陳 斌,顧聰穎,陳必成,鄭 磊
線粒體輔酶Q改善高脂飲食大鼠腎血流動(dòng)力學(xué)的研究
陳 斌a*,顧聰穎a,陳必成b,鄭 磊a
目的 探討線粒體輔酶Q(MitoQ,Mitoquinone)對(duì)高脂飲食大鼠腎血流灌注的影響。方法 8周齡雄性SD大鼠30只,隨機(jī)分成模型組(H組,n=10)、治療組(HM組,n=10)和對(duì)照組(N組,n=10)。N組喂食基礎(chǔ)飼料,H組、HM組喂食高脂飼料。9周后,HM組自飲水中加入MitoQ。三組大鼠繼續(xù)喂養(yǎng)10周后進(jìn)行腎臟聲學(xué)造影檢查,并檢測(cè)大鼠血生化及腎組織丙二醛(MDA)含量,比較各指標(biāo)的組間差異。結(jié)果 與N組及HM組比較,H組大鼠腎皮質(zhì)達(dá)峰時(shí)間(TTOP)延長,增強(qiáng)強(qiáng)度(A)及充盈速度(C)下降(P<0.01),總膽固醇(TC)、三酰甘油(TG)及低密度脂蛋白膽固醇(LDL-c)均明顯增高(P<0.01),HM組與H組比較,以上各指標(biāo)明顯改善。H組血清及腎組織丙二醛(MDA)含量明顯高于HM組及N組(P<0.01)。結(jié)論 MitoQ可降低機(jī)體內(nèi)過氧化物含量,改善高脂飲食大鼠腎血流動(dòng)力學(xué)狀態(tài)。
線粒體輔酶Q;大鼠;高脂飲食;腎血流動(dòng)力學(xué)
高脂飲食是導(dǎo)致肥胖的重要原因,長期高脂飲食可導(dǎo)致高脂血癥?!爸|(zhì)腎毒性”假說[1]認(rèn)為,脂質(zhì)具有腎毒性,導(dǎo)致機(jī)體氧化應(yīng)激水平升高,而腎臟對(duì)氧化損傷比較敏感[2]。近年來,線粒體輔酶Q(MitoQ ,Mitoquinone)作為線粒體靶向抗氧化劑備受關(guān)注[3-4],對(duì)于MitoQ能否對(duì)高脂飲食大鼠腎血流灌注起到保護(hù)作用的報(bào)道較少,本研究旨在探討MitoQ對(duì)腎臟血流灌注的改善作用及相關(guān)機(jī)制。
1.1 實(shí)驗(yàn)動(dòng)物及分組 8周齡SD雄性SPF級(jí)大鼠30只,280~320 g(溫州醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心提供)。大鼠2~3只一籠,自由飲食,自然光照,動(dòng)物室溫適應(yīng)性飼養(yǎng)1周后,隨機(jī)分成3組:正常對(duì)照組(N組,n=10)、模型組(H組,n=10)、MitoQ治療組(HM組,n=10)。對(duì)照組喂食基礎(chǔ)飼料(溫州醫(yī)科大學(xué)附屬第一醫(yī)院動(dòng)物實(shí)驗(yàn)中心提供),其他兩組給予高脂飼料(80%基礎(chǔ)飼料,18%豬油,2%膽固醇, 江蘇美迪森生物醫(yī)藥有限公司提供),9周后,HM組飲水中添加MitoQ (蘇州沃盛化學(xué)有限公司提供),給藥濃度參照(232±4)mol/(kg·d)加入50 mL飲用水中[5],三組大鼠繼續(xù)喂養(yǎng)10周。
1.2 儀器與方法
1.2.1 主要儀器、試劑 GE公司LogiqE9彩色多普勒超聲診斷系統(tǒng),15L線陣探頭,探頭頻率為12~14 MHz。小動(dòng)物氣體麻醉機(jī)(ABS型,上海玉研科學(xué)儀器有限公司提供)。全自動(dòng)生化分析儀(日立7600型)。大鼠丙二醛(MDA)試劑盒(購于杭州聯(lián)科生物技術(shù)股份有限公司)。
1.2.2 聲學(xué)造影檢查方法 SD大鼠空腹8~10 h后,予1%戊巴比妥鈉50 mg/kg腹腔注射麻醉,取平臥位,以硫化鈉去除腹部體毛后,取仰臥位固定于動(dòng)物板,經(jīng)小動(dòng)物氣體麻醉機(jī)吸入2%異氟烷維持麻醉。造影劑為意大利博萊克公司生產(chǎn)的聲諾維(Sono Vue),向Sono Vue 25 mg干粉瓶內(nèi)注入5 mL生理鹽水,充分搖勻備用。首先,應(yīng)用常規(guī)二維超聲獲得清晰大鼠最大右腎冠狀切面后選用聲學(xué)造影模式,將焦點(diǎn)置于腎臟后方,探查深度固定于3 cm,機(jī)械指數(shù)0.06,幀頻15~20 Hz,實(shí)驗(yàn)過程中所有儀器調(diào)節(jié)設(shè)定不變,保持右腎冠狀切面穩(wěn)定,取0.2 mL造影劑懸液經(jīng)尾靜脈快速注入,同時(shí)啟動(dòng)記錄、觀察造影過程中腎實(shí)質(zhì)回聲變化,記錄至少3 min連續(xù)實(shí)時(shí)造影動(dòng)態(tài)影像并將其保存在儀器硬盤及光盤用于脫機(jī)分析。
1.2.3 圖像分析 應(yīng)用儀器自帶的TIC.Analysis(GE)軟件包對(duì)造影動(dòng)態(tài)影像進(jìn)行脫機(jī)分析,取樣框置于與腎門相對(duì)的外層腎皮質(zhì),大小約3 mm×3 mm,避開弓形動(dòng)脈及腎周組織干擾。生成大鼠腎皮質(zhì)灌注聲學(xué)造影時(shí)間-強(qiáng)度曲線(TIC曲線),自動(dòng)測(cè)出增強(qiáng)強(qiáng)度A、達(dá)峰時(shí)間TTOP、充盈速度C等參數(shù)值。所有參數(shù)均測(cè)量3次取平均值以減小誤差。
1.2.4 樣本采集及檢測(cè) 超聲造影檢查完成后立即開胸、開腹,腹主動(dòng)脈取血10 mL,所有血液標(biāo)本立即低溫(4 000℃ r/min、10 min)離心分離血清,置-40 ℃冰箱保存?zhèn)溆谩?/p>
用全自動(dòng)生化分析儀檢測(cè)血漿總膽固醇(TC)、三酰甘油(TG)、高密度脂蛋白膽固醇(HDL-c)、低密度脂蛋白膽固醇(LDL-c)、尿素氮(BUN)和肌酐(Cr)。血及腎組織丙二醛(MDA)按試劑盒說明書檢測(cè)。
2.1 三組大鼠一般情況比較 H組及HM組在前12周體重增長較N 組明顯,隨后增長放緩,實(shí)驗(yàn)?zāi)┤M大鼠體重比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05),見表1。
表1 三組大鼠不同時(shí)期體重比較(g)
注:與N組比較,*P<0.05
2.2 聲學(xué)造影 H組與N組及HM組比較,大鼠腎皮質(zhì)TIC曲線達(dá)峰時(shí)間(TTOP)延長、增強(qiáng)強(qiáng)度(A,為聲學(xué)強(qiáng)度的絕對(duì)增加值)及充盈速度(C)下降(P<0.01),HM組與N組比較,TTOP、A及C值差異均無統(tǒng)計(jì)學(xué)意義(P>0.05),見圖1、表2。
圖1 N組(圖a)、H組(圖b)和HM組(圖c)大鼠腎臟聲學(xué)造影時(shí)間-強(qiáng)度曲線及A、C和TTOP參數(shù)
表2 三組大鼠腎臟聲學(xué)造影相關(guān)參數(shù)的比較
注:A:增強(qiáng)強(qiáng)度;TIOP:達(dá)峰時(shí)間;C:充盈速度。與N組比較,*P<0.01;與H組比較,#P<0.01
2.3 腎組織勻漿檢查 H組MDA顯著高于N組及HM組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.01),HM組與N組間差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。見圖2。
圖2 三組腎組織MDA含量比較
2.4 血生化檢查 H組與N組比較,TC、TG、LDL-c及MDA含量均明顯增高(P<0.01)。HM組MDA及LDL-c較H組明顯降低(P<0.01);HM組TC及TG較H組稍下降,但差異無統(tǒng)計(jì)學(xué)意義(P>0.05);且仍高于N組(P<0.01)。三組HDL-c、BUN及SCr比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。見表3。
飲食所致的高脂血癥是世界性的衛(wèi)生問題,我國成人血脂異常率達(dá)18.6%[6]。不當(dāng)?shù)纳罘绞剿碌姆逝旨把x紊亂引起機(jī)體氧化應(yīng)激水平增高,活性氧簇(ROS)造成細(xì)胞、組織和器官的氧化損傷,在腎臟損害及腎臟疾病進(jìn)展中起重要作用[2,7]。大鼠以高脂飲食飼養(yǎng)6~12周時(shí)即可出現(xiàn)腎臟病理結(jié)構(gòu)的損害[8-10],氧化應(yīng)激反應(yīng)導(dǎo)致血管內(nèi)皮細(xì)胞功能異常、白細(xì)胞黏附和細(xì)胞凋亡增多,損害腎臟的微血管功能[11-13]。正常情況下活性氧簇的產(chǎn)生與清除處于動(dòng)態(tài)平衡,體內(nèi)抗氧化酶如SOD、GSH-Px、CAT等在清除氧自由基中有重要作用。MDA為脂質(zhì)氧化終產(chǎn)物,其含量能夠間接反映機(jī)體氧化應(yīng)激損傷程度,本研究中,H組飼養(yǎng)19周后血脂表現(xiàn)異常,血MDA及腎組織MDA含量增高,表明高脂飲食導(dǎo)致了機(jī)體氧化應(yīng)激水平增高。本研究血Scr及BUN濃度組間差異無統(tǒng)計(jì)學(xué)意義,表明本組高脂飲食大鼠腎功能尚沒有受到嚴(yán)重?fù)p害。
通過分析腎皮質(zhì)造影時(shí)間-強(qiáng)度曲線,可為腎臟血流灌注量的判定提供依據(jù),腎皮質(zhì)血流灌注的情況直接影響腎功能,與腎損害程度密切相關(guān)[14]。本研究聲學(xué)造影敏感地檢測(cè)到高脂飲食大鼠達(dá)峰時(shí)間延長、增強(qiáng)強(qiáng)度下降及充盈速度降低等血流動(dòng)力學(xué)異常,提示脂質(zhì)氧化損傷機(jī)制發(fā)揮作用,血管內(nèi)皮功能受損,微循環(huán)阻力增加。微泡進(jìn)入皮質(zhì)微循環(huán)的速度逐漸減慢,增強(qiáng)強(qiáng)度下降,達(dá)峰時(shí)間延長[6]。這些因素導(dǎo)致高脂飲食大鼠腎超聲造影定量參數(shù)A值及C值降低、達(dá)峰時(shí)間TTOP延長,因此,本研究表明腎血流動(dòng)力學(xué)的異常變化早于Scr及BUN所反映的腎功能異常改變。
表3 三組大鼠血漿相關(guān)指標(biāo)的比較
注:與N組比較,*P<0.01;與H組比較,#P<0.01
細(xì)胞內(nèi)線粒體既是活性氧產(chǎn)生的部位,也是活性氧介導(dǎo)損傷的靶點(diǎn),針對(duì)高脂血癥時(shí)機(jī)體氧化應(yīng)激水平升高這一現(xiàn)象,MitoQ 作為一種新型的線粒體靶向抗氧化劑備受關(guān)注。與其他與非靶向抗氧化劑均衡分布在細(xì)胞中不同,其親脂性的陽離子有助于MitoQ中抗氧化成份泛醌-又稱輔酶Q(CoQ)選擇性地大量聚集在細(xì)胞中的線粒體,從而更高效地保護(hù)線粒體功能,保護(hù)細(xì)胞免受過氧化物的損傷[15-17]。本研究表明,MitoQ能有效降低血液及腎組織的MDA含量,這是腎臟血流動(dòng)力狀態(tài)改善的基礎(chǔ),MitoQ治療組腎臟聲學(xué)造影參數(shù)較H組明顯改善,與對(duì)照組比較差異無統(tǒng)計(jì)學(xué)意義,表明MitoQ發(fā)揮了抗氧化作用,改善了血管內(nèi)皮細(xì)胞功能,降低了腎皮質(zhì)微循環(huán)阻力,增加腎血流灌注,對(duì)腎臟起到了保護(hù)作用。本研究表明,MitoQ治療組血脂異常較高脂飲食組稍降低,但未能得到明顯改善。
綜上所述,長期高脂飲食大鼠血脂紊亂、血液及腎組織過氧化物增加,導(dǎo)致腎血流動(dòng)力異常。具有線粒體靶向抗氧化功能的MitoQ,能有效降低自由基對(duì)線粒體及細(xì)胞的氧化損害,保護(hù)血管內(nèi)皮細(xì)胞功能,從而有效改善腎血流動(dòng)力學(xué)狀態(tài)。
[1] Moorhead JF,Chan MK,EI-Nahas M,et al.Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease [J].Lancet,1982,320(8311):1309-1311.
[2] Ratliff B,Abdulmahdi W,Pawar R,et al.Oxidant mechanisms in renal injury and disease[J].Antioxid Redox Signal,2016,25(3):119-146.
[3] Feillet-Coudray C,Fouret G,Ebabe E,et al.The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol[J].Free Radic Res,2014,48(10):1232-1246.
[4] Irene E,Noelia D,Susana R,et al.The mitochondria-targeted antioxidant MitoQ modulates oxidative stress,inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patient [J].Redox Biology,2016,10(12):200-205.
[5] Kelso GF,Porteous CM,Coulter CV,et al.Selective targeting of a redox-active Ubiquinone to Mitochondria within cells [J].J Biol Chem,2001,276(7):4588-4596.
[6] Lou T,Zhang Z,Xi Z,et a1.Berberine inhibits inflammatory response and ameliorates insulin resistance in hepatocytes [J].Inflammation,2011,34(6):659-667.
[7] Odermatt A.The Western-style diet:a major risk factor for impaired kidney function and chronic kidney disease [J].Am J Physiol Renal Physiol,2011,301(5):F919-F931.
[8] 云鵬,鄧德明,孫愛萍.高脂飲食誘導(dǎo)大鼠腎損傷及其氧化應(yīng)激水平的研究[J].長江大學(xué)學(xué)報(bào)(自科版)醫(yī)學(xué)卷,2007,4(2):118-120.
[9] 郝亞寧,李莎莎,隋燕霞,等.抑瘤素及其受體在高脂飲食大鼠腎組織中的表達(dá)和意義[J].腎臟病與透析腎移植雜志,2014,23(2):152-156.
[10]Ebenezer PJ,Mariappan N,Elks C,et al. Effects of pyrrolidine dithiocarbamate on high-fat diet-induced metabolic and renal alterations in rats [J]. Life Sci,2009,85(9):357-364.
[11]Kopkan L,Khan AH,Lis A,et al.Cholesterol induces renal vasoconstriction and anti-natriuresis by inhibiting nitric oxide production in anesthetized rats [J].Am J Physiol Renal Physiol,2009,297(12):F1606-F1613.
[12]Park S,Kim CS,Min J,et al.A high-fat diet increase oxidative renal injury and protein glycation in D-galactose-induced aging rats and its prevention by korea red ginseng [J].J Nutr Sci Vitaminol,2014,60(3):159-166.
[13]Araujo M,Wilcox C.Oxidative stress in hypertension:role of the kidney [J].Antioxid Redox Signal,2014,20(1):74-101.
[14]Ma F,Cang Y,Zhao B,et al.Contrast-enhanced ultrasound with SonoVue could accurately assess the renal microvascular perfusion in diabetic kidney damage [J].Nephrol Dial Transplant,2012,27(7):2891-2898.
[15]Mitchell T,Rotaru D,Saba H,et al.The Mitochondria-Targeted Antioxidant Mitoquinone Protects against Cold Storage Injury of Renal Tubular Cells and Rat Kidneys [J].J Pharm Exp Ther,2011,336(3):682-692.
[16]Mukhopadhyay P,Horváth B,Zsengellér Z,et al.Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy [J].Free Radic Biol Med,2012,52(2):497-506.
[17]Mercer J,Yu E,Figg N,et al.The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/-/ApoE-/-mice [J].Free Radic Biol Med,2012,52(5):841-849.
Effect of MitoQ on renal hemodynamics in rats fed with high-fat diet
CHEN Bina*,GU Cong-yinga,CHEN Bi-chengb,ZHENG Leia*
(a.Department of Medical Ultrasound,b.Department of Surgery,the First Affiliated Hospital,Wenzhou Medical University,Wenzhou 325000,China)
Objective To explore the effect of MitoQ on renal hemodynamics in rats fed with high-fat diet.Methods Thirty 8-week-old male SD rats were enrolled and divided into 3 groups randomly.Group N were fed with routine diet,Group H and group HM were fed with high-fat diet.From the 10th week,MitoQ was administered to group HM in the drinking water.At the end of 19th week,All animals underwent Contrast-enhanced ultrasound examination on kidney.The animals were sacrificed for the serum biochemical and renal MDA investigation.Results Compared with group N and group HM,value A(the difference between peak intensity and basement) and value C(related to ascending branch) in group H decreased significantly (P<0.01,respectively).The TTOP (time to peak) and levels of MDA and LDL-c were remarkably increased in group H than that of group N and group HM (P<0.01,respectively).There was no prominent difference in LDL-c between group N and group HM.TC (Total cholesterol) and TG(Triglycerides) in group H and HM were higher than those of group N(P<0.01,respectively).MDA in kidney was significantly increased in group H in comparison with group N and group HM (P<0.01,respectively).Conclusion MitoQ could reduced the level of MDA and protect against the impairment of renal hemodynamics in rats fed with high-fat diet.
MitoQ;Rat;High-fat diet;Renal hemodynamics
2017-04-17
溫州醫(yī)科大學(xué)附屬第一醫(yī)院a.超聲影像科, b.外科實(shí)驗(yàn)中心,溫州 325000
溫州市科技計(jì)劃項(xiàng)目(Y20140602)
10.14053/j.cnki.ppcr.201706002
*通信作者