張 悅 李 蘊(yùn) 朱進(jìn)霞 趙文明
(1.首都醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院免疫學(xué)系,北京 100069;2. 首都醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院生理學(xué)與病理生理學(xué)系,北京 100069)
· 基礎(chǔ)研究 ·
多巴胺受體在大鼠結(jié)腸黏膜下神經(jīng)叢的表達(dá)和細(xì)胞分布
張 悅1, 2李 蘊(yùn)1*朱進(jìn)霞2趙文明1*
(1.首都醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院免疫學(xué)系,北京 100069;2. 首都醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院生理學(xué)與病理生理學(xué)系,北京 100069)
目的 多巴胺(dopamine, DA)與其受體結(jié)合調(diào)節(jié)腸道動(dòng)力、黏膜分泌及屏障等,黏膜下神經(jīng)元參與DA對(duì)黏膜的生理調(diào)節(jié),但其受體的具體分布尚不明了。通過檢測(cè)DA受體在大鼠結(jié)腸黏膜下層的蛋白和mRNA表達(dá)及細(xì)胞分布,為DA調(diào)節(jié)大鼠結(jié)腸病理生理機(jī)制提供依據(jù)。方法 用RT-PCR和Western blotting方法定性測(cè)定DA受體在大鼠結(jié)腸黏膜下層的mRNA和蛋白的表達(dá);免疫熒光雙染色后在激光共聚焦顯微鏡下觀察DA受體在黏膜下血管活性腸肽(vasoactive intestinal peptide,VIP)能和膽堿能神經(jīng)元上的分布。結(jié)果 在大鼠結(jié)腸黏膜下層,DA受體D1、D2、D5的mRNA及蛋白均有表達(dá);在黏膜下神經(jīng)叢VIP能陽性的神經(jīng)元中有大量分布,其中D1陽性的神經(jīng)元占58.94%±2.245%,D2陽性神經(jīng)元占52.03%±9.384%,D5陽性神經(jīng)元占86.21%±2.902%,且D5陽性神經(jīng)元數(shù)量顯著高于D1和D2;在黏膜下神經(jīng)叢膽堿能陽性的神經(jīng)元廣泛表達(dá)DA受體,其中D1陽性神經(jīng)元占87.75%±7.307%,D2陽性神經(jīng)元占88.50%±8.761%,D5陽性神經(jīng)元占89.25%±10.75%。結(jié)論 DA受體在大鼠結(jié)腸黏膜下層有D1、D2及D5的表達(dá),且在VIP能及膽堿能神經(jīng)元上均有分布,其中D5受體在VIP能神經(jīng)元上的分布顯著高于D1及D2受體。本研究可為深入探討DA調(diào)節(jié)結(jié)腸黏膜生理及病理機(jī)制提供形態(tài)學(xué)依據(jù)。
多巴胺;多巴胺受體;黏膜下神經(jīng)叢;血管活性腸肽;乙酰膽堿
多巴胺(dopamine, DA)作為兒茶酚胺類神經(jīng)遞質(zhì),在中樞及外周均有廣泛分布,其中腸道DA的主要來源為黏膜上皮細(xì)胞和腸神經(jīng)系統(tǒng)[1]。DA受體分有5個(gè)亞型D1~D5,均為G蛋白偶聯(lián)受體,可分為2類,分別為D1類受體(D1和D5)及D2類受體(D2、D3和D4)。D1類受體主要通過升高胞內(nèi)的cAMP發(fā)揮相應(yīng)的生理調(diào)節(jié)作用;D2類受體則通過降低胞內(nèi)的cAMP來發(fā)揮作用。DA與相應(yīng)受體的結(jié)合不僅對(duì)胃腸動(dòng)力具有重要的調(diào)節(jié)作用[2-3],還對(duì)黏膜的分泌及屏障功能發(fā)揮重要作用[4]。但因研究方法、腸道節(jié)段生理差異及神經(jīng)因素參與與否等原因,DA發(fā)揮功能的受體機(jī)制并不一致[5-6],且DA受體在消化道具體分布[7-8]也尚不完全明確。腸神經(jīng)系統(tǒng)是由上億神經(jīng)元所形成的腸道神經(jīng)網(wǎng)絡(luò)系統(tǒng)[9],可合成、釋放乙酰膽堿和多種神經(jīng)肽對(duì)胃腸功能發(fā)揮重要的獨(dú)立整合作用。腸神經(jīng)系統(tǒng)分為黏膜下神經(jīng)叢和肌間神經(jīng)叢,其中黏膜下神經(jīng)叢主要調(diào)節(jié)黏膜功能,其中血管活性腸肽(vasoactive intestinal peptide,VIP)和乙酰膽堿(acetylcholine,ACh)是黏膜下促分泌性神經(jīng)元分泌的主要神經(jīng)遞質(zhì),在黏膜分泌、血供及黏膜免疫等方面發(fā)揮重要調(diào)節(jié)作用[10];肌間神經(jīng)叢則主要負(fù)責(zé)調(diào)節(jié)胃腸動(dòng)力。研究[11]證明DA可直接作用于腸道肌層或肌間神經(jīng)元上的相應(yīng)受體對(duì)結(jié)腸動(dòng)力發(fā)揮直接或間接的調(diào)節(jié)作用,但DA對(duì)黏膜生理的調(diào)節(jié)作用及相關(guān)受體分布數(shù)據(jù)相對(duì)缺乏。有研究顯示DA對(duì)結(jié)腸單純黏膜層跨膜離子轉(zhuǎn)運(yùn)的調(diào)節(jié)主要經(jīng)由腎上腺素能β受體[12],而對(duì)結(jié)腸黏膜-黏膜下組織的跨膜離子轉(zhuǎn)運(yùn)則主要經(jīng)由D2受體[6],提示黏膜下神經(jīng)叢可能參與了DA對(duì)結(jié)腸生理的調(diào)節(jié)機(jī)制,但DA受體在大鼠結(jié)腸黏膜下神經(jīng)叢的分布及具體類型還不明確。本研究旨在探討DA受體在黏膜下神經(jīng)叢上的表達(dá)及細(xì)胞定位,為深入探討DA調(diào)節(jié)黏膜生理功能的機(jī)制提供形態(tài)學(xué)數(shù)據(jù)。
1.1 實(shí)驗(yàn)動(dòng)物
選取雄性SD大鼠8只(首都醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心提供),動(dòng)物許可證號(hào):SCXK(京)2012-0001。體質(zhì)量為200~250 g,經(jīng)實(shí)驗(yàn)動(dòng)物福利委員會(huì)許可,動(dòng)物在室溫條件,正常更替光照,24 h食水供應(yīng)。安樂處死后取結(jié)腸組織,其中4只大鼠的結(jié)腸用解剖鑷剝離出黏膜下層并凍存于液氮中,另外4只大鼠的結(jié)腸腸管于OCT中包埋后經(jīng)液氮固化后保存于-80 ℃冰箱中。
1.2 RT-PCR檢測(cè)DA受體在大鼠結(jié)腸黏膜下層mRNA的表達(dá)
1.2.1 RNA的提取
取4只適量大鼠遠(yuǎn)端結(jié)腸黏膜下層組織置于研缽中,加入液氮,用搗錘研磨碾碎組織,加至放有1 mL Trizol(美國(guó)Invitrogen公司)的1.5 mL EP管內(nèi),輕輕上下顛倒混勻,冰上靜置5 min。加入氯仿0.2 mL,劇烈震蕩15 s,冰上靜置2~3 min,4 ℃低溫、12 000 r/min 高速離心15 min。離心后將EP管傾斜45°取出,將上層水相移入干凈的離心管中,加入異丙醇沉淀RNA(每1 mL Trizol對(duì)應(yīng)0.5 mL異丙醇)。將混合物在室溫條件下孵育10 min,之后4 ℃ 12 000轉(zhuǎn)高速冷凍離心10 min。移去上層懸液,用75%(體積分?jǐn)?shù))的乙醇洗滌RNA 沉淀一次(每1 mL的Trizol至少加1 mL的75%乙醇),4 ℃下 7 500 r/min低速冷凍離心5 min,棄上清,簡(jiǎn)單干燥RNA沉淀。加入10~20 μL 無酶水溶解RNA樣品,經(jīng)檢測(cè)合格后,進(jìn)行RNA的反轉(zhuǎn)錄。
1.2.2 反轉(zhuǎn)錄
取0.1 ng~5 μg的總RNA,根據(jù)RNA溶液的濃度計(jì)算出加樣體積,并依次加入1 μL(50 μmol/L)Oligo (dT)和無RNA酶水混合至12 μL,65 ℃加熱5 min后置于冰上,再分別加入如下成分:4 μL 緩沖溶液,2 μL 10 mmol/L dNTP Mix,1 μL RiboLock RNase抑制劑(20 U/μL),1 μL反轉(zhuǎn)錄酶。將混合物在 42 ℃環(huán)境下孵育60 min,以70 ℃孵育5 min終止反應(yīng)。試劑盒購(gòu)于美國(guó)Thermo公司。
1.2.3 擴(kuò)增
RT-PCR用于測(cè)定大鼠遠(yuǎn)端結(jié)腸黏膜下層的D1、D2、D3、D4和D55種DA受體mRNA的表達(dá)情況。DA受體D1正向引物序列為5′-GGA TGA CAA CTG TGA CAC AAG GTT G-3′,反向引物序列為5′- AAG CTG ATG AGG GAC GAT GAA-3′;DA受體D2正向引物序列為5′- CAC CAC GGC CTA CAT AGC AA-3′,反向引物序列為5′-GGC GTG CCC ATT CTT CTC T-3′;DA受體D3正向引物序列為:5′-AGG TGA CAG GTG GAG TCT GG-3′,反向引物序列為5′-CCG TGC TGA TAG TGA ACT GG-3′;DA受體D4正向引物序列為:5′-ATG GTG TTG GCA GGG AAC T-3′,反向引物序列為5′-CCA CCC TCG GAG TAG ACA AA-3′;DA受體D5正向引物序列為5′-CTA GTG TGT GCT GCC ATC GT-3′,反向引物序列為5′-ACC CAG ATG TCG CAG AAT G-3′。GAPDH引物購(gòu)于生工生物工程(上海)股份有限公司。反應(yīng)體系根據(jù)北京TransGen Biotech公司的試劑盒說明操作。擴(kuò)增程序如下:94 ℃變性5 s,59 ℃退火15 s,72 ℃延伸10 s,40個(gè)循環(huán)后4 ℃保存。
1.3 免疫蛋白印跡分析DA受體在大鼠結(jié)腸黏膜下層蛋白的表達(dá)
分別稱取4只大鼠結(jié)腸黏膜下層組織20 mg左右,加入200 μL蛋白裂解液,將組織剪碎勻漿,低溫超聲至半透明,冰浴中輕搖30 min,以12 000 r/min、4 ℃離心5 min。取上清液,用BCA法蛋白定量,調(diào)節(jié)蛋白上樣濃度,在95 ℃水浴中煮5 min變性,以每道80 μg蛋白上樣。
80 V電壓約40 min,待蛋白跑齊更換至120 V電壓約1 h,直至溴酚藍(lán)到達(dá)分離膠底端。取出凝膠,與濾紙泡在冷濕轉(zhuǎn)液中10 min左右,PVDF膜在甲醇中短時(shí)浸泡后按如下順序疊放:陰極-濾紙-凝膠-硝酸纖維素膜-濾紙-陽極,恒流295 mA轉(zhuǎn)膜90 min。TBS浸泡纖維素膜10 min后用5%(質(zhì)量分?jǐn)?shù))脫脂奶粉(TBS配制)封閉1 h。分別用DA受體D1、D2、D5(1∶200,兔抗大鼠,購(gòu)自美國(guó)Alomone Labs公司)及內(nèi)參GAPDH(1∶10 000,兔抗大鼠,購(gòu)自美國(guó)Sigma公司),室溫孵育1 h,4 ℃過夜孵育,次日取出后室溫輕搖30 min,TBST洗膜,孵育綠色熒光二抗 (1∶10 000,山羊抗兔,購(gòu)自美國(guó)Rockrand 公司)2 h,TBST洗膜后TBS浸泡10 min,放入Odyssey系統(tǒng)掃描成像(美國(guó)LI-COR公司)。
1.4 免疫熒光組織化學(xué)法檢測(cè)多巴胺受體(dopamine receptors, DAR)在黏膜下層VIP或膽堿乙酰轉(zhuǎn)移酶(choline acetyltransferase,ChAT)免疫陽性神經(jīng)元上的表達(dá)分析
分別取4只大鼠結(jié)腸管狀包埋的組織塊,用冰凍切片機(jī)進(jìn)行6 μm切片,貼片于多聚賴氨酸處理的載玻片上,丙酮固定10 min后晾干并于-20 ℃保存。
PBST洗片后用5%(體積分?jǐn)?shù))驢血清封閉30 min,選用一抗分別為DA受體D1、D2、D5、血管活性腸肽及膽堿乙酰轉(zhuǎn)移酶(膽堿能神經(jīng)元標(biāo)志物),室溫孵育1 h,4 ℃過夜孵育。15~16 h后取出組織切片室溫放置1 h,PBST洗3次。滴加二抗,孵育2 h后滴加DAPI,5 min后PBST洗片,甘油封片。熒光顯微鏡下觀察,照相??贵w信息詳見表1,2。
來自4只大鼠結(jié)腸組織的切片進(jìn)行相應(yīng)的免疫熒光雙標(biāo)后,每只大鼠的切片選取4~6個(gè)視野,分別統(tǒng)計(jì)每個(gè)視野內(nèi)VIP、ChAT及DAR免疫陽性神經(jīng)元的數(shù)量;并計(jì)算DAR在ChAT或VIP免疫陽性神經(jīng)元上的表達(dá)率。
表1 實(shí)驗(yàn)所用一抗信息Tab.1 Primary antibodies information in these experiments
VIP:vasoactive intestinal peptide;ChAT:choline acetyltransferase.
表2 實(shí)驗(yàn)所用二抗信息Tab.2 Secondary antibodies information in these experiments
1.5 統(tǒng)計(jì)學(xué)方法
2.1 多巴胺受體在大鼠結(jié)腸的mRNA及蛋白表達(dá)
用PCR技術(shù)檢測(cè)了DA受體在大鼠結(jié)腸的mRNA,如圖1A顯示:DA受體D1、D2、D5的mRNA有明顯表達(dá),但未檢測(cè)到DA受體D3及D4的表達(dá)。進(jìn)一步用Western blotting 方法檢測(cè)了相應(yīng)蛋白的表達(dá),結(jié)果如圖1B所示:D1在120 000處、D2在55 000處、D5在100 000和50 000處均有明顯且特異的條帶,提示DA受體在大鼠結(jié)腸黏膜下組織中有D1、D2及D5的表達(dá)。
2.2 多巴胺受體在大鼠結(jié)腸膽堿能神經(jīng)元上的分布
ChAT是ACh的合成酶,在神經(jīng)元內(nèi)合成,可作為膽堿能神經(jīng)元的標(biāo)志。因此在本研究中,以ChAT為膽堿能神經(jīng)元標(biāo)記進(jìn)行免疫熒光染色,在激光共聚焦顯微鏡下分別觀察ChAT免疫陽性神經(jīng)元在黏膜下神經(jīng)叢的分布及DA受體D1、D2、D5在大鼠遠(yuǎn)端結(jié)腸黏膜下神經(jīng)叢內(nèi)ChAT免疫反應(yīng)陽性神經(jīng)元上的表達(dá)情況,并進(jìn)行統(tǒng)計(jì)。結(jié)果如圖2所示,黏膜下分布有大量ChAT免疫反應(yīng)陽性的神經(jīng)元,其中D1、D2及D5免疫反應(yīng)陽性的ChAT能神經(jīng)元分別占總ChAT免疫反應(yīng)陽性神經(jīng)元數(shù)量的87.75%±7.307%、88.50%±8.761%及89.25%±10.75%,差異無統(tǒng)計(jì)學(xué)意義。
圖1 多巴胺受體mRNA及蛋白在大鼠結(jié)腸黏膜下層的表達(dá)Fig.1 mRNA and protein expression of DA receptors in rat colonic submucosa
A: mRNA expression of DA receptors in rat colonic submucosa;n=4; B: protein expression of DA receptors in rat colonic submucosa;n=4; DA:dopamine; DAR:dopamine receptors.
圖2 多巴胺受體在大鼠結(jié)腸黏膜下膽堿能神經(jīng)元上的表達(dá)及共存率比較Fig.2 The distribution of dopamine receptors on ChAT-IR neurons in submucosal plexus of rat colon, and comparison of their co-existence
A:green fluorescence staining for dopamine receptors immunoreactivity, red fluorescence staining for ChAT immunoreactivity; B: co-expression rate of D1, D2or D5in ChAT-IR neurons,n=4; ChAT-IR:choline acetyltransferase immunoreactivity; DAR:dopamine receptors.
2.3 多巴胺受體在大鼠結(jié)腸的VIP能神經(jīng)元上的分布
以VIP為VIP能神經(jīng)元標(biāo)記,采用免疫熒光雙重染色方法并在激光共聚焦顯微鏡下分別觀察DA受體D1、D2、D5在大鼠遠(yuǎn)端結(jié)腸黏膜下神經(jīng)叢內(nèi)VIP免疫反應(yīng)陽性神經(jīng)元上的表達(dá)情況。如圖3所示,黏膜下VIP神經(jīng)元中58.94%±2.245%為D1陽性,52.02%±9.384%為D2陽性,86.21%±2.902%為D5陽性。VIP能神經(jīng)元上的DA受體D5的表達(dá)率顯著高于D1及D2,差異有統(tǒng)計(jì)學(xué)意義。
A: green fluorescence staining for dopamine receptors immunoreactivity, red fluorescence staining for VIP immunoreactivity; B: co-expression rate of D1, D2or D5in VIP-IR neurons;n=3, *P<0.05;#P<0.05;DAR:dopaminereceptors;VIP-IR:vasoactiveintestinalpeptideimmunoreactivity.
研究顯示DA及其受體在結(jié)腸肌層、肌間神經(jīng)叢、黏膜上皮細(xì)胞及固有層免疫細(xì)胞上均有分布[11],但在大鼠黏膜下神經(jīng)叢中的分布并不明確。其中肌層及肌間神經(jīng)叢上的DA受體D1、D5和D2介導(dǎo)DA對(duì)結(jié)腸動(dòng)力的抑制作用[12],黏膜層DA受體可在結(jié)腸黏膜免疫應(yīng)答中發(fā)揮重要的調(diào)節(jié)作用[13-14]。本實(shí)驗(yàn)室前期研究[11]顯示DA受體在大鼠結(jié)腸黏膜層有D1及D5的表達(dá),本研究顯示大鼠結(jié)腸組織的黏膜下層有DA受體D1、D2、D5的表達(dá),且在黏膜下膽堿能神經(jīng)元及VIP能神經(jīng)元上均有分布,其中VIP能神經(jīng)元上D5受體的表達(dá)數(shù)量顯著高于其他類型。
結(jié)腸黏膜下神經(jīng)叢中分布著大量的神經(jīng)元,大致分為膽堿能神經(jīng)元及非膽堿能神經(jīng)元,在腸道黏液分泌、跨膜離子轉(zhuǎn)運(yùn)及免疫調(diào)節(jié)方面發(fā)揮著廣泛的直接或間接的影響作用。其中非膽堿能神經(jīng)元中,VIP能神經(jīng)元約占大鼠結(jié)腸黏膜下神經(jīng)元數(shù)量的60%[15],VIP與多種神經(jīng)遞質(zhì)如NO共存,除參與調(diào)節(jié)腸道分泌、血流之外,也可通過調(diào)節(jié)樹突狀細(xì)胞功能、抑制巨噬細(xì)胞活化以及修復(fù)黏膜屏障等作用抑制腸道炎性反應(yīng),從而發(fā)揮黏膜保護(hù)作用[13]。由膽堿能神經(jīng)元所釋放的ACh同樣具有類似的調(diào)節(jié)作用,且二者在黏膜分泌功能的調(diào)節(jié)中還存在協(xié)同作用[10,16-17]。
近年來多項(xiàng)研究表明DA及其受體參與炎性腸病的發(fā)病機(jī)制,但研究結(jié)果并不統(tǒng)一:有文獻(xiàn)[18]顯示DA可通過作用于樹突狀細(xì)胞上的D5受體促進(jìn)Th17細(xì)胞的分化,促進(jìn)炎性腸病進(jìn)程;也有文獻(xiàn)[19]顯示DA可通過作用于D2受體發(fā)揮結(jié)腸黏膜保護(hù)作用。分析可能主要與不同DA受體的細(xì)胞分布差異、親和力差異及不同情況下DA濃度改變有關(guān)。DA與其受體的親和力各有不同:D3>D5>D4>D2>D1,DA在低濃度時(shí)優(yōu)先結(jié)合親和力較高的受體,高濃度時(shí)結(jié)合較低親和力的受體,進(jìn)而發(fā)揮不同的調(diào)節(jié)作用[1]。研究[20]顯示炎性腸病時(shí)腸道DA濃度顯著降低,因此DA有可能優(yōu)先與黏膜層免疫細(xì)胞表面上的D5受體結(jié)合,促進(jìn)炎性反應(yīng)進(jìn)程。而根據(jù)本研究結(jié)果可推斷,DA還可能與黏膜下神經(jīng)元上D5受體高親和力結(jié)合促進(jìn)VIP及ACh的釋放,同時(shí)發(fā)揮抑炎的負(fù)反饋調(diào)節(jié)作用。而D2受體可能在較高濃度時(shí)發(fā)揮抑制動(dòng)力及潰瘍生成等作用,具體機(jī)制還需深入探討。
綜上,本研究完善了DA受體在大鼠結(jié)腸黏膜的形態(tài)學(xué)分布數(shù)據(jù),為深入探討DA對(duì)結(jié)腸黏膜功能調(diào)節(jié)機(jī)制提供實(shí)驗(yàn)室依據(jù)。
[1]PachecoR,ContrerasF,ZoualiM.Thedopaminergicsysteminautoimmunediseases[J].FrontImmunol, 2014, 5:117.
[2] Tolstanova G, Deng X, Ahluwalia A, et al. Role of dopamine and D2 dopamine receptor in the pathogenesis of inflammatory bowel disease[J]. Dig Dis Sci, 2015,60(10):2963-2975.
[3] Zheng L F, Song J, Fan R F, et al. The role of vagal pathway and gastric dopamine in the gastroparesis of rats after 6-hydroxydopamine microinjection in the substantia nigra[J].Acta Physiol (Oxf),2014, 211(2): 434-446.
[4] Feng X Y, Li Y, Li L S, et al. Dopamine D1 receptors mediate dopamine-induced duodenal epithelial ion transport in rats[J].Transl Res,2013,161(6):486-494.
[5] Zhang G H, Zhu J X, Xue H, et al. Dopamine stimulates Cl-absorption coupled with HCO3 -secretion in rat late distal colon[J]. Eur J Pharmacol, 2007,570(1-3):188-195.
[6] Al-Jahmany A A, Schultheiss G, Diener M. Effects of dopamine on ion transport across the rat distal colon[J].Pflugers Arch, 2004,448(6):605-612.
[7] Li Z S, Pham T D, Tamir H, et al. Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation[J]. J Neurosci, 2004, 24(6):1330 -1339.
[8] Li Z S, Schmauss C, Cuenca A, et al. Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and lnock-out mice[J]. J Neurosci, 2006,26(10):2798 -2807.
[9] Burns, A J, Hofstra R M. The enteric nervous system: From embryology to therapy[J]. Dev Biol, 2016,417(2):127-128.
[10]Foong J P, Tough I R, Cox H M, et al. Properties of cholinergic and non-cholinergic submucosal neurons along the mouse colon[J]. J Physiol, 2014,592(4):777-793.
[11]Zhang X, Li Y, Liu C, et al. Alteration of enteric monoamines with monoamine receptors and colonic dysmotility in 6-OHDA-induced Parkinson’s disease rats[J].Transl Res,2015, 166(2):152-162.
[12]ZhangX H, Zhang X F, Zhang J Q, et al. β-adrenoceptors, but not dopamine receptors, mediate dopamine-induced ion transport in late distal colon of rats[J].Cell Tissue Res,2008,334(1):25-35.
[13]Chino Y, Fujimura M, Kitahama K, et al. Colocalization of NO and VIP in neurons of the submucous plexus in the rat intestine[J]. Peptides,2002, 23 (12): 2245-2250.
[14]Gonzalez-Rey E, Delgado M. Therapeutic treatment of experimental colitis with regulatory dendritic cells generated with vasoactive intestinal peptide[J]. Gastroenterology, 2006, 131(6): 1799-1811.
[15]Gonzalez-Rey E, Delgado M. Role of vasoactive intestinal peptide in inflammation and autoimmunity[J].Curr Opin Investig Drugs, 2005, 6(11): 1116-1123.
[16]Reddix R, Kuhawara A, Wallace L, et al. Vasoactive intestinal polypeptide: a transmitter in submucous neurons mediating secretion in guinea pig distal colon[J]. J Pharmacol Exp Ther, 1994, 269(3):1124-1129.
[17]Ratcliffe E M, deSa D J, Dixon M F, et al. Intestines choline acetyltransferase (ChAT) immunoreactivity in paraffin sections of normal and diseased intestines[J].J Histochem Cytochem,1998, 46(11): 1223-1231.
[18]Kawano M, Takagi R, Kaneko A, et al. Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses[J]. J Neuroimmunol, 2015, 289: 43-55.
[19]Tolstanova G, Deng X, Ahluwalia A, et al. Role of dopamine and D2 dopamine receptor in the pathogenesis of inflammatory bowel disease[J]. Dig Dis Sci, 2015, 60(10): 2963-2975.
[20]Magro F, Vieira-Coelho M A, Fraga S, et al. Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease[J]. Dig Dis Sci, 2002, 47(1): 216-224.
編輯 孫超淵
Expression and cellular distribution of dopamine receptors in the rat colonic submucosal plexus
Zhang Yue1, 2, Li Yun1*, Zhu Jinxia2, Zhao Wenming1*
(1.DepartmentofImmunology,SchoolofBasicMedicalSciences,CapitalMedicalUniversity,Beijing100069,China; 2.DepartmentofPhysiologyandPathophysiology,SchoolofBasicMedicalSciences,CapitalMedicalUniversity,Beijing100069,China)
Objective Dopamine (DA) plays an important role in the regulation of intestinal motility, secretion and mucosal barrier by binding to its receptors. It has been shown that submucosal neurons are involved in the regulation effect of DA on the mucosa function. However the expressions of DA receptors in submucosal neurons are not clear. The aim of the present study is to investigate the distribution of DA receptors in vasoactive intestinal peptide (VIP) neurons and cholinergic neurons in the submucosa. Methods The mRNA and protein expression of DA receptors was measured by RT-PCR and Western blotting. Immunofluorescent double labeling of DA receptors with submucosal VIP neurons and cholinergic neurons were observed under confocal laser scanning microscope. Results Both the mRNA and protein of DA receptors D1, D2and D5were expressed in the colonic submucosal layer. In the submucosal plexus, D1positive VIP-positive neurons accounting for 58.94%±2.245%, D2for 52.03%±9.384%, and D5for 86.21%±2.902%. The number of D5positive neurons was significantly higher than that of D1and D2. In the submucosal plexus, D1positive cholinergic neurons accounted for 87.75%±7.307%, D2for 88.50%±8.761%, and D5for 89.25%±10.75%, and the distribution of the three types of DA receptors in the cholinergic neurons had no significant difference. Conclusion DA receptors D1, D2and D5are expressed in the submucosal layer of the rat colon. And they all are distributed in the submucosal VIP and cholinergic neurons, and D5expression was higher than D1and D2in VIP-positive neurons. Our study provides a morphological basis for the regulation of DA on the colonic mucosal function.
dopamine; dopamine receptors; submucosal plexus; vasoactive intestinal peptide; acetylcholine
國(guó)家自然科學(xué)基金(31300954,81370482)。This study was supported by National Natural Science Foundation of China (31300954, 81370482).
時(shí)間:2017-06-09 17∶39 網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/11.3662.r.20170609.1739.042.html
10.3969/j.issn.1006-7795.2017.03.017]
R392
2016-12-15)
*Corresponding authors, E-mail:liyun666@ccmu.edu.cn; zhao-wenming@163.com
首都醫(yī)科大學(xué)學(xué)報(bào)2017年3期