李 坤 李傳榮 楊煥祥 梁 強(qiáng) 劉莉莉 張彩虹
(1.山東泰山森林生態(tài)系統(tǒng)國家定位觀測研究站 泰安 271018; 2.山東農(nóng)業(yè)大學(xué)農(nóng)業(yè)生態(tài)與環(huán)境重點(diǎn)實(shí)驗(yàn)室 泰安 271018)
?
連作對(duì)歐美楊I(lǐng)-107葉片主要養(yǎng)分元素化學(xué)計(jì)量特征的影響*
李 坤1,2李傳榮1,2楊煥祥2梁 強(qiáng)2劉莉莉2張彩虹1,2
(1.山東泰山森林生態(tài)系統(tǒng)國家定位觀測研究站 泰安 271018; 2.山東農(nóng)業(yè)大學(xué)農(nóng)業(yè)生態(tài)與環(huán)境重點(diǎn)實(shí)驗(yàn)室 泰安 271018)
【目的】 以期為合理經(jīng)營連作歐美楊I(lǐng)-107人工林提供理論依據(jù)?!痉椒ā?以大汶河流域歐美楊I(lǐng)-107人工林為研究對(duì)象,分析一代、二代、三代連作歐美楊I(lǐng)-107人工林成熟葉和凋落葉主要養(yǎng)分元素含量計(jì)量特征?!窘Y(jié)果】 三代(連作2代)林成熟葉片的P和K含量顯著低于一代林和二代林(連作1代)(P<0.05),但一代林和二代林之間差異不顯著,且連作對(duì)N素含量影響較??; 連作增加了凋落葉中N,P,K含量,特別是三代林,進(jìn)而導(dǎo)致三代林葉片N,P,K的回收率顯著低于一代林和二代林(P<0.05); 此外,K的回收率顯著大于N和P回收率; 凋落葉中的C/N、C/P、N/P化學(xué)計(jì)量比普遍高于成熟葉; 三代林成熟葉片的N/P和C/P顯著高于其他2種林分,但3種林分成熟葉片中C/N差異不顯著; 隨著連作代數(shù)增加,凋落葉片中的C,N,P化學(xué)計(jì)量比沒有一致的變化規(guī)律,一代林凋落葉中N/P和C/P顯著高于其他2種林分(P<0.05),而二代林凋落葉中的C/N顯著高于其他2種林分?!窘Y(jié)論】 總體而言,連作會(huì)降低成熟葉片P和K含量,增加凋落物中N,P,K含量,同時(shí)降低歐美楊I(lǐng)-107養(yǎng)分回收率,影響?zhàn)B分內(nèi)循環(huán)。此外,連作能通過降低凋落葉中N/P和C/P,降低歐美楊I(lǐng)-107凋落物的分解速率,影響土壤C,N,P含量的變化。
連作; 養(yǎng)分回收; 歐美楊I(lǐng)-107; 化學(xué)計(jì)量
歐美楊I(lǐng)-107(Populus×euramericana‘Neva’)作為一種多用途速生豐產(chǎn)林樹種,在我國種植面積大,分布范圍廣。近年來,發(fā)現(xiàn)歐美楊I(lǐng)-107人工林連作會(huì)導(dǎo)致林地生產(chǎn)力下降及地力衰退(王延平等, 2013)。目前關(guān)于連作人工林生產(chǎn)力下降的研究較多,主要集中在土壤理化性質(zhì)(劉福德等, 2005; 王延平等, 2013)、生產(chǎn)力(孫翠玲等, 1995)變化等方面,而關(guān)于連作歐美楊I(lǐng)-107葉片C,N,P,K等化學(xué)計(jì)量特征的研究還十分匱乏,從而難以全面揭示連作對(duì)歐美楊I(lǐng)-107人工林養(yǎng)分循環(huán)的影響。因此,本研究探討連作情況下歐美楊I(lǐng)-107葉片N,P,K回收率和C/N、C/P、N/P的化學(xué)計(jì)量特征,闡明連作對(duì)歐美楊I(lǐng)-107人工林養(yǎng)分循環(huán)的影響,以期為合理經(jīng)營連作歐美楊I(lǐng)-107人工林提供理論依據(jù)。
研究區(qū)位于山東省泰安市寧陽縣國有高橋林場(116°48′—116°55′E,35°41′—35°45′N),位于大汶河沿岸河灘地,土壤為粗沙質(zhì)河潮土,顆粒較粗,保肥保水性差,有機(jī)質(zhì)含量較低,地下水位5~8 m,屬于溫帶大陸性半濕潤季風(fēng)氣候區(qū),年均降水量697 mm,≥10 ℃年積溫4 731 ℃,≤10 ℃年積溫4 213 ℃。研究對(duì)象為撫育和管理措施相同的歐美楊I(lǐng)-107一代(Ⅰ)、二代(Ⅱ)和三代(Ⅲ)純林。3種林分均在2009年春季營造,林齡4年,株行距均為3 m×5 m,密度667株·hm-2。南北行距,林分生長較均勻,土壤肥力低(有機(jī)質(zhì)含量0.14%,堿解氮含量4 mg·kg-1,速效磷含量2.1 mg·kg-1)。營造后的第1,2年均曾間作落花生(Arachishypogaea),但當(dāng)前林地?zé)o作物間作,無澆水和施肥等管理措施。林分生長狀況見表1(許壇等, 2014)。
2.1 樣品采集 分別在高橋國有林場的一代、二代(連作1代)和三代(連作2代)歐美楊I(lǐng)-107人工林設(shè)置3塊20 m×20 m樣地。2013年8月中旬和11月底在每塊樣地內(nèi)隨機(jī)選擇3株平均木采集葉片,分別采集成熟葉和凋落葉(選擇葉片剛凋落時(shí)收集),每株平均木成熟葉和凋落葉各50 g。為了減少葉片所處位置對(duì)養(yǎng)分含量的影響,分別采集每株歐美楊I(lǐng)-107陰面葉片和陽面葉片各3份進(jìn)行混合,且葉片均取自樹冠下層。所有采集的樣品實(shí)驗(yàn)室65 ℃烘干24 h,信封內(nèi)保存?zhèn)溆谩?/p>
表1 林分概況(許壇等, 2014)Tab.1 Profile of Populus×euramericana ‘Neva’ stand (許壇等, 2014)
2.2 樣品養(yǎng)分含量的測定 為了研究歐美楊I(lǐng)-107葉片N,P,K的養(yǎng)分回收效率和葉片C/N、C/P、N/P特征,測定了葉片C,N,P,K含量。養(yǎng)分含量測定前,采用植物粉碎機(jī)(FZ-102)粉碎。參考森林生態(tài)系統(tǒng)長期定位觀測方法,葉片全碳(碳元素)、全氮(氮元素)含量采用元素分析儀(Costech公司的ECS4010,意大利)測定; 葉片全磷(磷元素)含量采用酸溶-鉬銻抗比色法測定; 葉片全鉀(鉀元素)含量采用火焰光度計(jì)(FP640)測定。
2.3 數(shù)據(jù)處理 養(yǎng)分回收率(NRE)計(jì)算公式為:
NRE=(W1-W2)/W1×100%。
式中:W1為成熟葉養(yǎng)分含量;W2為凋落葉養(yǎng)分含量,單位為mg·g-1(閆濤等, 2014)。采用 SPSS 17.0軟件進(jìn)行數(shù)據(jù)分析,不同連作代數(shù)間的NRE平均數(shù)采用單因素方差分析(one-way ANOVA),用Duncan進(jìn)行差異顯著性比較。
3.1 連作歐美楊I(lǐng)-107成熟葉和凋落葉中N,P,K含量 從圖1和圖2可見,隨著連作代數(shù)增加,歐美楊I(lǐng)-107葉片中N,P,K含量均發(fā)生了一定變化。對(duì)于成熟葉而言(圖1),一代林和二代林葉片中N,P,K含量差異不顯著。成熟葉片中全N含量最高的是二代林,其次是一代林和三代林,三者之間差異不顯著(P>0.05),這說明連作對(duì)歐美楊I(lǐng)-107成熟葉中N含量影響不大。成熟葉中P含量隨著代數(shù)增加而降低,且一代林和二代林成熟葉片P含量顯著高于三代林(P<0.05)。與P含量變化不同,一代林和二代林成熟葉的K含量顯著高于三代林(P<0.05),但是二代林成熟葉的K含量與一代林差異不顯著(P>0.05)。在歐美楊I(lǐng)-107凋落葉中(圖2),一代林和三代林凋落葉中的全N含量顯著高于二代林(P<0.05); 但是二代林凋落葉P含量顯著高于一代林(P<0.05),與三代林差異不顯著(P>0.05); 三代林凋落葉K含量顯著高于一代林和二代林(P<0.05)。
圖1 歐美楊I(lǐng)-107成熟葉N,P,K含量Fig.1 N, P, and K contents in mature leaves of Populus×euramericana ‘Neva’不同代數(shù)間不同小寫字母表示差異顯著(α=0.05)。Different little letters among different generations mean significant difference at 0.05 level.
圖2 歐美楊I(lǐng)-107凋落葉N,P,K含量Fig.2 N, P, and K contents in leaf litters of Populus×euramericana ‘Neva’不同代數(shù)間不同小寫字母表示差異顯著(α=0.05)。Different little letters among different generations mean significant difference at 0.05 level.
3.2 歐美楊I(lǐng)-107葉片N,P,K養(yǎng)分回收特征 歐美楊I(lǐng)-107凋落葉N,P,K含量都顯著低于成熟葉(P<0.05),說明歐美楊I(lǐng)-107葉片存在養(yǎng)分回收現(xiàn)象。由圖3可見,連作對(duì)N,P,K 3種營養(yǎng)元素的養(yǎng)分回收率有顯著的影響。不同代數(shù)N回收率之間差異顯著(P<0.05),二代林的N回收率顯著高于一代林和三代林(P<0.05)。不同代數(shù)之間P回收率差異顯著(P<0.05),且隨著代數(shù)增加,P的回收率逐漸降低,最低僅為19.24%。一代林和二代林K回收率無顯著差異(P>0.05),但是都顯著高于三代林(P<0.05)。整體而言,除二代林外,N的回收率低于P和K的回收率。
圖3 歐美楊I(lǐng)-107葉片養(yǎng)分回收率Fig.3 Nutrient recovery efficiency of Populus×euramericana ‘Neva’ leaves不同小寫字母分別表示不同代數(shù)同一元素的回收率差異性顯著(P<0.05); 不同大寫字母分別表示同一代數(shù)不同元素的回收率的差異顯著(P<0.05)。Different lowercase letters show the difference of the resorption efficiency of different generation in the same elements (P<0.05).Different capital letters show the difference of the resorption efficiency of the same generation in different elements respectively(P<0.05).
3.3 歐美楊I(lǐng)-107葉片C/N、C/P、N/P的特征 對(duì)于成熟葉片(圖4)三代林的C/P和N/P都顯著高于一代林和二代林(P<0.05),而一代林和二代林之間差異不顯著(P>0.05)。不同代數(shù)之間成熟葉C/N差異不顯著(P>0.05)。連作降低了凋落葉中N/P和C/P,并且二代林和三代林中凋落葉內(nèi)N/P和C/P顯著低于一代林(P<0.05),同時(shí)增加了二代林凋落葉中的C/N(圖5),這些變化將影響凋落葉的分解過程。
圖4 歐美楊I(lǐng)-107成熟葉片N/P,C/N,C/P特征Fig.4 N/P, C/N, and C/P features in mature leaves of Populus×euramericana ‘Neva’
圖5 歐美楊I(lǐng)-107凋落葉片N/P,C/N,C/P特征Fig.5 N/P, C/N, and C/P features in leaf litters of Populus×euramericana ‘Neva’
4.1 連作對(duì)歐美楊I(lǐng)-107葉片養(yǎng)分含量及回收率的影響 本研究中,成熟葉的N,P,K含量隨著連作代數(shù)增加而降低,主要原因是連作導(dǎo)致土壤肥力(劉福德等, 2005; 王延平等, 2013; 許壇等, 2014)和植物光合效能下降(艾釗, 2015),引起植物生長受阻,葉片養(yǎng)分含量下降。連作增加凋落葉中N,P,K含量,主要是植物對(duì)N,P和K的回收率下降導(dǎo)致的(鄧浩俊等, 2015),尤其是三代林。本研究中,歐美楊I(lǐng)-107在連作條件下,凋落葉中的養(yǎng)分濃度低于成熟葉,這部分養(yǎng)分回收后重新參與植物體內(nèi)循環(huán),避免其過多依賴土壤環(huán)境條件。
二代林N的回收率顯著高于一代林和三代林(P<0.05)。主要是因?yàn)槎种胁荼局参镙^多,生長旺盛,在一定程度上降低了土壤中的N含量(焦峰等, 2005),促使二代林通過增加養(yǎng)分回收率來維持其本身的正常生長發(fā)育。隨著連作代數(shù)增加,歐美楊I(lǐng)-107對(duì)P,K的回收率下降,可能是因?yàn)镵易于流失導(dǎo)致的(理永霞等, 2009),而K作為細(xì)胞中調(diào)節(jié)滲透壓的關(guān)鍵因子,在養(yǎng)分回收過程中細(xì)胞需要一直調(diào)節(jié)細(xì)胞滲透壓直到其他養(yǎng)分元素完成回收(Ruuholaetal., 2011)。本研究中三代林的K回收率顯著低于其他林分(P<0.05),說明連作代數(shù)的增加將影響K的回收速度。
通常認(rèn)為,凋落葉中N和P含量分別小于0.70%和0.05%時(shí),N和P能被大部分回收,分別大于1.00%和0.08%時(shí)能被不完全回收(Killingbeck, 1996; 任麗昀等, 2005)。在本研究中凋落葉中N和P濃度分別大于1.00%和0.08%,且隨著連作代數(shù)的增加,凋落葉中的N,P含量增加。因此,本試驗(yàn)中N和P均被不完全吸收,表明歐美楊I(lǐng)-107養(yǎng)分轉(zhuǎn)移較差。一代林內(nèi)凋落葉中P含量為0.09%,相對(duì)而言,歐美楊I(lǐng)-107對(duì)P的吸收較完全,說明連作條件下,P對(duì)歐美楊I(lǐng)-107的限制更加明顯。
4.2 連作對(duì)歐美楊I(lǐng)-107葉片C/N、C/P和N/P比值的影響 成熟葉片中N/P在一定程度上反映了植物受N或P的相對(duì)限制情況(銀曉瑞等, 2010),N/P小于14,表示受N限制,高于16,則受P限制(Koerselmanetal., 1996)。本研究中,一代林和二代林內(nèi)成熟葉片N/P均小于14,表明該林分受到N的限制,而三代林內(nèi)成熟葉片N/P大于16,則受到P的限制。這可能也是導(dǎo)致一代和二代林內(nèi)N回收率較高的原因。但是三代林中并未出現(xiàn)高的P回收率,反而較低,這也恰恰說明了連作歐美楊I(lǐng)-107人工林內(nèi)P循環(huán)受阻,不能很好地通過內(nèi)循環(huán)保存P元素。歐美楊I(lǐng)-107葉片中N/P的變化規(guī)律與P含量的變化規(guī)律相反,這說明試驗(yàn)地內(nèi)葉片N/P主要受P含量控制,這與張文彥等(2010)的研究結(jié)果一致。本研究結(jié)果顯示,凋落葉N/P高于成熟葉,這與李榮華等(2008)對(duì)馬尾松的研究結(jié)果相似,與李征等(2012)的研究結(jié)果相反,可能是由于凋落葉中RNA含量較低導(dǎo)致的(Makinoetal., 2003)。在凋落葉中,二代林和三代林葉片N/P顯著低于一代林(圖3)。葉片凋落物中N/P是衡量其分解速率的良好指標(biāo),且與分解速率呈顯著正相關(guān)(Güsewell, 2004)??梢姡瑲W美楊I(lǐng)-107連作可以通過降低葉片凋落物的N/P,從而降低其分解速率和N歸還土壤的效率,這將影響土壤N庫的補(bǔ)充,進(jìn)而導(dǎo)致土壤養(yǎng)分可利用性減少,影響歐美楊I(lǐng)-107通過根系吸收的養(yǎng)分量。
本研究中歐美楊I(lǐng)-107葉片C/N和C/P的變化規(guī)律與其葉片中N,P含量的變化規(guī)律相反,說明歐美楊I(lǐng)-107葉片中N,P含量對(duì)葉片C/N和C/P起主導(dǎo)作用,這與牛得草等(2013)、楊闊等(2010)和李征等(2012)的研究結(jié)果一致,主要是由于葉片中C含量均較高,且變化幅度較小。
綜上所述,連作影響歐美楊I(lǐng)-107成熟葉片和凋落葉片中N,P,K含量,特別是三代林顯著降低N,P,K三大元素的回收率,影響?zhàn)B分內(nèi)循環(huán),進(jìn)而降低植物對(duì)養(yǎng)分的利用率和保存能力; 此外,連作通過改變凋落葉中化學(xué)計(jì)量比(降低凋落葉內(nèi)N/P,增加凋落葉內(nèi)C/N),間接地降低了凋落物分解速率,使養(yǎng)分歸還到土壤中的節(jié)奏減緩,影響人工林生態(tài)系統(tǒng)養(yǎng)分歸還,進(jìn)而影響歐美楊I(lǐng)-107人工林的豐產(chǎn)。
艾 釗. 2015. I-107楊樹不同連作代數(shù)人工林冠層光合作用特征.泰安: 山東農(nóng)業(yè)大學(xué)碩士學(xué)位論文.
(Ai Z. 2015. Effect of continuous cropping of poplar plantation community on photosynthesis. Tai’an:MS thesis of Shandong Agricultural University. [in Chinese])
鄧浩俊,陳愛民,嚴(yán)思維,等. 2015. 不同林齡新銀合歡回收率及其C∶N∶P化學(xué)計(jì)量特征. 應(yīng)用與環(huán)境生物學(xué)報(bào),21 (3): 522-527.
(Deng H J,Chen A M, Yan S W,etal. 2015. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages ofLeucaenaleucocephala. Chinese Journal of Applied Environmental Biology,21(3): 522-527. [in Chinese])
焦 峰,溫仲明,焦菊英,等. 2005. 黃土丘陵區(qū)退耕地土壤養(yǎng)分變異特征. 植物營養(yǎng)與肥料學(xué)報(bào),11 (6): 724-730.
(Jiao F,Wen Z M,Jiao J Y,etal. 2005. Heterogeneity of soil nutrients of cropland returning to forest on the loess hilly region. Plant Nutrition and Fertilizer Science,11(6): 724-730. [in Chinese])
李榮華,汪思龍,王清奎. 2008. 不同林齡馬尾松針葉凋落前后養(yǎng)分含量及回收特征. 應(yīng)用生態(tài)學(xué)報(bào), 19 (7): 1443-1447.
(Li R H,Wang S L,Wang Q K. 2008. Nutrient contents and resorption characteristics in needles of different agePinusmassoniana(Lamb.) before and after withering. Chinese Journal of Applied Ecology, 19(7): 1443-1447. ([in Chinese])
理永霞,茶正早,羅 微,等. 2009. 3種桉樹幼苗葉片養(yǎng)分變化及其轉(zhuǎn)移特性. 林業(yè)科學(xué),45 (1): 152-157.
(Li Y X,Cha Z Z,Luo W,etal. 2009. Dynamics and transfer of nutrients in the seedling leaves of threeEucalyptusvarieties. Scientia Silvae Sinicae, 45(1): 152-157. [in Chinese])
李 征,韓 琳,劉玉虹,等. 2012. 濱海鹽地堿蓬不同生長階段葉片C,N,P化學(xué)計(jì)量特征. 植物生態(tài)學(xué)報(bào),36 (10): 1054-1061.
(Li Z,Han L,Liu Y H,etal. 2012. C,N and P stoichiometric characteristics in leaves ofSuaedasalsaduring different growth phase in coastal wetlands of China. Chinese Journal of Plant Ecology,36 (10): 1054-1061. [in Chinese])
劉福德,姜岳忠,王華田,等. 2005. 楊樹人工林連作效應(yīng)的研究. 水土保持學(xué)報(bào), 19 (2): 102-105.
(Liu F D,Jiang Y Z,Wang H T,etal. 2005. Effect of continuous cropping on poplar plantation. Journal of Soil and Water Conservation, 19(2): 102-105. [in Chinese])
牛得草,李 茜,江世高,等. 2013. 阿拉善荒漠區(qū)6種主要灌木植物葉片C∶N∶P化學(xué)計(jì)量比的季節(jié)變化. 植物生態(tài)學(xué)報(bào), 37 (4): 317-325.
(Niu D C,Li Q,Jiang S G,etal. 2013. Seasonal variations of leaf C∶N ∶P stoichiometry of six shrubs in desert of China’s Alxa Plateau. Chinese Journal of Plant Ecology,37(4): 317-325. [in Chinese])
任麗昀,袁志友,王洪義,等. 2005. 中國北部半干旱區(qū)喬木、灌木和草本3種不同生活型植物的氮素回收特征. 西北植物學(xué)報(bào),25 (3): 497-502.
(Ren L Y,Yuan Z Y,Wang H Y,etal. 2005. Nitrogen resorption of three life-forms (trees,shrubs and grasses) in the semi-arid region of North China. Acta Botanica Boreali-Occidentalia Sinica,25(3): 497-502. [in Chinese])
孫翠玲,朱占學(xué),王 珍,等. 1995. 楊樹人工林地力退化及維護(hù)與提高土壤肥力技術(shù)的研究. 林業(yè)科學(xué),31 (6): 506-512.
(Sun C L,Zhu Z X,Wang Z,etal. 1995. Study on the soil degradation of the poplar plantation and the technique to preserve and increase soil fertility. Scientia Silvae Sinicae, 31(6): 506-512. [in Chinese])
王延平,王華田,許 壇,等. 2013. 酚酸對(duì)楊樹人工林土壤養(yǎng)分有效性及酶活性的影響. 應(yīng)用生態(tài)學(xué)報(bào),24 (3): 667-674.
(Wang Y P,Wang H T,Xu T,etal. 2013. Effects of exogenous phenolic acid on soil nutrient availability and enzyme activities in a poplar plantation. Chinese Journal of Applied Ecology,24(3): 667-674. [in Chinese])
許 壇,王華田,王延平,等. 2014. 楊樹人工林土壤養(yǎng)分有效性變化及其與土壤細(xì)菌群落演變的相關(guān)性. 應(yīng)用與環(huán)境生物學(xué)報(bào), 20 (3): 491-498.
(Xu T,Wang H T,Wang Y P,etal. 2014. Correlation between soil nutrient availability and bacteria community succession in poplar plantations. Chinese Journal of Applied and Environmental Biology, 20 (3): 491-498. [in Chinese])
閆 濤,楊 凱,朱教君. 2014. 遼東山區(qū)主要樹種葉片氮、磷、鉀再吸收. 生態(tài)學(xué)雜志,33(8): 2005-2011
(Yan T,Yang K,Zhu J J.2014. Leaf N,P and K resorption of major tree species in a montance region of eastern Liaoning Province, China. Chinese Journal of Ecology, 33(8): 2005-2011. [in Chinese])
楊 闊,黃建輝,董 丹,等. 2010. 青藏高原草地植物群落冠層葉片氮磷化學(xué)計(jì)量學(xué)分析. 植物生態(tài)學(xué)報(bào),34 (1): 17-22.
(Yang K,Huang J H,Dong D,etal. 2010. Canopy leaf N and P stoichiometry in grassland communities of Qinghai-Tibetan Plateau,China. Chinese Journal of Plant Ecology,34(1): 17-22. [in Chinese])
銀曉瑞,梁存柱,王立新,等. 2010. 內(nèi)蒙古典型草原不同恢復(fù)演替階段植物養(yǎng)分化學(xué)計(jì)量學(xué).植物生態(tài)學(xué)報(bào),34 (1): 39-47.
(Yin X R,Liang C Z,Wang L X,etal. 2010. Ecological stoichiometry of plant nutrients at different restoration succession stages in typical steppe of Inner Mongolia, China. Chinese Journal of Plant Ecology,34(1): 39-47. [in Chinese])
張文彥,樊江文,鐘華平,等. 2010. 中國典型草原優(yōu)勢植物功能群氮磷化學(xué)計(jì)量學(xué)特征研究. 草地學(xué)報(bào),18 (4): 503-509.
(Zhang W Y,F(xiàn)an J W,Zhong H P,etal. 2010. The nitrogen: phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China. Acta Agrestia Sinica, 18(4): 503-509. [in Chinese])
Güsewell S. 2004. N∶P ratios in terrestrial plants: variation and functional significance. New phytologist,164(2): 243-266.
Killingbeck K T. 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77(6): 1716-1716.
Koerselman W,Meuleman A F M. 1996. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology,33(6): 1441-1450.
Makino W,Cotner J B,Sterner R W,etal. 2003. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C∶N∶P stoichiometry. Functional Ecology,17(1): 121-130.
Ruuhola T,Lepp nen T,Lehto T. 2011. Retranslocation of nutrients in relation to boron availability during leaf senescence ofBetulapendulaRoth. Plant and Soil,344(1): 227-240.
(責(zé)任編輯 于靜嫻)
The Effects of Continuous Cropping on Major Nutrient Elements and C/N/P Stoichiometric Ratios of Leaf ofPopulus×euramericana‘Neva’
Li Kun1,2Li Chuanrong1,2Yang Huanxiang2Liang Qiang2Liu Lili2Zhang Caihong1,2
(Taishan Forest Ecosystem Research Station,Shandoug Province Tai’An 271018; 2. Key Laboratory of Agricultural Ecology and Environment, Shandong Agricultural University Tai’an 271018)
【Objective】The objective of this study was to provide theoretical basis for reasonable management ofPopulus×euramericana‘Neva’ plantations under different continuous cropping conditions. 【Method】AnPopulus×euramericana‘Neva’ plantation along Dawen River area was studied. The contents of major nutrient elements in leaves were measured. The variations of stoichiometric ratios and nutrient recovery under different continuous cropping conditions were analyzed. 【Result】P and K contents in mature leaves of third generation plantation were significantly lower than those of first and second generations (P<0.05), while the content differences were not significant between the first and second generations (P>0.05), respectively. The effect of continuous cropping on N content was minor. Meanwhile, N, P, and K contents in leaf litters increased due to continuous cropping, especially for those in the third generation plantation. As a result, the recovery rates of N, P, and K in the third generation were significantly lower than those in the first and the second generations (P<0.05), respectively. Moreover, the recovery rate of K was significantly higher than those of N and P (P<0.05), respectively. The stoichiometric ratios of C/N, C/P, and N/P in leaf litters were generally higher than those in mature leaves, respectively. The ratios of N/P and C/P in mature leaves of the third-generation plantation were obviously higher than those of the first and the second generations, however, there were no significant differences among C/N ratios in mature leaves of three generation plantations. With the increase of continuous cropping generations, no obvious variation trend was observed on stoichiometric ratios of C, N, and P in leaf litters. The ratios of N/P and C/P in leaf litters of the first generation were significantly higher than those of the second and the third generations (P<0.05), respectively, while the C/N ratio of the second generation was significantly higher than those of the first and the third generations (P<0.05).【Conclusion】Overall, continuous cropping could reduce the contents of P and K in mature leaves, increase N, P, and K contents in leaf litters, and reduce the nutrient recovery ratio ofPopulus×euramericana‘Neva’. The internal circle of nutrients was therefore influenced. In addition, continuous cropping could reduce the decomposition rate of litters and affect the variations of C, N, and P contents in the soil by reducing N/P and C/P ratios in leaf litters.Key words: continuous cropping; nutrient recovery;Populus×euramericana‘Neva’; stoichiometry
10.11707/j.1001-7488.20170519
2015-08-12;
2017-04-21。
山東省聯(lián)合專項(xiàng)“暖溫帶優(yōu)勢造林樹種葉片凋落物分解的混合效應(yīng)及其主要酶控制機(jī)制”(ZR2014CL005); 教育部博士點(diǎn)基金“基于生態(tài)因子場的擬法正農(nóng)田林網(wǎng)可持續(xù)更新機(jī)制研究”(20133702110007); 國家自然科學(xué)基金“黃泛平原農(nóng)田林網(wǎng)生態(tài)因子場形成機(jī)制研究”(31170662)。
S718.5
A
1001-7488(2017)05-0164-06
*張彩虹為通訊作者。