国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

干旱脅迫對轉(zhuǎn)JERF36銀中楊苗木葉片解剖結(jié)構(gòu)及光合特性的影響*

2017-06-23 12:08:49張偉溪丁昌俊蘇曉華黃秦軍
林業(yè)科學(xué) 2017年5期
關(guān)鍵詞:株系轉(zhuǎn)基因葉綠素

黃 絹 陳 存 張偉溪 丁昌俊 蘇曉華 黃秦軍

(林木遺傳育種國家重點(diǎn)實(shí)驗室 國家林業(yè)局林木培育重點(diǎn)實(shí)驗室 中國林業(yè)科學(xué)研究院林業(yè)研究所 北京100091)

?

干旱脅迫對轉(zhuǎn)JERF36銀中楊苗木葉片解剖結(jié)構(gòu)及光合特性的影響*

黃 絹 陳 存 張偉溪 丁昌俊 蘇曉華 黃秦軍

(林木遺傳育種國家重點(diǎn)實(shí)驗室 國家林業(yè)局林木培育重點(diǎn)實(shí)驗室 中國林業(yè)科學(xué)研究院林業(yè)研究所 北京100091)

【目的】 以轉(zhuǎn)JERF36銀中楊(ABJ01)和非轉(zhuǎn)基因銀中楊(9#)為試驗材料,開展干旱脅迫對2個株系苗高生長、葉片形態(tài)解剖結(jié)構(gòu)、光合特性的影響研究,以期為轉(zhuǎn)基因楊樹的抗旱性評價提供參考,并為轉(zhuǎn)基因楊樹的推廣應(yīng)用提供科學(xué)依據(jù)?!痉椒ā?于2015年6月底,苗高約45 cm時,選取生長一致的苗木進(jìn)行土壤干旱脅迫試驗。脅迫程度分為3個梯度: 正常供水、中度脅迫、重度脅迫,土壤含水量分別控制在田間持水量的60%~80%,40%~60%,20%~40%,脅迫時間為30天。【結(jié)果】 干旱脅迫下,2個株系的苗高生長均受到抑制,隨著脅迫程度的加劇,受抑制程度增大,但ABJ01受抑制程度較低,重度脅迫下其苗高顯著高于9#。葉片形態(tài)數(shù)據(jù)顯示,與正常供水相比,干旱脅迫處理后,2個株系的單葉面積顯著降低,說明干旱脅迫抑制楊樹葉片生長; 中度、重度脅迫下9#的單葉面積均顯著低于ABJ01,表明ABJ01葉片生長受抑制程度低。葉片解剖結(jié)構(gòu)數(shù)據(jù)顯示,ABJ01和9#的葉表皮細(xì)胞生長和葉肉細(xì)胞生長均受干旱脅迫的抑制,但ABJ01受抑制程度較低。中度脅迫下,ABJ01的葉片上、下表皮厚度分別比9#顯著高出5.55%和4.70%,柵欄組織厚度比9#顯著高出6.17%,海綿組織厚度和葉片組織疏松度(SR)則分別比9#顯著降低12.35%和12.38%; 重度脅迫下ABJ01的葉片上、下表皮厚度分別比9#顯著高出16.27%和10.58%,海綿組織厚度和SR則分別比9#顯著降低11.71%和11.58%。ABJ01具有更發(fā)達(dá)的柵欄組織和相對少的海綿組織,這有助于CO2向光合場所的傳導(dǎo),維持葉片較高的凈光合速率(Pn),以適應(yīng)干旱脅迫條件。光合生理數(shù)據(jù)顯示,干旱脅迫下,ABJ01的Pn顯著高于非轉(zhuǎn)基因株系9#(10.50%~18.97%),說明干旱脅迫下ABJ01具有更強(qiáng)的光合能力。正常供水下,2個株系的氣孔導(dǎo)度(Gs)、最大光化學(xué)效率(Fv/Fm)差異不顯著,干旱脅迫下轉(zhuǎn)基因株系A(chǔ)BJ01的Gs、Fv/Fm下降幅度比非轉(zhuǎn)基因株系9#小,說明ABJ01受干旱脅迫影響程度較低; ABJ01的蒸騰速率(Tr)小于9#,表明ABJ01在干旱脅迫下具有更強(qiáng)的保水能力。ABJ01的葉片葉綠素a、葉綠素b和總?cè)~綠素含量較9#高,F(xiàn)v/Fm值較9#高,說明轉(zhuǎn)基因株系維持葉綠素含量穩(wěn)定的能力較強(qiáng)且光系統(tǒng)受損傷程度小。【結(jié)論】 外源基因JERF36可能通過影響葉片結(jié)構(gòu)發(fā)育提高轉(zhuǎn)基因銀中楊在干旱脅迫下的氣體交換能力和保水能力,從而增強(qiáng)轉(zhuǎn)基因銀中楊的抗旱能力。

干旱脅迫; 轉(zhuǎn)基因楊樹; 葉片解剖結(jié)構(gòu); 光合特性

各種各樣惡劣的環(huán)境條件影響著植物的生長、代謝、生產(chǎn)力等,其中,干旱是限制植物生長和產(chǎn)量的主要因素之一(Arausetal., 2002; Reddyetal., 2004),它對農(nóng)作物和林木造成的損失僅次于病蟲害類生物脅迫,在所有的非生物限制因子中占首要地位(馬耀光等, 2003)。葉片是植物進(jìn)行光合作用的主要器官,也是植物對干旱脅迫最敏感的部位之一(李歡等, 2013; 燕玲等,2002),在干旱環(huán)境中生長的植物,往往會形成多種抗旱性的形態(tài)結(jié)構(gòu),其中葉片結(jié)構(gòu)最能反映植物對干旱生境的適應(yīng)性(Zhaoetal., 1981; 李芳蘭等, 2005)。此外,植物葉片抗旱性生理可塑性強(qiáng),因此葉片形態(tài)結(jié)構(gòu)和生理變化可用來反映植物對干旱的適應(yīng)性強(qiáng)弱(Rubio de Casasetal., 2007)。

銀中楊(Populusalba×P.berolinensis)是以銀白楊(Populusalba)為母本、中東楊(Populusberolinensis)為父本,經(jīng)人工雜交選育而成,具有速生、樹形優(yōu)美等特點(diǎn),但耐鹽能力較差,影響了其推廣應(yīng)用。隸屬于ERF類的轉(zhuǎn)錄因子JERFs來源于番茄(Lycopersiconesculentum),它能專一結(jié)合GCC-box,激活植物下游抗逆相關(guān)基因的表達(dá),提高植物耐鹽、抗旱、抗寒性(李文正等, 2006; Zhangetal., 2010; Wuetal., 2008),在煙草(Nicotianatabacum)中表達(dá)的JERF3還能激活光合碳同化相關(guān)基因(Wuetal., 2008)。中國林業(yè)科學(xué)研究院林業(yè)研究所于2000年通過農(nóng)桿菌介導(dǎo)法將JERF36基因?qū)脬y中楊(蘇曉華等, 2009)。經(jīng)分子生物學(xué)檢測、溫室鹽脅迫和大田鹽堿地試驗,證明目的基因成功導(dǎo)入并穩(wěn)定表達(dá),轉(zhuǎn)JERF36銀中楊的耐鹽性得到顯著提高(李義良, 2008; Lietal., 2009),然而,前期研究并未對轉(zhuǎn)基因銀中楊的抗旱性進(jìn)行相關(guān)評價。本研究以轉(zhuǎn)JERF36銀中楊(ABJ01)和非轉(zhuǎn)基因銀中楊(9#)為試驗材料,從葉片形態(tài)、解剖結(jié)構(gòu)和光合生理特性角度探索轉(zhuǎn)JERF36基因銀中楊對干旱脅迫的響應(yīng),研究JERF36基因的導(dǎo)入對銀中楊抗旱性的影響,以期為轉(zhuǎn)基因楊樹的抗旱性評價提供參考,并為轉(zhuǎn)基因楊樹的推廣應(yīng)用提供科學(xué)依據(jù)。

1 材料與方法

1.1 試驗材料

試驗材料為中國林業(yè)科學(xué)研究院林業(yè)研究所2000年通過農(nóng)桿菌介導(dǎo)法成功轉(zhuǎn)化獲得的轉(zhuǎn)JERF36基因銀中楊(ABJ01)和非轉(zhuǎn)基因銀中楊(9#)。2015年4月10日將ABJ01和9#的1年生植株,截成15 cm左右的硬枝插穗,扦插于塑料小盆中(10 cm × 10 cm),基質(zhì)為草炭土和珍珠巖,每盆1株,在溫室正常供水條件下培養(yǎng)。2015年5月20日將生長良好且一致的植株移栽至高度21 cm、直徑19 cm的塑料大盆中,基質(zhì)由黃土、沙土和草炭土按10∶2∶1的比例混合配制而成,每盆基質(zhì)質(zhì)量5.5 kg,正常供水條件下培養(yǎng)。

1.2 干旱處理方法

待苗高達(dá)到45 cm左右時(6月底),每個株系選擇大小一致、生長健壯的苗木18株(盆),進(jìn)行干旱脅迫處理。試驗采用完全隨機(jī)區(qū)組設(shè)計,共3個水分處理: 正常供水、中度脅迫、重度脅迫,土壤含水量分別控制在田間持水量的60~80%,40~60%,20~40%,每個處理重復(fù)3次。每天17: 00時稱取各盆質(zhì)量,補(bǔ)充水分,使各盆土壤含水量保持在試驗控制范圍之內(nèi)。干旱脅迫處理30天后(7月底)測定各項指標(biāo)。

在中國林業(yè)科學(xué)研究院溫室內(nèi)進(jìn)行試驗,溫室內(nèi)6—9月平均溫度控制在25~30 ℃,平均相對濕度為55%; 溫室透光性良好,晴天9:00—11:00室內(nèi)光合有效輻射PAR約為800 μmol·m-2s-1,室內(nèi)CO2濃度約為380 μmol·mol-1。

1.3 指標(biāo)測定方法

1.3.1 苗高及葉片數(shù)量測定 苗高指從苗木土痕處到苗木最高點(diǎn); 葉片數(shù)量是指從頂端第1片完全展開葉到苗木下端最后1片存在生理活性的葉片總數(shù)。

1.3.2 葉面積測量 采用CI-203激光葉面積儀活體測量植株葉面積,測量葉片均為植株頂端向下第5,6,7片功能葉,每個處理重復(fù)3次。

1.3.3 葉片解剖結(jié)構(gòu)觀察 在苗木中部偏上選取干旱脅迫后新形成的、大小基本一致的葉片,靠近其中脈位置處切取0.3 cm × 0.3 cm的小片,立即放入FAA溶液中固定24 h以上。采用半薄切片技術(shù),經(jīng)脫水和透明,置換和浸透,Spurr樹脂包埋和聚合,制成包埋樣品; 使用半薄切片機(jī)(Leica EMUC7切片機(jī), Germany)進(jìn)行切片,薄切片厚度為3 μm,制片后采用0.5%的甲苯胺藍(lán)(toluidine blue O,TBO)染色,隨后在顯微鏡下觀察照相(Zeiss Axioskop2 plus; AxioVisionRel.4.4),并用軟件(AxioVisionRel.4.4)測量各指標(biāo)值: 葉片厚度、上表皮厚度、下表皮厚度、柵欄組織厚度、海綿組織厚度、葉片組織緊密度(CTR)、葉片組織疏松度(SR)。每個處理重復(fù)3次,每個株系8~10個切片,每個切片每個指標(biāo)記錄3個數(shù)據(jù)。CTR和SR的計算公式如下(潘存娥, 2011):

CTR(%)=柵欄組織厚度/葉片厚度 × 100,

SR(%)=海綿組織厚度/葉片厚度 × 100。

1.3.4 氣體交換參數(shù)測定 采用美國Li-COR公司生產(chǎn)的LI-6400XT便攜式光合測定儀,于9:00—11:00進(jìn)行Pn、Gs、Ci、Tr等氣體交換參數(shù)測定。LI-6400XT的光合有效輻射(PAR)設(shè)定為800 μmol·m-2s-1,CO2濃度控制為400 μmol·mol-1。測量葉片均為植株頂端向下第5,6,7片功能葉,每片葉重復(fù)測量3次,每個處理3次重復(fù)。

1.3.5 PSⅡ最大光化學(xué)效率(Fv/Fm)測定 采用德國WALZ公司的Mini-PAM超便攜式調(diào)制葉綠素?zé)晒鈨x,于23:00—24:00時測定暗適應(yīng)后的各株系中部葉片最大熒光產(chǎn)量(Fm)和可變熒光(Fv),計算Fv/Fm。每個處理重復(fù)3次,每個株系記錄5片葉數(shù)據(jù)。

1.3.6 葉綠素含量測定 葉綠素含量測定參考《植物生理學(xué)實(shí)驗指導(dǎo)》(高俊鳳, 2006)。稱取植物新鮮葉片0.1 g于25 mL容量瓶中,加入0.5 mL純丙酮和15 mL 80%丙酮,蓋上瓶蓋室溫下暗處浸提過夜(期間搖動3~4次),直至樣品全部變白為止,用80%丙酮定容浸提液至25 mL。5 000 r·min-1下離心5 min,以80%丙酮為空白對照,用分光光度計在645,663 nm波長下測定浸提液的吸光度,計算組織中葉綠素含量。測定的葉片為從植株頂端向下第5,6,7片功能葉,每個處理重復(fù)3次。

1.4 數(shù)據(jù)處理

采用Excel 2013進(jìn)行數(shù)據(jù)處理,并通過SPSS17.0統(tǒng)計軟件進(jìn)行多重比較(采用Duncan新復(fù)極差法)。

2 結(jié)果與分析

2.1 干旱脅迫下植株生長、葉片形態(tài)及解剖結(jié)構(gòu)變化

2.1.1 干旱脅迫下植株生長及葉片形態(tài)變化 正常供水條件下,ABJ01和9#的苗高、葉片數(shù)量及單葉面積差異均不顯著。干旱脅迫下,ABJ01和9#的苗高生長均受到一定程度的抑制,隨著脅迫程度的加劇,受抑制程度增大,但ABJ01受抑制程度較低,在中度和重度干旱脅迫下苗高比9#分別高5.39%和9.38%,重度干旱脅迫下二者差異達(dá)到顯著水平。與正常供水相比,2個株系的葉片數(shù)量在干旱脅迫下均顯著減少,但ABJ01葉片數(shù)量略高于9#。干旱脅迫下,2個株系的葉面積生長均受到顯著抑制,ABJ01和9#分別比正常供水低3.50%~27.39%和15.19%~32.86%。中度和重度干旱脅迫下,9#的葉面積比ABJ01分別顯著低10.82%和13.79%,說明ABJ01葉片生長優(yōu)于9#。以上結(jié)果說明,轉(zhuǎn)基因銀中楊在干旱脅迫下具有更強(qiáng)的生長能力,其抗旱能力可能得到增強(qiáng)。

表1 干旱脅迫下苗木生長及葉片形態(tài)差異Tab.1 Differences of seedling growth and leaf phenotype under drought stress①

小寫字母表示相同系號不同干旱處理間差異顯著,大寫字母表示相同干旱處理條件下不同株系間差異顯著,顯著性水平為0.05。下同。Lowercase letters represent significant differences of the same poplar lines at different treatment, capital letters represent significant difference test of different poplar lines at the same treatment. Significant difference test level is at 0.05. The same below.

2.1.2 干旱脅迫下植株葉片解剖結(jié)構(gòu)組成和變化 研究表明,干旱脅迫下,2個株系的葉片厚度、上表皮厚度、海綿組織厚度、下表皮厚度與正常供水條件相比顯著降低。9#柵欄組織厚度干旱脅迫時比正常供水顯著低5.96%~8.32%,而ABJ01則干旱脅迫時比正常供水顯著高7.36%~9.55%。中度脅迫下,ABJ01的葉片上、下表皮厚度比9#分別顯著高5.55%和4.70%,柵欄組織厚度比9#顯著高6.17%,表明ABJ01具有更發(fā)達(dá)的柵欄組織,但海綿組織厚度和SR則分別比9#顯著低12.35%和12.38%; 重度脅迫下, ABJ01的葉片上、下表皮厚度分別比9#顯著高16.27%和10.05%,海綿組織厚度和SR則分別比9#顯著低11.71%和11.58%。以上結(jié)果說明,ABJ01葉片結(jié)構(gòu)可能更有利于提高其在干旱脅迫時的適應(yīng)能力。

圖1 葉片解剖結(jié)構(gòu)組成Fig.1 Leaf anatomical structures圖中大寫字母A、B、C分別表示9#在正常供水、中度脅迫、重度脅迫下的葉片結(jié)構(gòu)組成; D、E、F分別表示ABJ01在正常供水、中度脅迫、重度脅迫下的葉片結(jié)構(gòu)組成。Capital letters A, B, C respectively represent leaf anatomical structures of 9# at control, moderate drought stress and severe drought stress; D, E, F respectively represent leaf anatomical structures of ABJ01 at control, moderate drought stress and severe drought stress.

2.2 干旱脅迫下植株光合特性變化

2.2.1 干旱脅迫下植株氣體交換參數(shù)變化 正常供水下,ABJ01與9#的凈光合速率(Pn)差異不顯著,隨著干旱脅迫程度的加劇,2個株系的Pn均逐漸降低。中度和重度脅迫下,ABJ01的Pn分別比9#降低10.50%和18.97%,重度脅迫時二者達(dá)顯著水平(圖2A)。結(jié)果說明ABJ01在干旱脅迫下具有更強(qiáng)的光合能力,這可能與ABJ01具有發(fā)達(dá)的柵欄組織有關(guān)(表2)。

正常供水下,ABJ01與9#的氣孔導(dǎo)度(Gs)、胞間CO2濃度(Ci)和蒸騰速率(Tr)差異均不顯著,隨著干旱脅迫程度的加劇,2個株系的Gs、Ci和Tr均逐漸降低(圖2B,C,D),變化趨勢與Pn一致。與正常供水相比,重度脅迫下2個株系的Gs顯著降低,且在重度脅迫時ABJ01的Gs比9#高17.80%(圖2B),說明ABJ01可能具有更強(qiáng)的氣體交換能力。中度干旱脅迫下,ABJ01的Ci比9#顯著低1.67%(圖2C),這與其具有較高的Pn有關(guān)。 重度脅迫時ABJ01的Tr比9#顯著低8.29%(圖2D),說明干旱脅迫下,ABJ01的保水能力較強(qiáng)。

表2 干旱脅迫下各株系葉片解剖結(jié)構(gòu)變化Tab.2 Changes of leaf anatomical structure in different poplar lines under drought stress

圖2 干旱脅迫下楊樹氣體交換參數(shù)變化Fig.2 Changes of gas exchange parameters in poplar under drought stresses小寫字母表示相同株系不同干旱處理間差異顯著,*表示相同處理下不同系號間差異顯著,顯著性水平均為0.05。Lowercase letters represent significant differences result of same poplar lines at different treatments; * represent significant difference test result of different poplar lines at same treatment;Significant level is at 0.05.

2.2.2 干旱脅迫下植株Fv/Fm變化 干旱脅迫下,2個株系的PSⅡ最大光化學(xué)效率(Fv/Fm)變化如圖3。正常供水下,2個株系的Fv/Fm差異不顯著。干旱脅迫下2個株系的Fv/Fm顯著降低,中度脅迫下,9#和ABJ01分別比正常供水降低2.82%和1.35%,重度脅迫下,則達(dá)到5.70%和5.20%。另外,在干旱脅迫時ABJ01的Fv/Fm高于9#,說明干旱脅迫處理后,ABJ01的光系統(tǒng)受損程度較9#小,這與其具有較高的Pn有關(guān)(圖2A),ABJ01的抗旱能力可能得到增強(qiáng)。

圖3 干旱脅迫下轉(zhuǎn)基因銀中楊Fv/Fm變化Fig.3 Changes of Fv/Fm in transgenic poplar under drought stress

2.2.3 干旱脅迫下植株葉片葉綠素含量變化 干旱脅迫下,2個株系的葉綠素含量變化如圖4。正常供水下,ABJ01與9#的葉綠素a、葉綠素b和總?cè)~綠素含量差異均不顯著。干旱脅迫下,2個株系的葉綠素a、葉綠素b及總?cè)~綠素的含量較正常供水均呈降低趨勢(ABJ01在重度脅迫下葉綠素b含量例外),但ABJ01的降低幅度較9#小。重度干旱脅迫下,ABJ01的葉綠素a、葉綠素b和總?cè)~綠素含量分別比9#顯著高18.50%,29.13%和21.28%。說明干旱脅迫下轉(zhuǎn)基因株系維持葉綠素含量穩(wěn)定的能力較非轉(zhuǎn)基因株系強(qiáng)。

圖4 干旱脅迫下楊樹葉片葉綠素含量差異比較Fig.4 Differences of leaf chlorophyll content in poplar under drought stress

3 討論

植物生長量的降低是對干旱脅迫的一種響應(yīng)(Boughallebetal., 2011),樹木一般通過減小葉面積、降低蒸騰來適應(yīng)干旱脅迫(葉龍華等, 2014)。本研究表明,干旱脅迫下,2個株系的苗高生長均受到一定程度的抑制,但ABJ01苗高比9#分別高5.39%和9.38%,其中重度脅迫下二者差異達(dá)到顯著水平; 2個株系的單葉面積均顯著降低,但9#的單葉面積顯著低于ABJ01,表明ABJ01的苗高和單葉面積生長受干旱脅迫程度較9#小(表1)。干旱脅迫下,轉(zhuǎn)基因株系具有更強(qiáng)的生長能力,其抗旱能力可能得到提高。

干旱脅迫通常會引起植物形態(tài)、葉片水勢、光合碳同化等生理生化進(jìn)程發(fā)生改變(Wangetal., 2003),進(jìn)而影響植物的生長發(fā)育。植物葉片形態(tài)解剖學(xué)特征和光合生理特征等指標(biāo)比較容易觀察和測量,可用來反映植物對干旱脅迫的適應(yīng)性(Boughallebetal., 2011; Ennajehetal., 2010; 陳昕等, 2012; 潘存娥等, 2011; 李歡等, 2013)。本研究表明,干旱脅迫下,2個株系的葉片表皮細(xì)胞厚度和海綿組織厚度顯著降低,ABJ01的柵欄組織厚度呈增加趨勢,9#的柵欄組織厚度呈減少趨勢(表2),這與Chartzoulakis等 (2002)研究干旱脅迫對鱷梨(Perseaamericana)葉片解剖結(jié)構(gòu)影響的研究結(jié)果類似。與9#相比,在干旱脅迫下,ABJ01的葉片表皮厚度較大,具有發(fā)達(dá)的柵欄組織,而海綿組織厚度和葉片組織疏松度則較小(表2),表現(xiàn)出較強(qiáng)的干旱適應(yīng)能力。較厚的表皮細(xì)胞和發(fā)達(dá)的柵欄組織有利于植物保持水分以及更好地保護(hù)內(nèi)部組織,從而提高植物的存活率并有助于植物生長(Bacelaretal., 2004)。此外,葉肉柵欄組織發(fā)達(dá)、海綿組織厚度相對減少及葉片組織緊密度增大等特征,有助于CO2從孔下室傳導(dǎo)至光合作用場所,在氣孔導(dǎo)度較低的情況下維持植物較高的光合速率,提高植物的保水能力和抗旱能力(Chartzoulakisetal., 2002; Evansetal., 2000)。本研究顯示,中度和重度干旱脅迫下,ABJ01的Pn分別比9#高10.50%和18.97%,重度干旱脅迫下達(dá)顯著水平(圖2A),在重度脅迫時ABJ01的Tr比9#顯著低8.29%(圖2D); 重度干旱脅迫下,ABJ01的Gs較9#高17.80%(圖2B),說明干旱脅迫下轉(zhuǎn)基因銀中楊的葉片保水能力和CO2交換能力更強(qiáng),能在較低的Gs下維持較高的Pn。研究表明,干旱脅迫導(dǎo)致植物葉綠素a、葉綠素b和總?cè)~綠素含量顯著降低(王林龍等, 2015; 井大煒等, 2014),本研究結(jié)果與之相似,這可能是由于葉綠體膜受到破壞,造成葉肉細(xì)胞水分缺失所致(Anjumetal., 2011)。干旱脅迫導(dǎo)致Fv/Fm顯著降低,表明植物光系統(tǒng)受損嚴(yán)重(井大煒等, 2013),本研究結(jié)果與之相似。與9#相比,重度干旱脅迫時ABJ01的葉片葉綠素a、葉綠素b、總?cè)~綠素含量(圖4)及Fv/Fm較9#高(圖3),表明轉(zhuǎn)基因銀中楊葉肉細(xì)胞維持葉綠素含量穩(wěn)定的能力較強(qiáng),保水能力更強(qiáng),且光系統(tǒng)受損程度更小,其抗旱能力得到提高。另外,有研究表明轉(zhuǎn)錄因子JERFs的導(dǎo)入可激活轉(zhuǎn)基因煙草中與光合碳同化相關(guān)基因(Wuetal., 2008),維持植物在干旱脅迫時較高的光合速率。下一步可通過研究干旱脅迫下轉(zhuǎn)基因銀中楊中JERF36的表達(dá)與光合碳同化相關(guān)基因的關(guān)系,闡明轉(zhuǎn)基因楊樹在干旱脅迫下維持較高的Pn的機(jī)制,為進(jìn)一步研究轉(zhuǎn)基因銀中楊的抗旱性機(jī)制奠定基礎(chǔ)。

4 結(jié)論

屬于ERF類的轉(zhuǎn)錄因子JERF36可能通過影響轉(zhuǎn)基因銀中楊葉片結(jié)構(gòu)發(fā)育提高轉(zhuǎn)基因銀中楊在干旱脅迫下的氣體交換能力和保水能力,增強(qiáng)轉(zhuǎn)基因銀中楊的抗旱能力。

陳 昕, 徐宜鳳, 張振英. 2012. 干旱脅迫下石灰花楸幼苗葉片的解剖結(jié)構(gòu)和光合生理響應(yīng). 西北植物學(xué)報, 32(1): 111-116.

(Chen X, Xu Y F, Zhang Z Y. 2012. Leaf anatomical, structure and photosynthetic physiology responses ofSorbusfolgneriseedlings under drought stress. Acta Bot Boreal-Occidentalia Sinica, 32(1): 111-116. [in Chinese])

高俊鳳. 2006.植物生理學(xué)實(shí)驗指導(dǎo). 北京: 高等教育出版社.

(Gao J F. 2006. Guide of plant ohysiology experiment. Beijing: Higher Education Press. [in Chinese])

井大煒, 邢尚軍, 馬海林, 等. 2014. I-107 歐美楊對不同強(qiáng)度干旱脅迫的形態(tài)與生理響應(yīng). 東北林業(yè)大學(xué)學(xué)報, 42 (1): 10-13.

(Jing D W, Xing S J, Ma H L,etal. 2014. Morphological and physiological responses ofPopulus×euramericanacv. ‘Neva ’to water stress. Journal of Northeast Forestry University, 42 (1):10-13. [in Chinese])

井大煒, 邢尚軍, 杜振宇, 等. 2013. 干旱脅迫對楊樹幼苗生長、光合特性及活性氧代謝的影響. 應(yīng)用生態(tài)學(xué)報, 24(7): 1809-1816.

(Jing D W, Xing S J, Du Z Y,etal. 2013. Effects of drought stress on the growth, photosynthetic characteristics,and active oxygen metabolism of poplar seedlings.Chinese Journal of Applied Ecology, 24(7): 1809-1816. [in Chinese])

李芳蘭, 包維楷. 2005. 植物葉片形態(tài)解剖結(jié)構(gòu)對環(huán)境變化的響應(yīng)與適應(yīng). 植物學(xué)通報, 22(增刊): 118-127.

(Li F L, Bao W K. 2005. Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany, 22(S1): 118-127. [in Chinese])

李 歡, 樊軍鋒, 高建社, 等. 2013. 黑楊葉片旱生結(jié)構(gòu)的比較. 西北林學(xué)院學(xué)報, 28(3): 113-118.

(Li H, Fan J F, Gao J S,etal. 2013. Comparison on drought resistance on anatomical structures of black poplar leaf. Journal of Northwest Forestry University, 28(3): 113-118. [in Chinese])

李義良. 2008.轉(zhuǎn)基因楊樹的分子檢測及抗逆性評價. 北京: 北京林業(yè)大學(xué)博士學(xué)位論文.

(Li Y L. 2008. Molecular detection and evaluation of stress tolerance in transgenic poplars. Beijing: PhD thesis of Beijing Forestry University. [in Chinese])

李文正, 張海文, 王俊英, 等. 2006. ERF轉(zhuǎn)錄因子及其在煙草抗逆性改良中的應(yīng)用. 生物技術(shù)通報, (4):30-34.

(Li W Z, Zhang H W, Wang J Y,etal. 2006. Ethylene responsive factors and their application in improving tobacco tolerance to biotic and abiotic stresses. Biotechnology Bulletin, (4):30-34. [in Chinese])

馬蘭青, 王麗雪, 王有年,等. 1996. 干旱對蘋果葉片形態(tài)解剖結(jié)構(gòu)的影響. 北京農(nóng)學(xué)院學(xué)報, 11(2): 27-31.

(Ma L Q, Wang L X, Wang Y N,etal. 1996. Affection of aridity to anatomical structure on apple leaves. Journal of Beijing Agricultural College, 11(2): 27-31. [in Chinese])

馬耀光,張保軍,羅志成,等. 2003. 旱地農(nóng)業(yè)節(jié)水技術(shù). 北京: 化學(xué)工業(yè)出版社, 11.

(Ma Y G, Zhang B J, Luo Z C,etal. 2003. Dryland agriculture water-saving technology. Beijing: Chemical Industry Press, 11.

潘存娥, 田麗萍, 李貞貞, 等. 2011. 5種楊樹無性系葉片解剖結(jié)構(gòu)的抗旱性研究. 中國農(nóng)學(xué)通報, 27(2):21-25.

(Pan C E, Tian L P, Li Z Z,etal. 2011. Studies on drought resistance on anatomical structure of leaves of 5 poplar clones. Chinese Agricultural Science Bulletin, 27(2):21-25. [in Chinese])

蘇曉華, 張冰玉, 黃秦軍. 2009.楊樹基因工程育種. 北京: 科學(xué)出版社.

(Su X H, Zhang B Y, Huang Q J. 2009.Poplar genetic engineering breeding. Beijing: Science Press. [in Chinese])

王林龍, 李清河, 徐 軍, 等. 2015. 不同種源油蒿形態(tài)與生理特征對干旱脅迫的響應(yīng). 林業(yè)科學(xué), 51(2): 37-43.

(Wang L L, Li Q H, Xu J,etal. 2015. Morphology and physiology characteristic responses of different provenances ofArtemisiaordosicato drought stress. Scientia Silvae Sinicae, 51(2): 37-43. [in Chinese])

燕 玲, 李 紅, 劉 艷. 2002. 13種錦雞兒屬植物葉的解剖生態(tài)學(xué)研究. 干旱區(qū)資源與環(huán)境, 16(1): 100-106.

(Yan L, Li H, Liu Y. 2002. The anatomical ecology studies on the leaf of 13 species inCaraganagenus. Journal of Arid Land Resources and Environment, 16(1): 100-106. [in Chinese])

葉龍華, 黃香蘭, 薛 立. 2014. 干旱脅迫對樹木葉片性狀及抗旱生理的影響. 世界林業(yè)研究, 27(1): 29-34.

(Ye L H, Huang X L, Xue L. 2014. Effects of drought on leaf traits and drought-resistant physiology of trees. World Forestry Research, 27(1): 29-34. [in Chinese])

張計育, 王慶菊, 郭忠仁. 2012. 植物AP2/ERF類轉(zhuǎn)錄因子研究進(jìn)展. 遺傳, 34(7):835-847.

(Zhang J Y, Wang Q J, Guo Z R. 2012. Progresses on plant AP2/ERF transcription factors. Hereditas, 34(7): 835-847. [in Chinese])

Anjum S A, Xie X,Wang L C,etal. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9): 2026-2032.

Araus J L, Slafer G A, Reynolds M P,etal. 2002. Plant breeding and drought in C3 cereals: What should we breed for? Ann Bot, 89(7): 925-940.

Bacelar E A, Correia C M, Moutinho-Pereira J M,etal. 2004. Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol, 24(2): 233-239.

Boughalleb F, Hajlaoui H. 2011. Physiological and anatomical changes induced by drought in two olive cultivars (cv Zalmati and Chemlali). Acta Physiol Plant, 33(1): 53-65.

Chartzoulakis K, Patskas A, Kofidis G,etal. 2002. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Scientia Horticulturae, 95(1): 39-50.

Ennajeh M, Vadel A M, Cochard H,etal. 2010. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J of Hortic Sci & Biotech, 85(4): 289-294.

Evans J R, Loreto F. 2000. Acquisition and diffusion of CO2in higher plant leaves∥Leegood R C, Sharkey T D, von Caemmerers.Photosynthesis:phystology and metabolism.Netherlands:Kluver Academic Publishers, 321-351.

Li Y L, Su X H, Zhang B Y,etal. 2009. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance. Tree Physiology, 29(2): 273-279.

Reddy A R, Chiatanya K V, Vivekanandan M. 2004. Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol, 161(11): 1189-1202.

Rubio De Casas R R, Vargas P, Pérez-Corona E,etal. 2007. Field patterns of leaf plasticity in adults of the long-lived evergreenQuercuscoccifera. Annals of Botany, 100(2): 325-334.

Wang W, Vincour B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1): 1-14

Wu L J, Zhang Z J, Zhang H W,etal. 2008. Transcriptional modulation of ethylene response factor proteinJERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiology, 148(4): 1953-1963.

Zhang H W, Liu W, Wan L Y,etal. 2010. Functional analyses of ethylene response factorJERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res, 19(5): 809-818.

Zhao C X, Huang Z S. 1981. A preliminary study of xeromorphism of some important xerophytes growing in Tungeli desert. Journal of Integrative Plant Biology, 23(4): 278-283.

(責(zé)任編輯 王艷娜 郭廣榮)

Effects of Drought Stress on Anatomical Structure and Photosynthetic Characteristics of TransgenicJERF36Populusalba×P.berolinensisSeedling Leaves

Huang Juan Chen Cun Zhang Weixi Ding Changjun Su Xiaohua Huang Qinjun

(State Key Laboratory of Tree Genetics and Breeding Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration Research Institute of Forestry, Chinese Academy of Forestry Beijing 100091 )

【Objective】 In this study, transgenicPopulusalba×P.berolinensisline (ABJ01) and non-transgenic line (9#) were used to test effects of drought stress. To provide a new reference for drought assessment and scientific basis for promotion and application of transgenic poplars, seedling height, morphological and anatomical structure of leaves, and photosynthetic characteristics of transgenic poplar and non-transgenic poplar under drought stress were measured. 【Method】 At the end of June 2015, a soil drought stress experiment was conducted with seedlings of transgenic poplar and non-transgenic poplar at the average height around 45 cm. The seedlings were subjected to three regimes of water (control, moderate stress, and severe stress), and the soil moisture was controlled at 60%-80%, 40%-60%, 20%-40% of the field water capacity, respectively for 30 days. 【Result】 Seedling height growth of the two lines was inhibited to a certain degree by drought stress, and the inhibition was increasing severe with the stress level increased. The seedling height of transgenic line ABJ01 was 9.38% higher than non-transgenic line 9# under severe drought stress. Single leaf area of the two lines was significantly reduced under drought stress, indicating that drought stress suppressed growth of poplar leaves. Single leaf area of 9# was significantly lower than ABJ01, accounting for 10.82% and 13.79% of the control, respectively, indicating limitation of leaf growth in ABJ01 was lower under drought stress. Anatomical structure of leaves showed that growth of leaf epidermal cells and mesophyll cells in ABJ01 and 9# were inhibited by drought stress, however the inhibited degree of ABJ01 was lower. Under moderate drought stress, leaf upper epidermal thickness and lower epidermal thickness of ABJ01 were 5.55% and 4.70% significantly greater than that of 9#, respectively. Thickness of palisade tissue of ABJ01 was 6.17% significant greater than 9#. In contrast, sponge tissue thickness and SR were 12.35% and 12.38% significantly lower than those of 9#, respectively. Under severe drought stress condition, leaf upper epidermal thickness and lower epidermal thickness of ABJ01 were 16.27% and 10.05% significantly higher than 9#, respectively, but sponge tissue thickness and SR were 11.71% and 11.58% significant lower than those of 9#, respectively. The more developed palisade tissue and relatively reduced spongy tissue may facilitate the conduction of CO2, and maintain the higherPnin leaf of ABJ01, which would contribute to adaptation to drought stress. Photosynthetic physiological data suggested thatPnof 9# was 2.8 times lower than that of ABJ01, and ABJ01Pnwas significantly higher than non-transgenic lines 9# (10.50%-18.97%), indicating ABJ01 had a greater photosynthetic capacity. Under control treatment, there were no significant differences inGs,Fv/Fmbetween the two lines. However under drought stress, the decreased trend in transgenic line was relatively smaller compared with non-transgenic line under drought stress, indicating that ABJ01 indexes was less affected by drought stress. In addition, ABJ01Trwas less than 9#, suggesting that ABJ01 had stronger capacity in water holding under drought conditions. The chlorophyll a, chlorophyll b and total chlorophyll content in ABJ01 were higher than those of 9#. ABJ01Fv/Fmwas higher than 9#, indicating that the ability of maintaining the stability of chlorophyll content was stronger and the damage of PSⅡ was less in transgenic line. 【Conclusion】 The study suggests that exogenous geneJERF36 may improve the gas exchange capacity and water-holding capacity of transgenicPopulusalba×P.berolinensisunder drought stress by impacting the leaf structural of transgenic poplar, finally enhance drought tolerance of transgenicPopulusalba×P.berolinensis.

drought stress; transgenic poplar; leaf anatomical structure; photosynthetic characteristics

10.11707/j.1001-7488.20170502

2016-03-01;

2016-06-13。

國家“863”計劃課題(2013AA102703)。

S718.5

A

1001-7488(2017)05-0008-08

*黃秦軍為通訊作者。

猜你喜歡
株系轉(zhuǎn)基因葉綠素
探秘轉(zhuǎn)基因
轉(zhuǎn)基因,你吃了嗎?
過表達(dá)NtMYB4a基因增強(qiáng)煙草抗旱能力
提取葉綠素
嫦娥5號返回式試驗衛(wèi)星小麥育種材料研究進(jìn)展情況
桃樹葉綠素含量與SPAD值呈極顯著正相關(guān)
葉綠素家族概述
衢州椪柑變異株系—黃皮椪柑相關(guān)特性研究
浙江柑橘(2016年1期)2016-03-11 20:12:31
天然的轉(zhuǎn)基因天然的轉(zhuǎn)基因“工程師”及其對轉(zhuǎn)基因食品的意蘊(yùn)
由松針制取三種葉綠素鈉鹽及其穩(wěn)定性的研究
安远县| 阿尔山市| 雷波县| 泸西县| 万州区| 赤城县| 虞城县| 长治县| 依兰县| 雅安市| 贵德县| 万荣县| 托克托县| 彭泽县| 杨浦区| 崇礼县| 新平| 高台县| 白沙| 台北县| 萨嘎县| 荔波县| 开江县| 濮阳县| 屏东市| 江门市| 准格尔旗| 龙陵县| 福建省| 钦州市| 连南| 宁波市| 徐闻县| 吴忠市| 嘉荫县| 山东省| 桃源县| 林西县| 延安市| 阳朔县| 渑池县|