陽同光
(湖南城市學(xué)院 機(jī)械與電氣工程學(xué)院,湖南 益陽 413000)
電網(wǎng)不平衡情況下基于神經(jīng)網(wǎng)絡(luò)并網(wǎng)逆變器同步技術(shù)研究
陽同光
(湖南城市學(xué)院 機(jī)械與電氣工程學(xué)院,湖南 益陽 413000)
為解決常規(guī)鎖相環(huán)技術(shù)在電網(wǎng)電壓不平衡情況下難以對電網(wǎng)電壓頻率和相位進(jìn)行有效檢測的問題,提出一種電網(wǎng)不平衡情況下基于神經(jīng)網(wǎng)絡(luò)的并網(wǎng)逆變器同步算法。首先,在兩相靜止坐標(biāo)系下推導(dǎo)電網(wǎng)電壓狀態(tài)方程,并基于此建立神經(jīng)網(wǎng)絡(luò);然后,利用網(wǎng)絡(luò)輸出電壓矢量和實際電壓矢量誤差進(jìn)行在線調(diào)整權(quán)值,并利用權(quán)值調(diào)整計算在線辨識電網(wǎng)電壓頻率、相位和幅值,從而可以構(gòu)建電網(wǎng)電壓的正負(fù)序分量。仿真和實驗結(jié)果表明:該方法能在電網(wǎng)不平衡情況下快速有效在線自適應(yīng)辨識電網(wǎng)電壓頻率和相位,提取電網(wǎng)電壓正負(fù)序分量,具有較強(qiáng)的魯棒性。
電網(wǎng)不平衡;并網(wǎng)逆變器;神經(jīng)網(wǎng)絡(luò);同步;魯棒性
近年來,隨著基于光伏發(fā)電、風(fēng)力發(fā)電等綠色再生能源的分布式發(fā)電系統(tǒng)的飛速發(fā)展,電網(wǎng)及三相并網(wǎng)逆變器的穩(wěn)定性問題得到了極大的關(guān)注[1-4]。并網(wǎng)逆變器需根據(jù)電網(wǎng)運行狀態(tài)實施相應(yīng)的控制以保證其安全可靠運行。一方面,并網(wǎng)逆變器控制需要檢測電網(wǎng)電壓同步信號,即基波電壓的幅值、相位與頻率等信息,確保并網(wǎng)逆變器單位功率因數(shù)并網(wǎng)。另一方面,在某些并網(wǎng)逆變器控制算法中需要準(zhǔn)確的同步信號參與控制。此外,在電網(wǎng)故障情況下,并網(wǎng)機(jī)組必須具備一定的故障穿越能力,需要分布式發(fā)電系統(tǒng)能向電網(wǎng)提供無功支持,保證系統(tǒng)可靠運行[5]。傳統(tǒng)鎖相環(huán)在電網(wǎng)電壓不平衡情況下無法實現(xiàn)準(zhǔn)確鎖相,因此,如何在不平衡電網(wǎng)情況下快速準(zhǔn)確檢測電網(wǎng)電壓頻率、相位,提取電網(wǎng)電壓正負(fù)序分量是并網(wǎng)逆變器控制的關(guān)鍵技術(shù)之一,已成為可再生能源的研究熱點。
同步參考坐標(biāo)鎖相環(huán)(synchronous reference frame PLL,SRF-PLL)是應(yīng)用最為廣泛的電網(wǎng)同步方法。SRF-PLL將三相電壓通過clarke變換轉(zhuǎn)換到αβ兩相靜止坐標(biāo),然后又通過Park’s坐標(biāo)變換轉(zhuǎn)變成dq兩相旋轉(zhuǎn)坐標(biāo)系,因此,該方法又稱為dq-PLL。在理想電網(wǎng)情況下,SRF-PLL能表現(xiàn)出較為準(zhǔn)確的鎖相特性,但在不平衡電網(wǎng)情況下,電網(wǎng)電壓負(fù)序分量中將產(chǎn)生2倍頻的波動,不僅對正序分量的幅值提取產(chǎn)生影響,還會對相位檢測造成誤差[5]。針對這種情況,很多文獻(xiàn)提出改進(jìn)方法,如雙同步參考坐標(biāo)鎖相環(huán)(doublesynchronousreferenceframe-PLL,DSRF-PLL)[6-7],解耦雙同步參考鎖相環(huán)(decoupleddoublesynchronousreferenceframe-PLL,DDSRF-PLL)[8-9],雙二階廣義積分器鎖相環(huán)(doublesecondordergeneralizedintegrator-PLL,DSOGI-PLL)[10-11],多二階廣義積分器鎖相環(huán)(multidoublesecondordergeneralizedintegrator-PLL,MSOGI-PLL)[12],延遲信號消除鎖相環(huán)(delayedsignalcancellationPLL,DSC-PLL)[13-17],多復(fù)數(shù)濾波器鎖相環(huán)(multiple-complexcoefficientfilterPLL,MCCF-PLL)[18-19]和加強(qiáng)型鎖相環(huán)(enhancedPLL,EPLL)[20-21]等。雖然這些方法都能在不平衡電網(wǎng)情況下表現(xiàn)出較好的工作性能,但也都存在不足之處:如DDSRF-PLL包含一階濾波環(huán)節(jié),降低了系統(tǒng)的動態(tài)響應(yīng);DSOGI-PLL由于二階廣義積分器不具備正負(fù)序極性選擇,導(dǎo)致正負(fù)序分量分離環(huán)節(jié)比較復(fù)雜[9];MCCF-PLL抗干擾能力較差,對電網(wǎng)電壓畸變諧波比較敏感;EPLL容易受到電網(wǎng)電壓諧波的影響,而延遲信號消除鎖相環(huán)需要較高的計算成本。此外,基于自適應(yīng)濾波器(adaptivenotchfilter-PLL,ANF-PLL)[22-23]、自適應(yīng)矢量濾波(adaptivevectorialfilter-PLL,AVF-PLL)[24],最小二乘自適應(yīng)濾波(leasterrorsquaresfilters-PLL,LESF-PLL)[25]等非線性同步技術(shù)也被成功應(yīng)用。這些方法雖然在一定程度上消除了諧波影響,對頻率擾動具有一定的抗干擾性,卻以降低帶寬和動態(tài)響應(yīng)速度為代價[9]。
利用觀測器對電網(wǎng)電壓頻率進(jìn)行在線識別也是實現(xiàn)鎖相的方法之一。文獻(xiàn)[26]提出一種基于自適應(yīng)觀測器鎖相方法,在靜止坐標(biāo)系下能夠準(zhǔn)確地觀測電網(wǎng)的相位和頻率,并且實現(xiàn)正負(fù)序分量分離。但其通過引入中間分量構(gòu)建觀測器,觀測器設(shè)計比較復(fù)雜。文獻(xiàn)[27]在旋轉(zhuǎn)坐標(biāo)軸下基于觀測器進(jìn)行正負(fù)序分量提取,但其觀測器的反饋增益矩陣的極點配置較為復(fù)雜。文獻(xiàn)[28]采用模型參考自適應(yīng)觀測電網(wǎng)頻率,并在基礎(chǔ)上進(jìn)行正負(fù)序分量提取,但其關(guān)鍵參數(shù)的設(shè)計比較復(fù)雜。
神經(jīng)網(wǎng)絡(luò)具有逼近任意非線性函數(shù)的能力,其自學(xué)習(xí)特性非常適合于周期性和時變擾動情況,如電網(wǎng)電壓畸變和參數(shù)不確定性,因此,基于神經(jīng)網(wǎng)絡(luò)的控制策略能有效提高并網(wǎng)逆變器控制的魯棒性和自適應(yīng)性[29]。針對傳統(tǒng)鎖相環(huán)技術(shù)在電網(wǎng)不平衡情況下難以有效進(jìn)行并網(wǎng)同步的問題,提出一種基于神經(jīng)網(wǎng)絡(luò)并網(wǎng)逆變器同步方法(neuralnetworkPLL,NN-PLL)。在靜止兩相坐標(biāo)系下建立電壓狀態(tài)方程,并基于此構(gòu)建神經(jīng)網(wǎng)絡(luò),利用網(wǎng)絡(luò)權(quán)值調(diào)整在線辨識電網(wǎng)電壓頻率和相位,并能在基礎(chǔ)上進(jìn)一步實現(xiàn)正負(fù)序分量提取,為開展電網(wǎng)不平衡情況下并網(wǎng)逆變器控制提供同步信號。
為便于分析,不考慮三相電網(wǎng)電壓諧波和并網(wǎng)電流諧波,則三相電網(wǎng)電壓Ua、Ub、Uc和并網(wǎng)電流Ia、Ib、Ic分別表示為:[UaUbUc]T=
(1)
[IaIbIc]T=
(2)
對式(1)進(jìn)行Clark變換,可得到αβ兩相靜止坐標(biāo)系下電網(wǎng)電壓Uα、Uβ表達(dá)式
(3)
(4)
(5)
(6)
(7)
同理,對式(2)進(jìn)行Clark變換,可得到αβ兩相靜止坐標(biāo)系下并網(wǎng)電流Iα、Iβ表達(dá)式為:
(8)
(9)
(10)
(11)
(12)
2.1ADALINE神經(jīng)網(wǎng)絡(luò)設(shè)計
自適應(yīng)線性神經(jīng)元(adaptivelinearneuron,ADALINE)是由美國Standford大學(xué)Widrow等[30]提出的。ADALINE是一種多輸入、單輸出的具有自適應(yīng)學(xué)習(xí)特性的單層線性神經(jīng)元。由于其具有結(jié)構(gòu)簡單、易于實現(xiàn)的特點,被廣泛用于諧波電流檢測[31]和電機(jī)參數(shù)辨識[32]等。利用ADALINE構(gòu)建神經(jīng)網(wǎng)絡(luò)電網(wǎng)電壓頻率辨識單元,在電網(wǎng)不平衡情況下在線自適應(yīng)辨識電網(wǎng)電壓正序分量的頻率、相位和幅值,并提取電網(wǎng)電壓的正負(fù)序分量。自適應(yīng)線性神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)如圖1所示,圖中,X1、X2、X3為神經(jīng)網(wǎng)絡(luò)輸入,W1、W2、W3分別為神經(jīng)網(wǎng)絡(luò)權(quán)值,0為輸出。
圖1 神經(jīng)網(wǎng)絡(luò)單元結(jié)構(gòu)Fig.1 Block diagram of Neural network.
對式(6)和式(7)求導(dǎo)可得:
(13)
(14)
根據(jù)式(6)~式(9),式(13)和式(14)可寫為
(15)
根據(jù)三角函數(shù)公式
cos(ωt+θ+)=cosωtcosθ+-sinωtsinθ+,
(16)
sin(ωt+θ+)=sinωtcosθ++cosωtsinθ+。
(17)
對式(15)進(jìn)一步分析可得
(18)
將上式離散化可得
(19)
為便于分析,將上式表示為
(20)
分析上式可知,可以將離散化后的電壓狀態(tài)方程看成具有三個輸入節(jié)點和一個輸出節(jié)點的ADA-LINE神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),其中,X1、X2、X3為神經(jīng)網(wǎng)絡(luò)輸入,W1、W2和W3分別為三個輸入節(jié)點的權(quán)值。通過在線自適應(yīng)調(diào)整權(quán)值W1、W2和W3可求取并網(wǎng)電壓正序分量的頻率、初相和幅值,從而可得到:
(21)
(22)
(23)
神經(jīng)網(wǎng)絡(luò)權(quán)值調(diào)整算法采用Wirdow-Hoff學(xué)習(xí)規(guī)則[30]。在采樣點k時刻,令誤差為
(24)
定義能量函數(shù)為
(25)
學(xué)習(xí)過程神經(jīng)網(wǎng)絡(luò)權(quán)值變化可表示為
(26)
式中i=1、2、3。則神經(jīng)網(wǎng)絡(luò)權(quán)值訓(xùn)練表達(dá)式為
Wi(k)=Wi(k-1)+ηΔWi(k)。
(27)
其中η為學(xué)習(xí)率。
基于神經(jīng)網(wǎng)絡(luò)的電網(wǎng)電壓正序分量的頻率、相位和幅值辨識單元結(jié)構(gòu)如圖2所示。
2.2 基于ADALINE神經(jīng)網(wǎng)絡(luò)正負(fù)序分量提取
根據(jù)式(21)~式(23),可以通過神經(jīng)網(wǎng)絡(luò)提取靜止坐標(biāo)系下電網(wǎng)電壓的正序分量
(28)
圖2 基于神經(jīng)網(wǎng)絡(luò)電網(wǎng)電壓頻率辨識結(jié)構(gòu)圖Fig.2 Diagram of frequency identification based on NN.
根據(jù)式(6)、式(7)和式(28)可提取電網(wǎng)電壓負(fù)序分量為
(29)
根據(jù)上述分析,基于神經(jīng)網(wǎng)絡(luò)同步算法最終進(jìn)行電網(wǎng)同步和正負(fù)序電壓分量提取的整個框圖如圖3所示。
圖3 基于神經(jīng)網(wǎng)絡(luò)正負(fù)序分量提取結(jié)構(gòu)圖Fig.3 Block diagram of positive and negative detect based on NN
為了驗證所提出的基于神經(jīng)網(wǎng)絡(luò)同步信號檢測方法的有效性,在SIMULINK中搭建仿真模型。分別在電網(wǎng)電壓單相跌落、含有負(fù)序5次諧波和電網(wǎng)頻率跳變等3種工況下,對提出的基于ADLINE神經(jīng)網(wǎng)絡(luò)同步算法進(jìn)行仿真,驗證NN-PLL方法對電網(wǎng)電壓跌落和諧波的抗干擾能力和電網(wǎng)電壓的正負(fù)序分量分離能力,并網(wǎng)逆變器仿真參數(shù)如表1所示,仿真結(jié)果分別如圖4~圖6所示。
表1 仿真參數(shù)
圖4 單相跌落情況下仿真結(jié)果Fig.4 Simulation results when A phase voltage sag
圖5 電網(wǎng)電壓存在諧波情況下仿真結(jié)果Fig.5 Simulation results under harmoic conditions
圖5為電網(wǎng)電壓存在5次負(fù)序諧波情況下的仿真結(jié)果圖,圖5(a)~圖5(e)分別為三相電網(wǎng)電壓、αβ軸電壓分量、負(fù)序電壓分量、電壓相角和頻率,從圖中看出,當(dāng)0.4s時刻,電網(wǎng)引入5次負(fù)序諧波分量,電源的質(zhì)量惡化,電網(wǎng)電壓波形出現(xiàn)明顯畸變情況,但NN-PLL仍然能夠有效辨識電網(wǎng)電壓頻率,進(jìn)行有效鎖相,也能夠有效提取電網(wǎng)電壓的正負(fù)序分量。
圖6 電網(wǎng)電壓頻率突變情況下仿真結(jié)果Fig.6 Simulation results when frequency changes
圖6為電網(wǎng)電壓頻率發(fā)生突變時仿真結(jié)果,在0.4s時刻,電網(wǎng)電壓頻率有50Hz跳變到55Hz,NN-PLL算法能準(zhǔn)確捕捉到頻率變化,動態(tài)響應(yīng)較快。
為進(jìn)一步驗證電網(wǎng)同步方法的有效性,采用DSPTMS320F2812數(shù)字控制器搭建實驗平臺進(jìn)行實驗驗證。實驗參數(shù)如表2所示,其中,三相不平衡電壓采用一個PWM逆變器經(jīng)過LC濾波器產(chǎn)生,然后通過AD采樣到DSP中解耦。不失一般性,實驗所產(chǎn)生的三相電壓突變前為有效值220V、頻率50Hz的正弦三相電。
表2 實驗參數(shù)
圖7 單相跌落情況下實驗結(jié)果Fig.7 Experiment results of NN-PLL under one phase dip fault
為驗證NN-PLL算法在電網(wǎng)電壓存在諧波情況下的抗干擾能力,用電網(wǎng)模擬裝置輸出帶有10%負(fù)序5次諧波的電壓。圖8為電網(wǎng)存在5次負(fù)序諧波情況下實驗結(jié)果,圖中可以看出NN-PLL方法對電網(wǎng)負(fù)序諧波進(jìn)行準(zhǔn)確提取,且動態(tài)響應(yīng)較快,雖然電壓相角產(chǎn)生一定的畸變,但NN-PLL算法仍然能對其進(jìn)行準(zhǔn)確辨識。
圖8 電網(wǎng)諧波情況下實驗結(jié)果Fig.8 Experiment results of NN-PLL under harmonic condition
圖9為電網(wǎng)電壓頻率產(chǎn)生5 Hz的跳變(50 Hz跳變到55 Hz)的情況下實驗結(jié)果,從圖中可以看出,在頻率發(fā)生跳變的情況下,NN-PLL方法由于具有在線自適應(yīng)能力,能有效觀測電網(wǎng)電壓頻率的變化。
圖9 頻率跳變情況下實驗結(jié)果Fig.9 Experiment results of NN-PLL under frequency jump condition
圖10 幾種PLL動態(tài)性能比較Fig.10 Comparison of the dynamic performance for different PLLs
為說明NN-PLL方法的動態(tài)性能,將NN-PLL和DSFR-PLL[6]、DSOGI-PLL[10]和DDSFR-PLL[11]方法在電網(wǎng)電壓頻率發(fā)生跳變的情況下進(jìn)行實驗對比,結(jié)果如圖10所示。從圖中可以看出,采用DSOGI- PLL和DSFR-PLL存在較大的超調(diào),而DDSFR-PLL的動態(tài)響應(yīng)速度明顯較慢,在動態(tài)性能方面,提出的NN-PLL算法具有較強(qiáng)的優(yōu)越性。
本文針對不平衡電網(wǎng)情況下傳統(tǒng)鎖相環(huán)技術(shù)無法有效實現(xiàn)并網(wǎng)逆變器同步的問題,提出一種基于自適應(yīng)線性神經(jīng)元神經(jīng)網(wǎng)絡(luò)的同步算法。通過仿真和實驗驗證,可以得出如下結(jié)論:
1)該方法能在電網(wǎng)不平衡情況下(單相跌路、諧波和電網(wǎng)頻率跳變)有效檢測電網(wǎng)電壓頻率和相位,實現(xiàn)正序、負(fù)序分量的準(zhǔn)確提取,具有較強(qiáng)的自適應(yīng)性,且動態(tài)響應(yīng)較快。
2)該方法能同時實現(xiàn)電網(wǎng)電壓正負(fù)序電壓提取、電網(wǎng)電壓相角和頻率的準(zhǔn)確辨識,在此基礎(chǔ)上,可非常方便開展電網(wǎng)不平衡情況下并網(wǎng)逆變器控制,可省去常規(guī)的電網(wǎng)電壓正負(fù)序提取環(huán)節(jié)。
3)和DSFR-PLL、DSOGI-PLL和DDSFR-PLL等方法相比,該方法的抗干擾能力較強(qiáng),且結(jié)構(gòu)簡單,易于實現(xiàn)。
[1] SINSUKTHAVORN W,ORTJOHANN E,MOHD A,et al. Control strategy for three-/four-wire-inverter based distributed generation[J].IEEE Trans. Ind. Electron. 2012. 59(10): 3890-3899.
[2] LEE C T,HSU C W,CHENG P T.A low-voltage ride-through technique for grid-connected converters of distributed energy resources[J].IEEE Trans. Ind. Appl.2011. 47(4):1821-1832.
[3] KESLER M,OZDEMIR E.Synchronous- reference- frame- based control method for UPQC under unbalanced and distorted load conditions[J]. IEEE Trans. Ind. Electron. 2011,58(9): 3967-3975.
[4] KARIMI-GHARTEMANI M,IRAVANI M R.A method for synchronization of power electronic converters in polluted and variable-frequency environments[J]. IEEE Trans. Power Syst.2004. 19(3):1263-1270.
[5] 趙新,金新民,周飛,等. 采用降階諧振調(diào)節(jié)器的并網(wǎng)逆變器鎖頻環(huán)技術(shù)[J].中國電機(jī)工程學(xué)報,2013,33(15):38-45. ZHAO Xin,JIN Xinmin,ZHOU Fei,et al. A frequency-locked loop technology of grid-connected inverters based on the reduced order resonant controller[J]. Proceedings of the CSEE,2013,33(15): 38-45.
[6] LENOS H,ELIAS K,FREDE B. A new hybrid PLL for interconnecting renewable energy systems to the grid[J]. IEEE Transactions on industry applications,2013. 49(6):2709-2810.
[7] DASILVA C H,PEREIRA R R,DA SILVA L E B,et al.A digital PLL scheme for three-phase system using modified synchronous reference frame[J].IEEE Trans. Ind. Electron. 2010,57(11):3814-3821.
[8] RODRIGUEZ P,POU J,BERGAS J,et al. Decoupled double synchronous reference frame PLL for power converters control[J]. IEEE Trans. Power. Electron.2007. 22(2): 584-592.
[9] 李珊瑚,杜雄,王莉萍,等.解耦多同步參考坐標(biāo)系電網(wǎng)電壓同步信號檢測方法[J].電工技術(shù)學(xué)報,2011,26(12):183-189. LI Shanhu,DU Xiong,WANG Liping,et al. A grid voltage synchronization method based on decoupled multiple synchronous reference frame[J]. Transactions of china electrotechnical society. 2011,26(12):183-189.
[10] 薛尚青,蔡金錠. 基于二階廣義積分器的基波正負(fù)序分量檢測方法[J].電力自動化設(shè)備,2011,31 (11): 69-74. XUE Shangqing,CAI Jinding. Detection of fundamental positive and negative sequence components based on second-order generalized integrator[J]. Electric Power Automation Equipment,2011,31(11):69-74.
[11] 鄧哲,周峰武,林輝品.電網(wǎng)故障時基于雙輸入SOGI-FLL的新型電網(wǎng)快速同步方法[J].電工技術(shù)學(xué)報,2013,28(12):32-41. DENG Zhe,ZHOU Fengwu,LIN Huipin. A novel fast grid-synchronization method under grid failure based on dual-input SOGI-FLL[J]. Transactions of china electrotechnical society,2013,28(12):32-41.
[12] PEDRO R,ALVARO L,IGNACIO C.Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions[J]. IEEE Trans. Ind. Electron.,2011,58(1):127-138.
[13] WANG Yifei,LI Yunwei. Analysis and digital implementation of cascaded delayed-signal- cancellation PLL[J]. IEEE Transactions on power electronics,2011. 26(4):1067-1081.
[14] NEVES F A S,CAVALCANTI M C,DE SOUZA H E P,et al. A generalized delayed signal cancellation method for detecting fundamental-frequency positive-sequence three phase signals[J].IEEE Trans. Power Del. 2010,25(3):1816-1825.
[15] NEVES.F A S,DE SOUZA H E P,CAVALCANTI M C,et al. Digital filters for fast harmonic sequence components separation of unbalanced and distorted three-phase signals[J].IEEE Trans. Ind. Electron.2012. 59(10): 3847-3859.
[16] WANG Y,LI Y. Three-phase cascaded delayed signal cancellation PLL for fast selective harmonic detection[J]. IEEE Trans. Ind. Electron.2013,60(4): 1452-1463.
[17] 吳恒,楊東升,阮新波.基于串聯(lián)信號延遲對消法的三相非理想電網(wǎng)鎖相控制策略[J]. 電工技術(shù)學(xué)報,2014,29(8): 255-264. WU Heng,YANG Dongsheng,RUAN Xinbo. Phase-locked loop based on cascaded delayed signal cancellation for distorted grid[J]. Transactions of China Electrotechnical Society,2014,29(8): 255-264.
[18] GUO Xiaoqiang,WU Weiyang,CHEN Zhe.Multiple complex coefficient-filter-based phase-locked loop and synchronization technique for three-phase grid-interfaced converters in distributed utility networks[J].IEEE Trans. Ind. Electron.,2011,58(4): 1194-1204.
[19] CRISTIAN B,DAVID R,FERNANDO B,et al. Grid synchronization of three-phase converters using cascaded complex vector filter PLL[C]//Energy Conversion Congress and Exposition (ECCE),2012 IEEE.196-203.
[20] GHARTEMANI M,IRAVANI M.A method for synchronization of power electronic converters in polluted and variable-frequency environments [J].IEEE Trans. On Power Systems,2004,19(3): 1263-1270.
[21] MASOUD K G,OOI B T. Application of enhanced phase-locked loop system to the computation of synchrophasors[J]. IEEE Trans. Power Del.,2011,26(1):22-32.
[22] PEDRO R,ALVARO L,RA′UL S M A.A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions[J]. IEEE Trans. Power. Electron.,2012. 27(1):99-112.
[23] 杜雄,郭宏達(dá),孫鵬菊.基于ANF-PLL的電網(wǎng)電壓基波正負(fù)序分離方法[J]. 中國電機(jī)工程學(xué)報,2013,33 (27):28-36. DU Xiong,GUO Hongda,SUN Pengju. A positive and negative sequence component separation method for grid voltage based on the phase locked loop with an adaptivenotch filter[J]. Proceedings of the CSEE,2013,33 (27):28-36.
[24] SERGIO V,JUAN A S,MANUEL R R,et al.Adaptive vectorial filter for grid synchronization of power converters under unbalanced and/or distorted grid conditions[J]. IEEE Trans. Ind. Electron.,2014. 61(3):1355-1368.
[25] CHEN Guodong,ZHANG Liang. A novel SPLL and voltage sag detection based on les filters and improved instantaneous symmetrical components method[J]. IEEE Trans. Power Electron.,2015,30(3): 1177-1189.
[26] 霍現(xiàn)旭,胡書舉,許洪華. 電網(wǎng)不平衡下基于自適應(yīng)觀測器的鎖相環(huán)研究[J].電力系統(tǒng)保護(hù)與控制,2013,41(15):120-126. HUO Xianxu,HU Shuju,XU Honghua. Phase-locked loop algorithm based on adaptive observer under unbalanced grid voltage condition[J]. Power System Protection and Control,2013,41(15): 120 -126.
[27] PARK Y,SUL S K,KIM W C.Phase-Locked Loop Based on an Observer for Grid Synchronization[J].IEEE Trans. Ind. Appl.,2014,50(2):1256-1265.
[28] 裴喜平,郝曉弘,陳偉.基于模型參考自適應(yīng)算法的三相鎖相環(huán)系統(tǒng)[J].電工技術(shù)學(xué)報,2014,29(4): 196-205. PEI Xiping,HAO Xiaohong,CHEN Wei. A novel three-phase phase-locked-loop system based on model reference adaptive algorithm[J]. Transactions of China Electrotechnical Society,2014,29(4): 196-205.
[29] YASSER A R I M,EHAB F E.A robust natural-frame-based interfacing scheme for grid-connected distributed generation inverters[J]. IEEE Trans. Energy Con.,2011. 26,(3): 728-736.
[30] WIDROW B,LEHR M A. 30 years of adaptive neural networks: Perceptrons,madaline and back propagation [J]. IEEE Proc,1990,78(9):1415-1442.
[31] ABDESLAM D O.A unified artificial neural network architecture for active power filters[J].IEEE Trans. Ind. Electron. 2007.54(l):61-76.
[32] BECHOUCHE A.A novel method for identifying parameters of induction motors at standstill using ADALINE[J]. IEEE Trans. Energy Con.,27(1):105-116.
(編輯:賈志超)
Research on grid synchronization of grid-connected inverter based on neural network under unbalanced voltage conditions
YANG Tong-guang
(College of Mechanic and Electrical Engineering,Hunan City University,Yiyang 413000,China)
To solve the problem of conventional phase locked loop technique under the condition of unbalanced power grid voltage,a grid inverter synchronous technology based on neural network under unbalanced power grid case is developed. At first,grid voltage state equation was derived in the two-phase stationary coordinates,and a neural network was built based on the state equation; the biases of output voltage vector and the actual voltage vector were used to adjust the neural network weight online,and thus to find out the amplitude,frequency and the phase of the grid voltage,which can construct the positive and negative components of grid voltage. Simulation and experimental results show that the method can be online adaptive to identify the frequency and the phase of grid voltage quickly and efficiently in the case of unbalanced power grid,detect the positive and negative sequences of grid voltage,and has strong robustness.
grid voltage unbalance;grid-connected inverter;neural network;synchronization;robust
2016-04-20
國家自然科學(xué)基金重點資助項目(51037004);湖南省自然科學(xué)基金(2017JJ2022);湖南省教育廳科學(xué)研究重點項目(17A036)
陽同光(1974—),男,博士,副教授,研究方向為智能控制、故障診斷。
陽同光
10.15938/j.emc.2017.06.009
TM 315
A
1007-449X(2017)06-0066-09