shù)>10),其中37個(gè)表達(dá)上調(diào),31個(gè)表達(dá)下調(diào);人SCAP重編程后有107個(gè)差異表達(dá)miRNAs(倍數(shù)>10),其中68個(gè)表達(dá)上調(diào),39個(gè)表達(dá)下調(diào);二者差異表達(dá)miRNAs取交集,結(jié)果發(fā)現(xiàn)人DPSCs和SCAP重編程后m iRNAs均上調(diào)的有m iR-302e,均下調(diào)的有m iR-29b-3p、m iR-181b-5p、miR-4328、miR-22-5p、miR-145-5p、miR-4324、let-7b-5p、m iR-181a-5p、m iR-27b-3p(倍數(shù)>10)(表2)。
表 2 人牙源性iPSCs重編程前后m iRNA差異表達(dá)交集(>10倍)Tab 2 Analysis of m icroRNAs differential expression intersections of human dental iPSCs before and after reprogramm ing (more than 10 fold)
m iRNAs是一類(lèi)在轉(zhuǎn)錄后水平對(duì)目的基因表達(dá)進(jìn)行調(diào)控的非編碼RNA,在機(jī)體發(fā)育、細(xì)胞凋亡、體細(xì)胞重編程等方面都有極為重要的作用。早在1993年就發(fā)現(xiàn)了m iRNAs存在[8],但近些年人們發(fā)現(xiàn)其在ESCs自我更新和多向分化中具有重要作用,m iRNAs在體細(xì)胞重編程過(guò)程中的機(jī)制研究方興未艾。
3.1 m iRNAs與多潛能性
m iRNAs可以調(diào)控ESCs的多潛能性、自我更新和分化。當(dāng)m iRNAs必需的加工蛋白Dicer/Drosha和RNA結(jié)合蛋白DGCR8耗盡后,m iRNAs會(huì)全部缺失,進(jìn)而導(dǎo)致ESCs體外分化和增殖能力的缺陷,Dicer缺陷小鼠在發(fā)育早期死亡[9]。研究[10]證實(shí),ESCs可以表達(dá)特定m iRNAs簇,轉(zhuǎn)錄因子如Oct-4、Sox2和Nanog結(jié)合到m iRNAs啟動(dòng)子,從而激發(fā)ESCs多個(gè)m iRNAs簇的表達(dá)。m iR-290簇包含多個(gè)種子序列與miR-302相同或相似的成熟m iRNAs,在ESCs中表達(dá)最為豐富,占未分化ESCs細(xì)胞m iRNAs的大多數(shù)。m iR-290簇其他成員(如m iR-291-3p、m iR-294、miR-295)與miR-302簇可以直接抑制細(xì)胞周期關(guān)鍵啟動(dòng)子,屬于ESCs周期調(diào)節(jié)[11]。
m iRNAs不但可以維持ESCs的多潛能性,對(duì)其分化也起著重要的調(diào)節(jié)作用。ESCs誘導(dǎo)分化后某些miRNAs表達(dá)的特異性上調(diào)可以減少多潛能相關(guān)因子的表達(dá),這是獲得分化亞型的先決條件。如m iR-296抑制Nanog的表達(dá),m iR-134和m iR-470的靶基因?yàn)槎酀撃芤蜃覰anog、Oct-4、Sox2[12],m iR-200c、m iR-203和miR-183抑制Sox2和K lf4的表達(dá)[13],m iR-145抑制Oct-4、Sox2、K lf4的表達(dá)[14]。誘導(dǎo)分化后多潛能相關(guān)因子如Lin28的表達(dá)下調(diào)使得m iRNAs無(wú)需再加工,從而促進(jìn)let7家族成員的成熟,這對(duì)ESCs分化的調(diào)節(jié)非常重要[15]。m iR-34a通過(guò)激活Notch和轉(zhuǎn)移生長(zhǎng)因子β(transforming grow th factor-β,TGF-β)信號(hào)通路,可促進(jìn)SCAP成牙本質(zhì)和成骨向分化[16-17]。m iR-224可通過(guò)調(diào)節(jié)離子轉(zhuǎn)運(yùn)體的表達(dá)以維持微環(huán)境pH值平衡,從而促進(jìn)釉質(zhì)礦化。
3.2 m iRNAs與重編程
iPSCs最早是過(guò)表達(dá)轉(zhuǎn)錄因子Oct-4/Sox2/K lf4/c-Myc建立的[1],其他4種轉(zhuǎn)錄因子Oct-4/Sox2/Nanog/ Lin28或2種組合也能誘導(dǎo)產(chǎn)生iPSCs[2,18],iPSCs的miRNAs表達(dá)譜系與ES細(xì)胞特征相似[19]。
人們首次在小鼠胚胎成纖維細(xì)胞中過(guò)表達(dá)m iR-290及Oct-4/Sox2/Klf4以誘導(dǎo)iPSCs的產(chǎn)生,發(fā)現(xiàn)miR-291-3p、m iR-294、m iR-295能增加重編程效率,而m iR-290簇其他成員則無(wú)此功效,如m iR-292-3p、miR-293[20]。
m iR-302家族與m iR-290家族成員有共同的種子序列,同樣可以增加成纖維細(xì)胞的重編程效率,過(guò)表達(dá)人m iR-302、m iR-372與轉(zhuǎn)錄因子Oct-4/Sox2/ K lf4/c-Myc能促進(jìn)人成纖維細(xì)胞多潛能性的誘導(dǎo)[12]。Anokye-Danso等[21]第一次發(fā)現(xiàn)無(wú)需其他轉(zhuǎn)錄因子,僅過(guò)表達(dá)m iR-302和m iR-367就能直接重編程小鼠和人體細(xì)胞,效率和速度均高于傳統(tǒng)方法。Liao等[22]發(fā)現(xiàn)過(guò)表達(dá)m iR-106a-363、m iR-302-367可以加速間充質(zhì)-上皮轉(zhuǎn)化以增加iPSCs的誘導(dǎo)效率。直接轉(zhuǎn)染成熟的雙鏈m iR-200c、m iR-302、m iR-369也能獲得有效的重編程,此方法無(wú)需病毒載體,可提供更為安全的重編程方法。
最近研究[23]又發(fā)現(xiàn)了與m iR-302簇種子序列相同或相近的3個(gè)m iR簇,即m iR-17-92、m iR106b-25和m iR106a-363,過(guò)表達(dá)m iR-106b-25家族成員m iR-93和m iR-106b能促進(jìn)iPSCs的誘導(dǎo)。最近一項(xiàng)無(wú)偏倚研究[24]篩選了379種miRNAs,進(jìn)一步證實(shí)了miR-290、m iR-302、m iR-17和m iR-25簇也能夠促進(jìn)重編程的效率。
人DPSCs和SCAP來(lái)源組織相近,細(xì)胞形態(tài)、增殖和分化能力相似,為了進(jìn)一步了解這兩種細(xì)胞在重編程時(shí)的特點(diǎn),本研究利用CytoTune-iPS仙臺(tái)病毒將人DPSCs和SCAP誘導(dǎo)為iPSCs,通過(guò)miRNAs芯片技術(shù)比較兩種來(lái)源體細(xì)胞重編程前后miRNAs的差異表達(dá)情況,再交集分析,成功篩選出10種特異性表達(dá)的miRNAs:m iR-302e(上調(diào))、m iR-29b-3p、m iR-181b-5p、m iR-4328、m iR-22-5p、miR-145-5p、m iR-432、let-7b-5p、m iR-181a-5p、m iR-27b-3p(下調(diào))。這些m iRNAs大多與細(xì)胞周期、TGF-β信號(hào)通路、上皮-間充質(zhì)轉(zhuǎn)化有關(guān)。
3.3 m iRNAs與牙齒發(fā)育和再生
miRNA的正常表達(dá)對(duì)牙胚發(fā)育非常重要。M ichon等[25]通過(guò)m iRNA芯片技術(shù)研究發(fā)現(xiàn),牙胚形成階段表達(dá)的m iRNA有m iR-140、m iR-31、m iR-875-5p和m iR141,而m iR-689、miR-720、m iR-711和miR-455在細(xì)胞分化階段表達(dá),說(shuō)明高RNA干擾(RNA interference,RNAi)通路活性和上皮m iRNA與牙齒發(fā)育息息相關(guān),上皮m iRNA主要調(diào)節(jié)磨牙牙冠發(fā)育和牙尖形態(tài)。Kim等[26]通過(guò)m iRNA原位雜交研究發(fā)現(xiàn),m iR-135a在牙胚發(fā)育蕾狀期時(shí)在牙源性上皮和間充質(zhì)中高表達(dá),而帽狀期和鐘狀期時(shí)僅在外釉上皮層、星網(wǎng)狀層、牙囊和牙乳頭中表達(dá),內(nèi)釉上皮層中無(wú)表達(dá),進(jìn)一步研究發(fā)現(xiàn)m iRNA-135a通過(guò)BMP信號(hào)通路調(diào)節(jié)牙齒形成。
m iRNAs促進(jìn)或直接誘導(dǎo)重編程的機(jī)制尚不完全清楚,可能包括不同通路的靶向調(diào)節(jié),如細(xì)胞周期和表觀調(diào)節(jié),還有上皮-間充質(zhì)轉(zhuǎn)化的調(diào)節(jié),對(duì)本實(shí)驗(yàn)發(fā)現(xiàn)的差異m iRNAs尚需要通過(guò)m iRNA靶基因預(yù)測(cè)、m iRNA-基因本體論(gene ontology,GO)和miRNA-生物通路富集分析等進(jìn)一步研究以闡明其在人牙源性細(xì)胞重編程過(guò)程中的作用機(jī)制。
[1] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
[2] Yu JY, Vodyanik MA, Smuga-Otto KA, et al. Induced pluripotent stem cell lines derived from human somatic cells [J]. Science, 2007, 318(5858):1917-1920.
[3] Hu K. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation[J]. Stem Cells Dev, 2014, 23(12):1285-1300.
[4] Zhao B, Yang D, Jiang J, et al. Genome-w ide mapping of m iRNAs expressed in embryonic stem cells and pluripotent stem cells generated by different reprogramming strategies [J]. BMC Genomics, 2014, 15(1):488.
[5] Sharma A, Wu JC. M icroRNA expression profiling of humaninduced pluripotent and embryonic stem cells[J]. Methods Mol Biol, 2013, 936:247-256.
[6] Zou XY, Yang HY, Yu Z, et al. Establishment of transgenefree induced pluripotent stem cells reprogrammed from human stem cells of apical papilla for neural differentiation[J]. Stem Cell Res Ther, 2012, 3(5):43.
[7] Gronthos S, Arthur A, Bartold PM, et al. A method to isolate and culture expand human dental pulp stem cells[J]. Methods Mol Biol, 2011, 698:107-121.
[8] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854.
[9] Martinez NJ, Gregory RI. M icroRNA gene regulatory pathways in the establishment and maintenance of ESC identity [J]. Cell Stem Cell, 2010, 7(1):31-35.
[10] Marson A, Levine SS, Cole MF, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells[J]. Cell, 2008, 134(3):521-533.
[11] Card DA, Hebbar PB, Li L, et al. Oct4/Sox2-regulated m iR-302 targets cyclin D1 in human embryonic stem cells[J]. Mol Cell Biol, 2008, 28(20):6426-6438.
[12] Tay Y, Zhang J, Thomson AM, et al. M icroRNAs to nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation[J]. Nature, 2008, 455(7216):1124-1128. [13] Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemnessinhibiting m icroRNAs[J]. Nat Cell Biol, 2009, 11(12): 1487-1495.
[14] Xu N, Papagiannakopoulos T, Pan GJ, et al. M icroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells[J]. Cell, 2009, 137 (4):647-658.
[15] Melton C, Judson RL, Blelloch R. Opposing m icroRNA fam ilies regulate self-renewal in mouse embryonic stem cells[J]. Nature, 2010, 463(7281):621-626.
[16] Sun F, Wan M, Xu X, et al. Crosstalk between m iR-34a and notch signaling promotes differentiation in apical papilla stem cells (SCAPs)[J]. J Dent Res, 2014, 93(6):589-595.
[17] Wan M, Gao B, Sun F, et al. m icroRNA miR-34a regulates cytodifferentiation and targets multi-signaling pathways in human dental papilla cells[J]. PLoS One, 2012, 7(11):e50090. [18] Montserrat N, Ramírez-Bajo MJ, Xia Y, et al. Generation of induced pluripotent stem cells from human renal proximal tubular cells with only two transcription factors, OCT4 and SOX2[J]. J Biol Chem, 2012, 287(29):24131-24138.
[19] W ilson KD, Venkatasubrahmanyam S, Jia F, et al. M icroRNA profiling of human-induced pluripotent stem cells[J]. Stem Cells Dev, 2009, 18(5):749-758.
[20] Gruber AJ, Grandy WA, Balw ierz PJ, et al. Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways[J]. Nucleic Acids Res, 2014, 42(14):9313-9326.
[212] Anokye-Danso F, Trivedi CM, Juhr D, et al. Highly efficient m iRNA-mediated reprogramming of mouse and human somatic cells to pluripotency[J]. Cell Stem Cell, 2011, 8(4): 376-388.
[22] Liao B, Bao X, Liu L, et al. M icroRNA cluster 302-367 enhances somatic cell reprogramm ing by accelerating a mesenchymal-to-epithelial transition[J]. J Biol Chem, 2011, 286(19):17359-17364.
[23] Li Z, Yang CS, Nakashima K, et al. Small RNA-mediated regulation of iPS cell Generation[J]. EMBO J, 2011, 30(5): 823-834.
[24] Pfaff N, Fiedler J, Holzmann A, et al. miRNA screening reveals a new miRNA family stimulating iPS cell Generation via regulation of Meox2[J]. EMBO Rep, 2011, 12(11):1153-1159.
[25] M ichon F, Tummers M, Kyyr?nen M, et al. Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs[J]. Dev Biol, 2010, 340(2):355-368.
[26] Kim EJ, Lee MJ, Li L, et al. Failure of tooth formation mediated by miR-135a overexpression via BMP signaling[J]. J Dent Res, 2014, 93(6):571-575.
(本文編輯 李彩)
Characterization of m icroRNAs profiles of induced p luripotent stem cells reprogrammed from human dental pulp stem
cells and stem cells from apical papilla
Tan Xiaobing1, Dai Qingyuan2. (1. Dept. of Oral Medicine, First People’s Hospital of Yunnan Province, Kunming 650032, China; 2. Dept. of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China)
Supported by: The National Natural Science Foundation of China (81360161); Yunnan Provincial Department of Education Science Foundation of China (2015Y153). Correspondence: Dai Qingyuan, E-mail: dqy0823@163.com.
ObjectiveTo compare characterization of m icroRNAs (m iRNAs) expression profiles of induced pluripotent stem cells (iPSCs) reprogrammed from human dental pulp stem cells (DPSCs) and stem cells from apical papilla (SCAP) and screen-specific microRNA.MethodsHuman DPSCs and SCAP were reprogrammed into iPSCs using a Sendai virus vector. Total RNA of human DPSCs-iPSCs and SCAP-iPSCs were extracted. m iRNAs were labeled and hybridized. Slides were scanned, and images were imported into GenePix Pro 6.0 for grid alignment and data extraction. Significant differentially expressed m iRNAs between the two groups were identified using fold change and P-value and were analyzed.ResultsBoth human DPSCs and SCAP were successfully reprogrammed into iPSCs. Among miRNA genes analyzed by miRNA microarray, 68 were differentially expressed by more than 10-fold in DPSCs-iPSCs; 37 of these genes were up-regulated, and 31 were down-regulated. In SCAP-iPSCs, 107 genes were differentially expressed by more than 10-fold; 68 were up-regulated, and 39 were down-regulated. In both cells, only m iR-302e was up-regulated, whereas 9 m iRNAs were down-regulated: m iR-29b-3p, miR-181b-5p, miR-4328, miR-22-5p, m iR-145-5p, miR-4324, let-7b-5p, miR-181a-5p, and miR-27b-3p.ConclusionMultiple m iRNAs participated in reprogramm ing of human DPSCs and SCAP into iPSCs. Most m iRNAs are related to cell cycle, transforming grow th factor-β signaling pathways and epithelial-mesenchymal transition.
induced pluripotent stem cells; dental pulp stem cells; stem cells from apical papilla; reprogramm ing; m icroRNAs
R 781
A
10.7518/hxkq.2017.03.008
2016-08-11;
2016-12-09
國(guó)家自然科學(xué)基金(81360161);云南省教育廳基金(2-015Y153)
譚小兵,副主任醫(yī)師,碩士,E-mail:txb042005@163.com
戴青原,副主任醫(yī)師,博士,E-mail:dqy0823@163.com