国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

EB病毒感染的免疫機(jī)制研究進(jìn)展

2017-07-31 16:01劉璐瑤孫金嶠王曉川
中國(guó)循證兒科雜志 2017年3期
關(guān)鍵詞:活化細(xì)胞因子編碼

劉璐瑤 孫金嶠 王曉川

·綜述·

EB病毒感染的免疫機(jī)制研究進(jìn)展

劉璐瑤 孫金嶠 王曉川

1 EB病毒(EBV)的生物學(xué)特點(diǎn)

EBV,又稱人類皰疹病毒4型,類似于其他皰疹病毒,EBV基因組為雙鏈線性DNA分子,是第一個(gè)被發(fā)現(xiàn)與人類腫瘤有關(guān)的DNA病毒。EBV在全球范圍內(nèi)感染率>90%。EBV基因組具有高度的變異性,不同的變異體的致病力和分布不同。根據(jù)EBV核抗原(EBNA),主要是EBNA2和EBNA3A、 -B、-C基因序列的不同,將EBV分為1型和2型[1]。在西方和東南亞等國(guó)家EBV 1型多見,在非洲EBV兩型均多見[2]。

通過(guò)對(duì)病毒基因組進(jìn)行遺傳分析了解其致病力、分布與基因型的關(guān)系至關(guān)重要。目前,針對(duì)EBV基因組測(cè)序確定相關(guān)疾病的分布范圍和地理基因組變異的研究很少。一項(xiàng)研究[3]發(fā)現(xiàn),EBV基因組中發(fā)生變異主要是編碼LMP1、EBNA2和EBNA3蛋白家族的基因,其次是BDLF3(編碼糖蛋白gp150)、BLLF1(編碼gp350/200)、BNLF2a(與免疫逃逸有關(guān))、BZLF1和BRRF2等基因。

EBV的感染周期包括初始感染和潛伏感染。EBV主要通過(guò)唾液接觸傳播,首先感染上皮細(xì)胞和B細(xì)胞,形成初始感染,繼而在B細(xì)胞內(nèi)形成潛伏感染。在宿主的免疫力低下或者環(huán)境改變等情況下,EBV會(huì)被大量激活,進(jìn)入裂解復(fù)制階段,引起某些疾病(圖1)。

1.1 初始感染階段 病毒大量復(fù)制,促使一些促炎癥細(xì)胞因子、生長(zhǎng)因子和細(xì)胞信號(hào)分子產(chǎn)生,導(dǎo)致病毒傳播和原發(fā)感染建立[4]。EBV基因組編碼產(chǎn)生80多種基因產(chǎn)物(即刻早期、早期和晚期[5]),如重要的轉(zhuǎn)錄因子和DNA聚合酶催化亞基等,維持病毒的復(fù)制和產(chǎn)生病毒的結(jié)構(gòu)成分。EBV早期編碼的產(chǎn)物(如BNLF2a)能夠維持病毒的復(fù)制和代謝等過(guò)程;晚期編碼產(chǎn)物BCRF1等可能與免疫逃逸有關(guān)[2]。EBNA1是唯一一種EBV在裂解性感染和潛伏感染階段共同表達(dá)的蛋白,上皮細(xì)胞EBV的裂解周期中,缺乏EBNA1將極大減少EBV基因的表達(dá)及其DNA增殖;缺乏白血病早幼粒細(xì)胞(PML)核體時(shí),EBNA1不會(huì)促進(jìn)裂解性感染,其主要通過(guò)介導(dǎo)PML核體的降解,抑制PML核體的抗病毒作用,促進(jìn)EBV的復(fù)制[2]。EBV感染B細(xì)胞后短暫表達(dá)早期基因,對(duì)誘發(fā)和維持潛伏感染至關(guān)重要[6]。初始感染階段促進(jìn)了EBV的傳播并引起原發(fā)感染,也對(duì)潛伏感染的建立起到了一定的作用。

1.2 潛伏感染階段 EBV在體內(nèi)長(zhǎng)期存在且不被清除的一個(gè)重要原因是EBV維持潛伏感染狀態(tài)。EBV通過(guò)gp350/200與B細(xì)胞表面的CR2相結(jié)合而進(jìn)入B細(xì)胞,并誘導(dǎo)其分化為記憶性B細(xì)胞,形成長(zhǎng)期潛伏感染[7]。在B細(xì)胞中,EBV很少發(fā)生復(fù)制,從而逃避了機(jī)體的免疫監(jiān)視,并且還可以誘導(dǎo)B細(xì)胞分化為類淋巴母細(xì)胞系細(xì)胞。

潛伏感染階段分為3期:①潛伏感染Ⅰ/Ⅱ期,主要表達(dá)EBNA1、LMP1和LMP2(A、B);②潛伏感染Ⅲ期,主要表達(dá)EBNA2、EBNA3A、EBNA3B、EBNA3C和EBNA前導(dǎo)蛋白(EBNA-LP);③潛伏感染0期,EBV蛋白的表達(dá)關(guān)閉,在漿細(xì)胞分化過(guò)程中,通過(guò)B細(xì)胞受體交聯(lián),EBV可能會(huì)重新活化、進(jìn)入裂解復(fù)制階段[8]。

EBNA1能夠在轉(zhuǎn)錄水平誘導(dǎo)let-7a表達(dá),抑制Dicer表達(dá),抑制EBV重新活化進(jìn)入裂解性感染階段,維持EBV潛伏感染[9]。

LMP2A的表達(dá)阻抑了EBV的BZLF1和g350/220基因表達(dá),有助于EBV在體內(nèi)保持長(zhǎng)期潛伏感染狀態(tài)[4];通過(guò)活化Ras、PI3K和Akt信號(hào)通路,促進(jìn)B細(xì)胞存活和轉(zhuǎn)化。LMP2B能夠調(diào)節(jié)LMP2A的分布和功能,共同維持EBV的潛伏感染。LMP2蛋白也可以誘發(fā)免疫反應(yīng),控制EBV感染。

EBV要在宿主體內(nèi)維持復(fù)制和增殖狀態(tài),需保證宿主細(xì)胞的存活狀態(tài),LMP1能夠與CD40 分子競(jìng)爭(zhēng)結(jié)合腫瘤壞死因子等相關(guān)因子,上調(diào)抗凋亡基因bcl-2的表達(dá),抑制促凋亡基因bax的表達(dá)[10]。

EBV不僅可以在B細(xì)胞內(nèi)形成潛伏感染,還可以在NK細(xì)胞和T細(xì)胞內(nèi)形成潛伏感染[11],引起慢性活動(dòng)性EBV感染(CAEBV)等疾病。

1.3 再活化階段 EBV感染后的記憶B細(xì)胞分化為漿細(xì)胞,發(fā)生細(xì)胞溶解時(shí)可誘發(fā)EBV再活化,從潛伏感染階段進(jìn)入裂解復(fù)制階段[12]。EVA再活化的過(guò)程中,早期表達(dá)基因BZLF1和BRLF1發(fā)揮了重要作用[13]。BZLF1基因編碼產(chǎn)生轉(zhuǎn)錄激活因子—ZEBRA 蛋白,在裂解期DNA復(fù)制過(guò)程中作為起始結(jié)合蛋白與EBV DNA裂解復(fù)制起始點(diǎn)結(jié)合,增強(qiáng)病毒早期基因的表達(dá),觸發(fā)再活化過(guò)程[14]。在裂解復(fù)制階段ZEBRA蛋白還可激活BRLF1基因啟動(dòng)子,該基因編碼產(chǎn)生Rta蛋白,與轉(zhuǎn)錄活化過(guò)程的TBP、TFIIB和CBP蛋白相互作用,激活病毒的轉(zhuǎn)錄過(guò)程[15]。細(xì)胞分化因子BLIMP1激活EBV的啟動(dòng)子-Zp和Rp蛋白,誘導(dǎo)上皮細(xì)胞中EBV再活化,進(jìn)入裂解復(fù)制階段[5]。

EBV的再活化經(jīng)常會(huì)導(dǎo)致EBV顆粒的釋放和宿主細(xì)胞的死亡,造成進(jìn)一步感染[15]。這一過(guò)程與B細(xì)胞和上皮細(xì)胞的分化過(guò)程是緊密相關(guān)且極為復(fù)雜[13]。

2 EBV感染的臨床類型

2.1 無(wú)癥狀EBV感染 EBV感染在兒童中多見,但是大多數(shù)兒童(尤其<10歲)感染后無(wú)癥狀[16],這種現(xiàn)象可能與基因型有關(guān),宿主免疫反應(yīng)相關(guān)的基因存在多態(tài)性,比如IL-10啟動(dòng)子的多態(tài)性,轉(zhuǎn)化生長(zhǎng)因子β1和IL-1α基因的多態(tài)性等[17]。無(wú)癥狀EBV感染的宿主體內(nèi)存在特異性CD8+T細(xì)胞,協(xié)助機(jī)體控制EBV感染,但是這群細(xì)胞的數(shù)量并不會(huì)明顯擴(kuò)增[18]。目前對(duì)無(wú)癥狀EBV感染的具體機(jī)制還不清楚,仍待進(jìn)一步研究。

2.2 傳染性單核細(xì)胞增多癥(IM) 青春期人群初次感染EBV,有25%~75%表現(xiàn)為IM。IM是一種良性淋巴組織增生性疾病,主要表現(xiàn)為疲勞不適、發(fā)熱、淋巴結(jié)病、咽炎和扁桃體炎等[19]。臨床癥狀出現(xiàn)之前,CD4+T和CD8+T細(xì)胞不發(fā)生明顯增殖[20];臨床癥狀出現(xiàn)時(shí),EBV特異性CD8+T細(xì)胞大量增殖,伴有大量細(xì)胞因子(如淋巴毒素、TNFα、IL-1β和IL-6等)產(chǎn)生[21]。EBV特異性CD8+T細(xì)胞可有效控制EBV感染,宿主體內(nèi)EBV的病毒載量與CD8+T細(xì)胞的數(shù)量呈負(fù)相關(guān)[22]。IM的臨床表現(xiàn)主要是活化的CD8+T細(xì)胞擴(kuò)增引起的,而不是單核細(xì)胞增多引起的[20]。

EBV感染后,特異性CD4+T細(xì)胞活化擴(kuò)增,隨著急性期癥狀消退,EBV細(xì)胞的數(shù)量短時(shí)間下降[23]。小鼠實(shí)驗(yàn)發(fā)現(xiàn),如果缺少NK細(xì)胞,感染EBV后IM癥狀會(huì)加重,NK細(xì)胞可能限制CD8+T細(xì)胞過(guò)度增殖[24]。

IM發(fā)病機(jī)制還不明確,可能是部分青少年預(yù)先感染了與EBV有交叉免疫的其他病毒,機(jī)體接觸EBV時(shí),發(fā)生強(qiáng)烈的免疫應(yīng)答反應(yīng)[25]。治療IM一般采取對(duì)癥支持治療,免疫功能正常的個(gè)體大多可以痊愈。

2.3 CAEBV 是兒童感染EBV的一個(gè)罕見表現(xiàn),主要表現(xiàn)為IM樣癥狀反復(fù)發(fā)作或持續(xù)數(shù)月以上,經(jīng)常進(jìn)展為危及生命的噬血細(xì)胞綜合征(HLH)。CAEBV預(yù)后很差,病死率高達(dá)43%,通常會(huì)累及血液、消化、呼吸、神經(jīng)和心血管等系統(tǒng)[26]。CAEBV具有明顯的地域特點(diǎn),在日本及其他東亞國(guó)家,EBV感染T細(xì)胞/NK細(xì)胞多見,此型預(yù)后較差;在西方國(guó)家,EBV感染B細(xì)胞多見,發(fā)病率和病死率較低[27]。

2.3.1 CAEBV的發(fā)生機(jī)制 CAEBV患者中EBV通常感染NK或T細(xì)胞,形成長(zhǎng)期潛伏感染,表達(dá)EBNA1、LMP1和LMP2等;EBV刺激NK細(xì)胞或T細(xì)胞持續(xù)增殖,釋放大量細(xì)胞因子,誘導(dǎo)巨噬細(xì)胞活化,產(chǎn)生噬血現(xiàn)象;NK細(xì)胞/T細(xì)胞大量增殖,可能出現(xiàn)NK細(xì)胞/T細(xì)胞淋巴瘤[17]。EBV特異性細(xì)胞毒T細(xì)胞(CTLs)能有效控制EBV引起的細(xì)胞過(guò)度增殖,在CAEBV患者體內(nèi),可能由于CD8+T細(xì)胞沒(méi)有被活化、機(jī)體免疫功能低下誘發(fā)CAEBV[28]。

2.3.2 CAEBV診斷標(biāo)準(zhǔn)的進(jìn)展 1988年,Straus[29]提出CAEBV的標(biāo)準(zhǔn):①EBV感染癥狀持續(xù)>6個(gè)月,EBV抗體滴度異常(包括VCA-IgG≥1∶5 120,EA-IgG≥1∶640,EBNA抗體<1∶2);②主要臟器受損的組織學(xué)標(biāo)志,包括間質(zhì)性肺炎、骨髓某成分的增生不良、視網(wǎng)膜炎、淋巴結(jié)炎、遷延性肺炎和脾腫大;③受損組織中EBV數(shù)量增加。2005年Okano等[28]提出的CAEBV的診斷建議指南中,不再?gòu)?qiáng)調(diào)病程>6個(gè)月,但強(qiáng)調(diào)EBV抗體(VCA-IgG≥1∶640和EA-IgG≥1∶160)及組織或外周血中EBV-DNA和RNA增高的診斷價(jià)值。CAEBV的診斷標(biāo)準(zhǔn)仍在不斷更新,不同的CAEBV患者感染EBV后產(chǎn)生特異的血清免疫改變,診斷標(biāo)準(zhǔn)應(yīng)該降低高滴度抗體的診斷價(jià)值,提高外周血單個(gè)核細(xì)胞中EBV滴度的價(jià)值[30]。Kawano等[31]發(fā)現(xiàn)CAEBV患者血漿中miR-BART 1-5p、2-5p、5和22的水平比一般IM患者及無(wú)癥狀EBV感染高,血漿中miR-BART的水平有助于診斷CAEBV。

2.3.3 CAEBV的治療 CAEBV預(yù)后很差,尤其在出現(xiàn)嚴(yán)重并發(fā)癥、發(fā)病年齡≥8歲、伴有肝功能損傷等情況下[32]。CAEBV T細(xì)胞型比NK細(xì)胞型預(yù)后更差,5年生存期更短[33]。治療主要包括:抗病毒藥物、化療試劑、免疫調(diào)節(jié)藥物、EBV特異性CTL的細(xì)胞治療和造血干細(xì)胞移植等[2]。

異基因造血干細(xì)胞移植(allo-HSCT)是目前根治CAEBV的唯一方法,能夠清除EBV感染的細(xì)胞,重建EBV特異性細(xì)胞免疫的功能。Kawa等[34]指出,患者狀態(tài)比較穩(wěn)定時(shí),接受免疫化療預(yù)處理后再進(jìn)行HSCT(RIST降低強(qiáng)度調(diào)節(jié)allo-HSCT)可改善預(yù)后。CAEBV進(jìn)展很快,數(shù)月或數(shù)年即發(fā)生多器官功能衰竭,早期診斷并進(jìn)行allo-HSCT非常重要[35]。但是HSCT仍然存在風(fēng)險(xiǎn),CAEBV患者發(fā)生移植相關(guān)并發(fā)癥的風(fēng)險(xiǎn)較高[27]。

部分CAEBV患者血清中IL-6、TNF-α和IFN-γ等細(xì)胞因子的水平比較高,清除過(guò)多的細(xì)胞因子可能有助于控制CAEBV的臨床癥狀[36]。對(duì)于不能進(jìn)行HSCT的CAEBV患者的治療亟待研究。

2.4 重癥致死性EBV感染

2.4.1 HLH 是重癥EBV感染患者死亡的原因之一。HLH是T細(xì)胞或者巨噬細(xì)胞過(guò)度活化、釋放大量細(xì)胞因子引起的一種過(guò)度炎癥狀態(tài);主要臨床表現(xiàn)有發(fā)熱、肝脾腫大、全血細(xì)胞減少、高甘油三酯血癥、DIC和肝功能損害等[37];如果不行HSCT病死率很高[38]。

EBV是誘發(fā)HLH的重要因素。在日本,EBV-HLH是最常見的類型,EBV感染B細(xì)胞后誘導(dǎo)CTLs和巨噬細(xì)胞增殖活化,產(chǎn)生過(guò)量的細(xì)胞因子[39]。EBV-HLH患者可能存在CMV等病毒共感染,影響HLH患者的臨床表現(xiàn)[40]。

早期診斷、早期治療對(duì)改善HLH患者的預(yù)后非常重要,利用基因檢測(cè)、連續(xù)定量聚合酶鏈反應(yīng)檢測(cè)T細(xì)胞、NK細(xì)胞和B細(xì)胞中的EBV DNA含量可協(xié)助早期診斷HLH[41]。按照HLH-2004方案(包括地塞米松、環(huán)孢素A和依托泊苷)盡早開始治療,可緩解臨床癥狀,改善預(yù)后[42]。臨床上還使用促凋亡化療和免疫抑制藥物聯(lián)合治療,靶向抑制T細(xì)胞的過(guò)度激活[43]。由于EBV主要感染B細(xì)胞,在HLH-2004方案上增加利妥昔單抗,靶向清除外周循環(huán)中B細(xì)胞的數(shù)量和EBV的濃度,可以降低該病的病死率[43]。

2.4.2 肝功能衰竭 是重癥EBV感染的另一死亡原因。EBV感染可以累及多個(gè)器官,以肝臟為主,多是機(jī)體發(fā)生強(qiáng)烈的免疫應(yīng)答而間接損傷肝細(xì)胞。尤其在免疫功能不全的宿主,經(jīng)常會(huì)發(fā)生EBV感染相關(guān)的持續(xù)性或者壞死性肝炎[44]。EBV刺激機(jī)體表達(dá)高水平的甘油三酯和鐵蛋白,分泌大量的細(xì)胞因子,浸潤(rùn)肝臟,引起急性肝功能損害[45]。免疫功能不全的急性肝炎患兒中44%可檢測(cè)到CMV、EBV和HHV-6 DNA,這類病毒感染可能與急性肝炎有關(guān)[46]。一些嚴(yán)重的CAEBV患者,有時(shí)表現(xiàn)為持續(xù)性肝損害,在成人更多見,預(yù)后較差[47]。日本文獻(xiàn)報(bào)告,CAEBV會(huì)爆發(fā)肝功能衰竭和全血細(xì)胞減少,引起全身多器官功能衰竭等[48]。

3 機(jī)體抵御EBV感染的免疫反應(yīng)

3.1 T細(xì)胞 機(jī)體控制EBV感染主要依靠固有免疫和適應(yīng)性免疫,其中CD8+T細(xì)胞發(fā)揮著重要作用,尤其是在早期裂解感染階段[49]。潛伏感染階段,體內(nèi)EBNA3A、-B、-C等抗原特異性的T細(xì)胞擴(kuò)增,可以抑制轉(zhuǎn)化的B細(xì)胞的過(guò)度增殖和腫瘤的形成;某些骨髓抑制或者器官移植的患者中,T細(xì)胞功能受到抑制,容易發(fā)生EBV相關(guān)的移植后淋巴組織增生性疾病[50]。CD8+T細(xì)胞能有效控制EBV感染以及移植后淋巴組織增生性疾病。

3.1.1 CD8+T細(xì)胞 所有有核細(xì)胞都表達(dá)MHC-I類分子,CD8+T細(xì)胞通過(guò)識(shí)別MHC-Ⅰ類分子呈遞的病毒抗原肽,靶向攻擊EBV感染的細(xì)胞,發(fā)揮抗病毒的作用。感染初期,裂解期抗原刺激CD8+T細(xì)胞,裂解期抗原特異性CD8+T細(xì)胞占CD8+T細(xì)胞的2%在潛伏感染階段占1%[51],主要受到潛伏階段的蛋白如EBNA1的刺激[52]。EBNA1蛋白含有甘氨酸-丙氨酸重復(fù)結(jié)構(gòu)域,阻止轉(zhuǎn)錄,限制抗原的加工呈遞,逃避機(jī)體的免疫應(yīng)答[17]。

3.1.2 CD4+T細(xì)胞 EBV感染的B細(xì)胞廣泛表達(dá)MHC-II類分子,激活CD4+T細(xì)胞。CD4+T細(xì)胞不僅可以協(xié)助B細(xì)胞產(chǎn)生抗體,中和抗原,還能夠誘導(dǎo)和維持CD8+T細(xì)胞發(fā)揮細(xì)胞毒作用[53]。CD4+CTLs識(shí)別EBV裂解階段和潛伏感染階段的抗原,通過(guò)Fas/FasL之間的相互作用,殺傷感染的B細(xì)胞以及已轉(zhuǎn)化的類淋巴母細(xì)胞系(LCLs)細(xì)胞[54, 55]。EBNA1常在感染后數(shù)月才刺激CD4+T細(xì)胞發(fā)生免疫應(yīng)答,這也解釋了抗EBNA1-IgG通常延遲出現(xiàn)[52]。

3.2 B細(xì)胞

3.2.1 抗體的產(chǎn)生 B細(xì)胞參與適應(yīng)性免疫應(yīng)答,產(chǎn)生特異性抗體;抗衣殼蛋白(VCA)IgM抗體在感染早期產(chǎn)生,維持?jǐn)?shù)周到數(shù)月,之后不再出現(xiàn);抗VCA IgG抗體;通常在感染后2~4個(gè)月達(dá)到峰值,隨后下降,一直存在于體內(nèi)[9]。B細(xì)胞還產(chǎn)生抗EBNA1 IgG抗體和gp350抗體,其中g(shù)p350抗體阻止EBV與B細(xì)胞CR2受體結(jié)合,限制EBV傳播,防止重復(fù)感染[30]。

3.2.2 B細(xì)胞的轉(zhuǎn)化 EBV誘導(dǎo)B細(xì)胞轉(zhuǎn)化增殖為L(zhǎng)CLs,分泌IL-6和IL-10等細(xì)胞因子,影響B(tài)細(xì)胞的生長(zhǎng)分化:①IL-6作為L(zhǎng)CLs自分泌的生長(zhǎng)因子,誘導(dǎo)LCLs生長(zhǎng);②IL-10促進(jìn)B細(xì)胞轉(zhuǎn)化和LCLs增殖[50]。LMP1模擬CD40受體,發(fā)揮類腫瘤壞死因子受體的作用,激活NF-κB、MAPK、PI3K和JAK3/STAT等信號(hào)通路;LMP2可誘導(dǎo)B細(xì)胞轉(zhuǎn)化[56]。

3.3 樹突狀細(xì)胞(DCs) 起源于骨髓造血干細(xì)胞,分為漿細(xì)胞性樹突狀細(xì)胞(pDCs)和經(jīng)典的髓系樹突狀細(xì)胞(cDCs)。pDCs表達(dá)TLR7和TLR9兩類模式識(shí)別受體,識(shí)別外源性核酸,產(chǎn)生大量的Ⅰ型IFN;cDCs可感知組織損傷,加工、呈遞抗原給T細(xì)胞;TLR2和TLR3參與cDCs識(shí)別EBV的過(guò)程[57]。

pDCs借助 TLR7識(shí)別富含鳥苷或尿苷的病毒雙鏈RNA以及小的咪唑并喹啉化合物,通過(guò)TLR9識(shí)別DNA中未經(jīng)甲基化的CpG核苷酸序列,產(chǎn)生大量的Ⅰ型 IFN等[58]。一旦EBV進(jìn)入細(xì)胞內(nèi),DNA發(fā)生甲基化,不能活化TLR9[59]。pDCs通過(guò)TLR9識(shí)別EBV還處于裂解復(fù)制階段。在潛伏感染階段,EBERs單鏈RNA可以作用于TLR7,產(chǎn)生Ⅰ型IFN(IFNα和β)[60]。pDCs分泌IFNα2、α14和IFNα、β,抑制B細(xì)胞轉(zhuǎn)化[61]。pDCs還可活化NK細(xì)胞,機(jī)制為分泌IFNγ,限制B細(xì)胞轉(zhuǎn)化;殺傷病毒感染的細(xì)胞,限制裂解復(fù)制階段EBV的復(fù)制[62]。EBV特異性T細(xì)胞在控制EBV感染的過(guò)程中發(fā)揮重要作用,DCs呈遞抗原給T細(xì)胞并活化T細(xì)胞,控制EBV感染。

潛伏感染階段,EBV編碼產(chǎn)生的EBERs與蛋白結(jié)合,形成蛋白復(fù)合物(La)并從細(xì)胞中釋放出來(lái),被cDCs上的TLR3受體識(shí)別, EBERs的雙鏈RNA序列與TLR3形成發(fā)卡樣結(jié)構(gòu),誘發(fā)cDCs分泌Ⅰ型IFN等促炎癥細(xì)胞因子[63]。

3.4 NK細(xì)胞 作為淋巴細(xì)胞的一種,作用廣泛,可殺傷腫瘤細(xì)胞或病毒感染的靶細(xì)胞,在免疫應(yīng)答的不同環(huán)節(jié)都發(fā)揮作用[64]。NK細(xì)胞的前體細(xì)胞在骨髓中生長(zhǎng),隨后遷移到次級(jí)淋巴器官(如扁桃體等),在遷移過(guò)程中監(jiān)視入侵的病原體和腫瘤細(xì)胞[65]。NK細(xì)胞主要有CD56+CD16-和CD56-CD16+兩個(gè)亞群;前者主要位于外周淋巴組織,主要作用是合成分泌細(xì)胞因子,如在IL-12刺激下分泌IFN-γ;后者存在于外周血,主要發(fā)揮細(xì)胞毒作用,直接殺傷靶細(xì)胞[62]。

huNSG小鼠試驗(yàn)中發(fā)現(xiàn)缺乏NK細(xì)胞時(shí),血清中EBV病毒滴度尤其是病毒DNA的水平升高[66]。缺乏NK細(xì)胞時(shí),CD8+T細(xì)胞大量擴(kuò)增,細(xì)胞因子產(chǎn)生過(guò)多,機(jī)體IM癥狀加重,EBV相關(guān)腫瘤的發(fā)生率增高[67]。兒童IM感染急性期,CD56-NKG2A+KIR-NK細(xì)胞數(shù)量擴(kuò)增,靶向控制B細(xì)胞的感染,但這種NK細(xì)胞的數(shù)量隨年齡增長(zhǎng)逐漸減少,IM癥狀多發(fā)生在比較大的兒童、青少年和成人階段[66]。

另外一類細(xì)胞群是不變的NKT細(xì)胞(iNKT細(xì)胞),可抑制B細(xì)胞轉(zhuǎn)化,缺乏該細(xì)胞群時(shí)機(jī)體對(duì)EBV的敏感性升高[68]。

3.5 固有免疫 固有免疫是機(jī)體抵御病原體入侵的第一道防線,是機(jī)體的天然免疫防御體系。固有免疫不但可抵御非特異性感染,還可啟動(dòng)和參與適應(yīng)性免疫。EBV感染相關(guān)的免疫機(jī)制中,研究比較明確的是Toll樣受體家族(TLRs)。

TLRs作為模式識(shí)別受體(PRRs)家族的一類,可識(shí)別EBV,引發(fā)固有免疫應(yīng)答,控制病毒的感染。人類B細(xì)胞表面表達(dá)高水平的TLR-1、6、7、9、10受體,受到TLRs配體刺激,促進(jìn)多種促炎癥細(xì)胞因子(如IL1α、IL1β、IL-6、IL-8和TNFα等)產(chǎn)生[69],在控制EBV感染的過(guò)程中發(fā)揮著類似固有免疫應(yīng)答的作用。TLR9激活可降低EBV病毒蛋白和病原體載量,促使EBV從裂解復(fù)制階段轉(zhuǎn)變?yōu)闈摲腥倦A段,有助于EBV逃避機(jī)體免疫監(jiān)視,形成長(zhǎng)期潛伏感染[70]。還可活化NF-κB等信號(hào)通路,產(chǎn)生多種抗病毒的細(xì)胞因子,如IFN-α和IFN-γ等[70]。

一方面,TLR9可以誘導(dǎo)產(chǎn)生促炎癥細(xì)胞因子,激活機(jī)體的固有免疫應(yīng)答,控制EBV感染;另一方面,EBV利用TLR9在B細(xì)胞中建立長(zhǎng)期潛伏感染。目前TLR9在EBV感染機(jī)制不清。

EBV刺激TLR7后活化下游信號(hào)通路,促使B細(xì)胞活化和增殖[70];隨之,EBV誘導(dǎo)產(chǎn)生一系列負(fù)性調(diào)節(jié)因子,抑制TLR7通路中IFN-調(diào)節(jié)因子5(IRF-5)的抗病毒活性,建立持續(xù)的潛伏感染[71]。B細(xì)胞系通過(guò)視黃酸誘導(dǎo)型基因I(RIG-I)識(shí)別EBV合成的EBERs,激活干擾素調(diào)節(jié)因子3(IRF3)和NF-κB通路,誘導(dǎo)產(chǎn)生IL-6、IL-8、IFNs和IL-10等細(xì)胞因子[72]。單核細(xì)胞上的TLR2與EBV顆?;蛘甙釫BV dUTP酶結(jié)合后活化,依賴MyD88激活NF-κB信號(hào)通路,產(chǎn)生大量的促炎癥細(xì)胞因子(如TNF-α、IL-1β、IL-6、IL-10等)[50]。

4 EBV逃逸機(jī)體免疫防御的機(jī)制

EBV在B細(xì)胞內(nèi)形成長(zhǎng)期潛伏感染,其基因組通過(guò)感染轉(zhuǎn)化B細(xì)胞得以傳播。潛伏感染階段,EBV限制性表達(dá)編碼產(chǎn)物,逃避機(jī)體免疫系統(tǒng)的監(jiān)視。EBV主要通過(guò)以下幾方面逃避機(jī)體的免疫反應(yīng)。

4.1 抑制固有免疫應(yīng)答 EBV激活細(xì)胞表面的PRRs,識(shí)別病毒,或者被感染細(xì)胞表面的病原體相關(guān)分子模式(PAMPs)并引起級(jí)聯(lián)反應(yīng),發(fā)揮抗病毒的作用。為了在體內(nèi)建立潛伏感染模式,EBV采取一系列措施調(diào)節(jié)信號(hào)通路,降低其抗病毒能力。

4.1.1 抑制TLR信號(hào)通路 ①潛伏感染膜蛋白1(LMP1):EBV編碼產(chǎn)生的LMP1參與細(xì)胞轉(zhuǎn)化、凋亡等過(guò)程,在EBV致病的各個(gè)階段發(fā)揮重要作用。TLR9啟動(dòng)子基因-413至-403序列中包含有NF-κB的結(jié)合位點(diǎn),NF-κB p65過(guò)度表達(dá)可抑制TLR9的啟動(dòng)子的活性。LMP1通過(guò)激活NF-κB,下調(diào)TLR9的表達(dá)[73]。LMP1抑制B細(xì)胞中TLR9 mRNA和蛋白質(zhì)的表達(dá),降低TLR9介導(dǎo)的IL-6、TNFα和IgG的產(chǎn)生。②BGLF-5:EBV編碼產(chǎn)生的BGLF5蛋白具有堿性磷酸外切酶的活性,在裂解復(fù)制早期表達(dá)[74]。van Gene等[75]研究發(fā)現(xiàn),BGLF5在裂解復(fù)制階段誘導(dǎo)TLR mRNA的降解,下調(diào)TLR2和TLR9的表達(dá)。EBV降低模式識(shí)別受體(如TLRs)的水平,逃避宿主先天性免疫應(yīng)答。

4.1.2 抑制NF-κB 信號(hào)通路 核轉(zhuǎn)錄因子NF-κB家族由NF-κB1、NF-κB2、p65、c-Rel和RelB組成。NF-κB通路分為經(jīng)典和非經(jīng)典途徑,經(jīng)典途徑主要是通過(guò)IKB激酶將IKB蛋白磷酸化,降解IKB;非經(jīng)典途徑依賴IKK1,導(dǎo)致p52::RelB二聚物的異位[76]。IKK復(fù)合物包括IEE2、IKK2和調(diào)節(jié)亞基NEMO(IKKγ),其中NEMO在NF-κB信號(hào)通路中起重要的介導(dǎo)作用。如果完全缺乏NEMO,將會(huì)抑制LMP1介導(dǎo)的NF-κB經(jīng)典途徑;抑制或者缺乏IKK2也會(huì)干擾這個(gè)過(guò)程,NEMO和IKK2在LMP1干擾NF-κB通路中發(fā)揮重要作用[77]。

TLR介導(dǎo)的NF-κB信號(hào)通路活化與翻譯后修飾(如磷酸化和泛素化等)過(guò)程密切相關(guān)。EBV編碼的裂解期蛋白會(huì)干擾這些修飾過(guò)程。BGLF4是EBV產(chǎn)生的蛋白激酶,影響NF-κB共刺激分子UXT與NF-κB的相互作用,抑制NF-κB的活性[78]。BPLF1是EBV裂解晚期表達(dá)的外殼蛋白,其N末端區(qū)域包含去泛素化酶活性的位點(diǎn),將TLR級(jí)聯(lián)反應(yīng)通路的中間產(chǎn)物去泛素化,抑制B細(xì)胞內(nèi)TLR介導(dǎo)的NF-κB活化,逃脫機(jī)體的固有免疫反應(yīng)[79]。

4.2 干擾細(xì)胞免疫應(yīng)答 由于CD8+T細(xì)胞識(shí)別病毒的過(guò)程需要MHC-Ⅰ類分子的參與,為了逃避EBV特異性CD8+T細(xì)胞的識(shí)別,EBV編碼產(chǎn)生一系列蛋白下調(diào)MHC-Ⅰ類分子,干擾細(xì)胞免疫,逃避機(jī)體免疫系統(tǒng)的監(jiān)視。

4.2.1 BGLF5的干擾 BGLF5不僅影響固有免疫應(yīng)答,還可以干擾細(xì)胞免疫應(yīng)答,具有內(nèi)源性RNA酶的活性[80],促使MHC-Ⅰ類分子mRNA的降解,使MHC-Ⅰ類分子水平降低[81]。BGLF5蛋白下調(diào)MHC-Ⅰ類分子的表達(dá),干擾CD8+T細(xì)胞識(shí)別EBV抗原的能力。

4.2.2 BNLF2a抑制抗原肽的轉(zhuǎn)運(yùn) BNLF2a是一種膜結(jié)合蛋白,有C末端的尾錨狀結(jié)構(gòu)和N末端胞漿內(nèi)結(jié)構(gòu)[82]。病毒抗原轉(zhuǎn)運(yùn)過(guò)程中,抗原相關(guān)轉(zhuǎn)運(yùn)體(TAP)運(yùn)輸抗原肽到內(nèi)質(zhì)網(wǎng)進(jìn)行加工處理。BNLF2a借助其C端尾錨狀結(jié)構(gòu)整合到內(nèi)質(zhì)網(wǎng)上,N端結(jié)構(gòu)強(qiáng)烈抑制TAP的功能,阻止TAP介導(dǎo)的抗原呈遞兩個(gè)特殊結(jié)構(gòu)[82],干擾CD8+T細(xì)胞對(duì)EBV的識(shí)別。BNLF2a表達(dá)有階段特異性,主要影響裂解早期抗原蛋白的呈遞[83]。

4.2.3 BILF1影響MHC-Ⅰ的表達(dá) BILF1是裂解感染階段的一種糖蛋白,具有七次跨膜結(jié)構(gòu),視為一種G蛋白偶聯(lián)受體,有G蛋白偶聯(lián)受體的屬性[84]。BILF1與MHC-Ⅰ類分子結(jié)合,促使其從細(xì)胞表面脫落,加強(qiáng)溶酶體蛋白酶對(duì)其降解,下調(diào)MHC-Ⅰ類分子的表達(dá),抑制T細(xì)胞對(duì)EBV的識(shí)別,逃逸宿主細(xì)胞的殺傷作用[85]。

4.3 干擾細(xì)胞因子的作用 機(jī)體受到EBV感染后產(chǎn)生一類能夠在細(xì)胞間傳遞信息的、調(diào)節(jié)免疫反應(yīng)和效應(yīng)功能的物質(zhì),包括蛋白質(zhì)和小分子多肽—細(xì)胞因子,參與調(diào)控宿主抗病毒感染。EBV通過(guò)以下方面干擾細(xì)胞因子的作用:①LMP1模擬CD40配體的作用激活NF-κB、JNK、MAPK和JAK/STAT等信號(hào)通路[86]。LMP1活化NF-κB信號(hào)通路,激活I(lǐng)RF7,產(chǎn)生大量的Ⅰ型IFN,抑制EBV增殖,限制EBV進(jìn)入裂解復(fù)制期,維持潛伏感染狀態(tài)[87]。LMP1還可以上調(diào)IL6、IL8和IL10等細(xì)胞因子的表達(dá)水平[86]。②在潛伏感染階段,LMP1誘導(dǎo)A20蛋白活化,負(fù)性調(diào)節(jié)IRF7的轉(zhuǎn)錄活性,抑制Ⅰ型IFN的產(chǎn)生,降低其免疫活性[88]。③LMP1阻止酪氨酸激酶2(Tyk2)磷酸化,抑制IFNα介導(dǎo)的STAT2活化,減弱IFNα抗病毒增殖的活性,保護(hù)EBV[89]。④IL-10抑制抗原呈遞細(xì)胞和T細(xì)胞的功能,抑制炎癥因子的產(chǎn)生,具有抗炎的功能[90]。EBV還可編碼產(chǎn)生人IL-10的類似物—BCRF1蛋白,與BNLF2a在感染早期共同作用,有助于免疫逃逸。EBV還可抑制IFNγ的合成,減少抗原特異性T細(xì)胞的增殖[91]。

4.4 EBERs EBV編碼產(chǎn)生的非編碼RNA-EBERs存在于潛伏期感染階段的細(xì)胞中,在EBV致病過(guò)程中發(fā)揮重要作用。①EBERs與La蛋白結(jié)合,在La蛋白的協(xié)助下排出胞外并運(yùn)輸至鄰近的細(xì)胞,直接感染臨近細(xì)胞[92]。②EBERs促進(jìn)IL-10的分泌,抑制抗原呈遞過(guò)程和T細(xì)胞增殖,抑制T淋巴細(xì)胞的活性[72]。③EBERs與宿主富含AU元件(ARE)結(jié)合因子1(AUF1)/hnRNP D結(jié)合后[93],往往會(huì)引起mRNA不穩(wěn)定,趨向凋亡[94];但是高水平的EBERs能夠干擾AUF1的作用,穩(wěn)定mRNA[93]。B細(xì)胞轉(zhuǎn)錄因子PAX5和EBERs之間相互作用,誘導(dǎo)LMP的表達(dá)[95]。

4.5 micro RNA microRNA( miRNA)抑制mRNA翻譯過(guò)程,影響蛋白質(zhì)合成,保護(hù)病毒逃避宿主免疫系統(tǒng)監(jiān)視。

4.5.1 miRNAs的產(chǎn)生 目前認(rèn)為,EBV至少編碼40多種miRNAs,以基因簇形式位于BHRF1基因和BART轉(zhuǎn)錄序列中[96]。miRNAs以外泌體的形式分泌到細(xì)胞外,在EBV感染和非感染的B細(xì)胞之間傳遞,這種外泌體形式可以保護(hù)miRNAs不被RNA水解酶水解,維持它們?cè)诎屑?xì)胞中的功能[72]。

4.5.2 miRNAs維持EBV的潛伏感染 BART mRNA編碼產(chǎn)生MAP激酶激酶激酶2(MAP3K2),激發(fā)EBV裂解復(fù)制期的啟動(dòng)。潛伏感染階段的B細(xì)胞表達(dá)BART 18-5p,靶向與MAP3K2結(jié)合,阻止病毒的復(fù)制[97],BART 18-5p可能抑制病毒的復(fù)制,維持病毒在記憶B細(xì)胞中的潛伏感染。BART 22 miRNAs下調(diào)潛伏膜蛋白LMP2A,使其逃脫CTLs識(shí)別,導(dǎo)致EBV感染的B細(xì)胞逃逸CTLs的監(jiān)視[98]。EBV BHRF1-3p miRNAs靶向抑制細(xì)胞因子的分泌(如CXCL-11),保護(hù)受感染的細(xì)胞不被T細(xì)胞殺傷[99],抑制NLRP3炎癥因子的活化以及IL-1β等促炎癥細(xì)胞因子釋放,維持EBV復(fù)制[100]。BHRF1 miRNAs在刺激宿主B細(xì)胞擴(kuò)增的同時(shí)降低病毒的抗原滴度,有利于維持EBV的潛伏感染狀態(tài)[101]。

4.5.3 miRNAs 抑制凋亡 miRNAs通過(guò)干擾細(xì)胞的凋亡使EBV在宿主體內(nèi)能更好地復(fù)制和增殖[98]。BART 4-5p miRNA靶向抑制促凋亡蛋白BID(BH-3相互作用的死亡激動(dòng)劑)和PUMA(一種bcl-2家族的促凋亡因子)作用,抑制靶細(xì)胞的凋亡,促進(jìn)宿主細(xì)胞的存活[102]。EBV的 BART 6-3p miRNA負(fù)性調(diào)控 LMP1介導(dǎo)的NF-κB信號(hào)通路,發(fā)揮抗凋亡作用[103]。

5 EBV感染相關(guān)免疫缺陷病

迄今為止,已經(jīng)發(fā)現(xiàn)了近20種EBV感染相關(guān)的原發(fā)性免疫缺陷病,另一些分子缺陷導(dǎo)致機(jī)體僅易感EBV,還有些分子缺陷導(dǎo)致機(jī)體易感EBV和其他多種病原,有些分子缺陷導(dǎo)致機(jī)體感染EBV后易發(fā)生HLH。

5.1 僅易感EBV的免疫缺陷

5.1.1SH2D1A缺陷 X連鎖淋巴組織增生性疾病(XLP)是一種罕見的原發(fā)性免疫缺陷病,其特點(diǎn)是易感EBV,表現(xiàn)為致命性IM、HLH、低丙球蛋白血癥和惡性淋巴瘤,主要分為XLP1和XLP2兩種類型。XLP1比較常見,主要是由于SH2D1A基因突變引起的。SH2D1A基因編碼淋巴細(xì)胞信號(hào)活化分子(SLAM)相關(guān)蛋白(SAP),主要在T細(xì)胞、NK細(xì)胞和iNKT細(xì)胞表達(dá),招募蛋白酪氨酸激酶Fyn,調(diào)節(jié)胞內(nèi)SLAM表面受體家族下游信號(hào)轉(zhuǎn)導(dǎo)的過(guò)程[104]。

在T細(xì)胞中,SAP與SLAM胞內(nèi)模體結(jié)合,SLAM-SAP-Fyn信號(hào)通過(guò)以下兩條通路調(diào)節(jié)細(xì)胞因子:①SH2肌醇磷酸酶(SHIP)抑制干擾素IFN-γ的產(chǎn)生;②蛋白激酶C、Bc1-10和NF-κB通路,增加轉(zhuǎn)錄因子CATA-3的表達(dá)。在NK細(xì)胞,SAP主要與2B4結(jié)合,2B4-SAP-Fyn改變SHIP、Vav-2和c-Cbl等激活細(xì)胞毒性的信號(hào)通路;如果缺乏SAP,SLAM-R、2B4和NTB-A等的細(xì)胞毒性激活功能轉(zhuǎn)變?yōu)橐种乒δ?,不能殺滅EBV感染的B細(xì)胞,引起EBV-HLH[42]。SH2D1A基因突變下調(diào)信號(hào)通路,損傷細(xì)胞間的相互作用,削弱2B4介導(dǎo)的IFN-γ產(chǎn)生及CD8+T細(xì)胞和NK細(xì)胞的細(xì)胞毒作用[105]。SAP缺陷的患者對(duì)于其他病原體的免疫反應(yīng)是正常的,SAP和SLAM受體在抗EBV的免疫反應(yīng)中發(fā)揮重要作用[42]。

XLP1患者常見的臨床表現(xiàn)有EBV感染導(dǎo)致的HLH、惡性B細(xì)胞淋巴瘤和進(jìn)行性加重的低丙種球蛋白血癥;也會(huì)出現(xiàn)血管炎、再生障礙性貧血和肺淋巴樣肉芽腫病[42]。部分XLP患者持續(xù)表現(xiàn)為低蛋白血癥,易反復(fù)感染,預(yù)后很差[106]。

HSCT是目前可以治愈XLP1的唯一方法,但日本的一項(xiàng)研究發(fā)現(xiàn),沒(méi)有接受HSCT的XLP1患者長(zhǎng)期追蹤后全部死亡[107]。在SAP缺陷的患者中,應(yīng)用CD20單抗(利妥昔單抗)對(duì)B細(xì)胞進(jìn)行靶向治療也有一定的療效[108]。

5.1.2XLAP缺陷XLAP/BIRC4基因編碼X連鎖凋亡抑制蛋白(XLAP),突變引起XLP2。XLAP是凋亡抑制蛋白家族的一員,抑制胱門蛋白酶3、7和9的功能;還可作為E3泛素連接酶發(fā)揮抗凋亡的作用[104]。XLAP缺陷臨床表現(xiàn)復(fù)雜多樣,主要有HLH、炎癥性腸病、反復(fù)發(fā)熱、脾腫大、全血細(xì)胞減少和嚴(yán)重性IM等[109]。與XLP1相比(55%),XLP2患者更易患HLH(76%),但XLP1EBV-HLH(92%)比XLP2(83%)更常見;XLP2患者發(fā)生全血細(xì)胞減少(52%)和脾腫大(87%)的情況比較多,有時(shí)還表現(xiàn)為出血性結(jié)腸炎[110]。

EBV上調(diào)NF-κB的活性,誘導(dǎo)抗凋亡蛋白(如XLAP)表達(dá),抑制宿主細(xì)胞的凋亡[111]。XLAP患者受到抗-Fas受體,抗-CD3抗體和三聚物TRAIL刺激后,促進(jìn)T細(xì)胞的凋亡[110],淋巴細(xì)胞的過(guò)度凋亡導(dǎo)致機(jī)體產(chǎn)生異常的免疫反應(yīng)。iNKT細(xì)胞監(jiān)視腫瘤及自身免疫性疾病的發(fā)生,XIAP患者體內(nèi)iNKT細(xì)胞數(shù)量減少可能與HLH發(fā)病有關(guān)[42]。

XLAP蛋白與RIP2因子結(jié)合,活化NF-κB通路,參與NOD2信號(hào)的活化過(guò)程。NOD2基因突變會(huì)引起遺傳性葡萄膜炎,XLAP缺陷的患者也有葡萄膜炎的表現(xiàn)[112],NOD2信號(hào)調(diào)節(jié)和臨床表型之間的關(guān)系非常復(fù)雜,尚不清楚[113]。

HSCT是治愈XIAP缺陷的重要手段,但是未接受HSCT的患者中部分生存期也較長(zhǎng)[109],需根據(jù)具體的臨床表現(xiàn)評(píng)估判斷XIAP缺陷患者是否需要進(jìn)行HSCT。

5.1.3ITK缺陷 可誘導(dǎo)IL-2 T細(xì)胞激酶(ITK)是TEC激酶家族的一員,主要在T細(xì)胞、NK細(xì)胞和iNKT細(xì)胞表面表達(dá),在T細(xì)胞增殖和分化過(guò)程中發(fā)揮重要作用[110]。ITK缺陷是一種常染色體隱性遺傳病,T細(xì)胞受體信號(hào)通路異常影響CD4+T細(xì)胞和CD8+T細(xì)胞的功能[114]。ITK缺陷患者感染EBV后,常表現(xiàn)為肝脾腫大、肺部疾病、低丙種球蛋白血癥、CD4+淋巴細(xì)胞減少、嚴(yán)重的淋巴組織增生和霍奇金淋巴瘤等,預(yù)后常較差[115]。Kirsten Bienemann等[114]研究發(fā)現(xiàn), ITK缺陷患者主要有以下特點(diǎn):①均與EBV感染有關(guān);②EBV陽(yáng)性的霍奇金淋巴瘤多見;③EBV多處于潛伏階段Ⅱ期;④常伴有淋巴結(jié)和肺部感染,預(yù)后差[114]。ITK缺陷是特發(fā)性CD4+T細(xì)胞減少的原因之一,建議CD4+T細(xì)胞減少的患者(不論是否有EBV相關(guān)淋巴組織增生)行基因組分析,檢測(cè)是否存在ITK基因突變[115]。進(jìn)一步研究依賴ITK的T細(xì)胞信號(hào)通路及T細(xì)胞控制EBV感染的具體分子機(jī)制,有助于控制EBV引起的一系列嚴(yán)重的疾病。

5.1.4CD27缺陷 CD27是腫瘤壞死因子受體家族的一員,作為一種跨膜二聚體,在所有的B細(xì)胞、T細(xì)胞(不包括CD57+T細(xì)胞)和CD56+NK細(xì)胞表面廣泛表達(dá)。CD70是CD27的配體,受到抗原受體信號(hào)刺激后,在活化的DCs、T細(xì)胞和B細(xì)胞表面短暫表達(dá)[116]。CD27/CD70通路可提高特異性CD8+T細(xì)胞的存活率,誘導(dǎo)機(jī)體產(chǎn)生抗病毒的保護(hù)性免疫,該通路受到抑制會(huì)引起長(zhǎng)期慢性感染[117]。CD27/CD70信號(hào)通路通過(guò)JNK通路和表觀遺傳學(xué)效應(yīng),抑制IL-17a基因轉(zhuǎn)錄和CCR6的表達(dá),從而抑制Th17效應(yīng)細(xì)胞的功能,改善相關(guān)自身免疫性疾?。辉撏愤€能夠促進(jìn)Th1細(xì)胞分泌IFN-γ[116]。CD27缺乏時(shí),體內(nèi)的B細(xì)胞、T細(xì)胞和NK細(xì)胞等免疫細(xì)胞的功能受到影響。①CD70/CD27通路是EBV特異性T細(xì)胞增殖過(guò)程的重要組成部分,CD27/CD70缺陷的患者T細(xì)胞增殖和聚集過(guò)程受損,EBV感染難以得到控制[118];正常宿主活化的B細(xì)胞和EBV感染的B細(xì)胞表面,CD70表達(dá)升高,B細(xì)胞表面CD70的表達(dá)對(duì)于EBV特異性T細(xì)胞的增殖起著關(guān)鍵性的作用[118]。②CD27/CD70缺陷的患者依賴T細(xì)胞的B細(xì)胞抗體產(chǎn)生功能受損,感染EBV后表現(xiàn)為持續(xù)性EBV病毒血癥及低丙種球蛋白血癥[119]。一項(xiàng)臨床研究中發(fā)現(xiàn),Cys53Tyr純合突變的8例CD27缺陷的患者,患EBV-HLH、淋巴增生性疾病和淋巴瘤的風(fēng)險(xiǎn)增加[120]。CD27缺陷的患者,CD8+T細(xì)胞表面2B4和NKG2D表達(dá)降低,SAP與SLAM家族之間的作用也受到影響[121]。但是CD27/CD70過(guò)度表達(dá)會(huì)引起一系列自身免疫性疾病和腫瘤[121],針對(duì)其過(guò)度表達(dá)引起的腫瘤性疾病的免疫靶向療法正在研究當(dāng)中[122]。CD27/CD70缺陷的患者受到多種病毒的感染,對(duì)EBV感染尤為敏感,具體機(jī)制還需要進(jìn)一步的研究。

5.1.5MAGT1缺陷MAGT1編碼鎂轉(zhuǎn)運(yùn)蛋白-MAGT1,刺激TCR誘導(dǎo)Mg2+內(nèi)流,通過(guò)下游Mg2+信號(hào)通路優(yōu)化Ca2+內(nèi)流,活化磷脂酶C(PLC)γ-1、蛋白激酶C(PKC)和NF-κB信號(hào)通路,繼而激活T細(xì)胞[123]。MAGT1突變的患者血清中EBV往往升高,出現(xiàn)自身免疫性血細(xì)胞減少、脾腫大和噬血細(xì)胞現(xiàn)象等[124]。這類疾病稱之為XMEN(X連鎖免疫缺陷病伴鎂離子缺陷EBV感染和腫瘤形成),其主要特點(diǎn)是不可控制的慢性EBV感染,易出現(xiàn)細(xì)胞(尤其是B淋巴細(xì)胞)的惡變[125]。有研究顯示7例MAGT1突變的患者血清中EBV DNA水平升高,其中4例有B細(xì)胞淋巴瘤,實(shí)驗(yàn)刺激PBMCs上T細(xì)胞受體,發(fā)現(xiàn)Ca2+信號(hào)表達(dá)、PLCγ-1、PKC-和NF-κB的活化過(guò)程均受損[125]。

NKG2D是NK細(xì)胞活化的受體,在CD8+T細(xì)胞發(fā)揮細(xì)胞毒作用的過(guò)程中也是必須的,NKG2D功能受損可導(dǎo)致持續(xù)的EBV病毒血癥和EBV-淋巴增生性疾病[124]。MAGT1缺陷的患者CD4+T細(xì)胞數(shù)量減少,NK細(xì)胞和CD8+T細(xì)胞的數(shù)量正常[123],但是NKG2D的表達(dá)下降,NK細(xì)胞和CD8+T細(xì)胞的細(xì)胞毒功能也受到損害[125]。

XMEN患者細(xì)胞內(nèi)Mg2+水平低下,補(bǔ)充鎂,可能會(huì)提高免疫功能。對(duì)XMEN患者的NK細(xì)胞和CD8+T細(xì)胞行體外培養(yǎng),補(bǔ)充Mg2+,發(fā)現(xiàn)細(xì)胞毒性功能恢復(fù),與其NKG2D的表達(dá)上調(diào)過(guò)程是一致的[124]。有病例報(bào)告發(fā)現(xiàn),MAGT1缺陷與卡波西肉瘤的發(fā)生有關(guān),細(xì)胞內(nèi)Mg2+在控制HHV8感染方面也發(fā)揮重要作用[126]。MAGT1缺陷的患者除EBV的感染外,對(duì)其他病毒的控制也可能存在缺陷。

5.1.6LRBA缺陷LRBA編碼產(chǎn)生胞質(zhì)蛋白LRBA蛋白,參與受體的內(nèi)化[127]。LRBA蛋白在免疫細(xì)胞表面大量表達(dá),LRBA缺陷影響B(tài)細(xì)胞活化、免疫球蛋白合成和T細(xì)胞活化等。LRBA突變的患兒常早發(fā)炎癥性腸病、慢性腹瀉、自身免疫性血細(xì)胞減少、嚴(yán)重的感染和肺部疾病等,其中慢性腹瀉和低丙種球蛋白血癥常見[127, 128]。

細(xì)胞毒性T細(xì)胞抗原-4(CTLA-4)調(diào)節(jié)T細(xì)胞發(fā)揮免疫功能,CTLA-4缺陷引起一系列免疫失調(diào)性疾病[129]。LRBA與CTLA4在內(nèi)質(zhì)網(wǎng)囊泡上共定位,LRBA缺陷導(dǎo)致FOXP3+Treg和傳統(tǒng)T細(xì)胞上CTLA4水平降低。LRBA調(diào)節(jié)CTLA-4的表達(dá)[130]。在LRBA缺陷細(xì)胞中,使用氯喹抑制溶酶體降解可阻止CTLA-4丟失,該類藥物可用于治療LRBA缺陷[130]。阿巴西普是一種CTLA-4免疫球蛋白融合藥物,通過(guò)與抗原提呈細(xì)胞上的CD80/86結(jié)合抑制T細(xì)胞激活,目前用于治療類風(fēng)濕關(guān)節(jié)炎。Lee等[131]報(bào)告了1例CTLA-4功能性突變的女孩,表現(xiàn)為慢性腹瀉、自身免疫性腸病、巨幼紅細(xì)胞性貧血、自身免疫性肝炎,阿巴西普治療后其自身免疫癥狀得到緩解, FOXP3+表達(dá)升高,調(diào)節(jié)T細(xì)胞功能得到恢復(fù)。LRBA缺陷患者對(duì)阿巴西普治療亦表現(xiàn)出強(qiáng)烈、持續(xù)的反應(yīng),治療后間質(zhì)性肺病和嚴(yán)重腸炎顯著改善[130]。臨床研究發(fā)現(xiàn)HSCT也可以用于伴發(fā)嚴(yán)重疾病的LRBA缺陷的患者[128]。

5.2 除易感EB病毒外,還易感其他病原的免疫缺陷

5.2.1 PI3K信號(hào)通路缺陷 PI3K能夠產(chǎn)生PIP3,在生長(zhǎng)因子、細(xì)胞因子和趨化因子受體信號(hào)轉(zhuǎn)導(dǎo)中發(fā)揮重要作用。PI3K由催化亞基(p110)和調(diào)節(jié)亞基(p85、p55和p50)組成,調(diào)節(jié)亞基與活化的生長(zhǎng)因子受體結(jié)合,通過(guò)催化亞基接近脂質(zhì)底物[132]發(fā)揮作用。

5.2.1.1PIK3CD缺陷PIK3CD編碼產(chǎn)生催化亞基p110δ,與調(diào)節(jié)亞基p85a共同組成肌醇環(huán)磷酸化PI3K-δ,參與PI3K-AKT-mTOR信號(hào)通路,在淋巴細(xì)胞的生存和增殖過(guò)程中發(fā)揮重要作用[133]。PIK3CD突變患者多數(shù)都產(chǎn)生大量的EBV特異性CD8+T細(xì)胞,過(guò)度活化 mTOR信號(hào),CD8+T效應(yīng)細(xì)胞壽命縮短,影響記憶T和B細(xì)胞的發(fā)育[133]。激活PI3K-δ綜合征(APDS)是PIK3CD基因突變引起的原發(fā)性免疫缺陷病,屬常染色體顯性遺傳病,新發(fā)突變比較多見,主要表現(xiàn)為反復(fù)呼吸道感染、肝脾淋巴結(jié)腫大、CMV和/或EBV血癥、淋巴組織增生等[134]。PIK3CD突變還有可能導(dǎo)致雙側(cè)突發(fā)性耳聾[135]。這類患者體內(nèi)CD8+T細(xì)胞、CD4+T細(xì)胞和記憶性B細(xì)胞數(shù)量減少,IgM增高,伴或不伴IgG和IgA降低,活化誘導(dǎo)的細(xì)胞死亡增加[134],故控制EBV感染的能力降低[136]。與其他高IgM血癥(HIGM)不同,PIK3CD突變引起的惡性腫瘤是在慢性良性病變的基礎(chǔ)上發(fā)生的[136]。

APDS的治療藥物多集中在PI3K-AKT-mTOR通路上,雷帕霉素最初作為免疫抑制劑應(yīng)用,在細(xì)胞中與FK結(jié)合蛋白-12(FKBP-12)結(jié)合生成免疫抑制復(fù)合物,與哺乳動(dòng)物的雷帕霉素靶蛋白mTOR結(jié)合,并抑制其活性,阻斷了由抗原和細(xì)胞因子(IL-2、IL-4、IL-5)驅(qū)動(dòng)的T 淋巴細(xì)胞活化增殖,抑制細(xì)胞周期從G1期進(jìn)入S期,使Tc和Td細(xì)胞不能成為具有免疫應(yīng)答作用的致敏性T淋巴細(xì)胞。目前雷帕霉素主要用于腎移植受者,預(yù)防器官排斥。Lucas 等[136]報(bào)告,1例患者使用雷帕霉素后,循環(huán)T細(xì)胞增殖改善。2016年Coulter研究中的4例患者使用雷帕霉素后非腫瘤性的淋巴增殖明顯好轉(zhuǎn),皮膚T細(xì)胞淋巴瘤也得到了緩解[137]。

5.2.1.2PIK3R1缺陷 目前有兩種與PIK3R1基因突變相關(guān)聯(lián)的遺傳病,一種是PIK3R1雜合突變引起的SHORT綜合征,表現(xiàn)為身材矮小、脂肪萎縮,常伴隨胰島素抵抗;另一種是PIK3R1純合突變引起的B細(xì)胞缺乏,表現(xiàn)為低丙種球蛋白血癥[138]。有研究報(bào)道4例有PIK3R1剪接位點(diǎn)雜合突變的患者,主要表現(xiàn)為類似PIK3CD突變的臨床表現(xiàn)包括反復(fù)肺炎、淋巴組織增生等。其中1例患者血清中有高EBV和CMV病毒載量[138],初始CD4+T和CD8+T細(xì)胞缺乏,衰老CD4+T和CD8+T細(xì)胞過(guò)量,IgM水平升高[139]。

5.2.2CTPS1缺陷 胞苷5'磷酸合酶1基因(CTPS1)突變導(dǎo)致CTPS1蛋白合成缺失。淋巴細(xì)胞中胞苷5'磷酸(CTP)從頭合成過(guò)程在DNA復(fù)制過(guò)程中發(fā)揮重要作用[140]。T細(xì)胞受到TCR-CD3/CD28共刺激活化后,大量表達(dá)CTPS1,在免疫應(yīng)答過(guò)程中維持活化的淋巴細(xì)胞增殖。在淋巴細(xì)胞中,CTPS1介導(dǎo)CTP的合成,是機(jī)體實(shí)現(xiàn)適應(yīng)性免疫應(yīng)答的關(guān)鍵[141]。CTPS1缺陷的患者淋巴細(xì)胞減少,CD4/CD8比例降低,易發(fā)生多種感染,尤其是EBV和VZV[141]。研究報(bào)道8例CTPS1缺陷的患者中4例在感染第1年內(nèi)出現(xiàn)IM樣綜合征,3例表現(xiàn)為中樞神經(jīng)系統(tǒng)EBV陽(yáng)性B-LPD,另外1例表現(xiàn)為無(wú)癥狀的慢性EB病毒血癥。CTPS1缺陷的患者,感染病毒后不能誘發(fā)原發(fā)性T細(xì)胞擴(kuò)增,對(duì)皰疹病毒尤其是EBV具有明顯的易感性[141]。

5.2.3STK4缺陷STK4基因位于常染色體20q11.2-q13.2,包含11個(gè)外顯子,該基因編碼的蛋白質(zhì)的裂解片段能夠磷酸化組蛋白H2B,與凋亡過(guò)程密切相關(guān),故被認(rèn)為是一種促凋亡蛋白,是細(xì)胞增殖和凋亡信號(hào)通路中的重要分子。STK4基因敲除的小鼠中,STK4通過(guò)FOXO1/FOXO3調(diào)控T調(diào)節(jié)細(xì)胞的發(fā)育[142]。STK4基因純合突變的患兒常反復(fù)發(fā)生多種感染,如細(xì)菌感染,真菌感染,HPV、HSV、VAV和EBV等病毒感染[143]。一項(xiàng)研究中,2例患兒血清中EBV 滴度升高,其中1例發(fā)展為EBV-霍奇金淋巴瘤,另1例發(fā)展為EBV-LPD[144]。

5.2.4GATA2缺陷GATA2編碼產(chǎn)生造血過(guò)程所需的轉(zhuǎn)錄因子,GATA2突變的患者體內(nèi)B細(xì)胞、CD4+T細(xì)胞、NK細(xì)胞和單核細(xì)胞等造血細(xì)胞數(shù)量均減少[145]。由于B細(xì)胞的缺乏,EBV不能形成潛伏感染,此類患者很少出現(xiàn)EBV相關(guān)的B-LPD,但NK細(xì)胞缺乏使機(jī)體無(wú)法控制病毒的復(fù)制,出現(xiàn)一些非特異性細(xì)胞的大量增殖,如平滑肌肉瘤等[146]。GATA2突變的患者表現(xiàn)為慢性活動(dòng)性EBV感染、EBV陽(yáng)性的平滑肌肉瘤和持續(xù)性EBV病毒血癥[147]。這類患者不僅對(duì)EBV敏感,還易感染其他皰疹病毒、人乳頭瘤病毒、真菌和非結(jié)核分支桿菌等[148]。

彌漫性實(shí)質(zhì)性肺病,伴隨WBC減少的患者應(yīng)考慮GATA2缺陷的可能。GATA2缺陷的表型復(fù)雜多樣,包括急性髓系白血病、骨髓增生異常綜合征、自身免疫性疾病和肺部疾病等[148],早期基因診斷對(duì)臨床預(yù)防、治療和家族篩查等至關(guān)重要[145]。HSCT也有助于GATA2缺陷的患者重建免疫功能和治療EBV相關(guān)的腫瘤等[147]。

5.2.5MCM4缺陷MCM4基因編碼產(chǎn)生微小染色體維持蛋白4(MCM4蛋白),是DNA復(fù)制過(guò)程中的一種解旋酶,在修復(fù)DNA和維持NK細(xì)胞正常功能的過(guò)程中發(fā)揮重要作用[149]。MCM4突變影響MCM4/6/7復(fù)合物的形成,突變的復(fù)合物不穩(wěn)定,并干擾DNA正常復(fù)制[150]。MCM4缺陷的患者中,T細(xì)胞、B細(xì)胞和CD56+NK細(xì)胞數(shù)量正常,CD56-NK細(xì)胞缺失,可能是細(xì)胞增殖過(guò)程中CD56+NK細(xì)胞向CD56-NK細(xì)胞轉(zhuǎn)變受到抑制,影響NK細(xì)胞的成熟[151]。部分MCM4缺陷的患者表現(xiàn)為特定的造血功能減退(NK CD56-細(xì)胞缺陷)和內(nèi)分泌功能紊亂(腎上腺功能不全)等,不同組織對(duì)MCM4的需求可能不同[151]。

MCM4缺陷的患者伴發(fā)多種發(fā)育缺陷,尤其是NK細(xì)胞缺陷者對(duì)多種病毒易感[152]。

5.2.6FCγR3A缺陷FCγR3A編碼Fc受體CD16,其在NK細(xì)胞和嗜中性粒細(xì)胞表面大量表達(dá)。該基因突變導(dǎo)致經(jīng)典的NK細(xì)胞缺陷。成熟的NK細(xì)胞通過(guò)其表面Fc受體(FcR)識(shí)別靶抗原(如細(xì)菌或腫瘤細(xì)胞)Fc段,直接殺傷靶細(xì)胞(ADCC),F(xiàn)CγR3A突變導(dǎo)致NK細(xì)胞Fc受體缺陷,不能發(fā)揮其ADCC作用。有文獻(xiàn)[110]報(bào)告,2例FCγR3A突變的患者,其中1例表現(xiàn)為長(zhǎng)期IM癥狀,另1例為復(fù)發(fā)性EBV相關(guān)的B-LPD。CD16與細(xì)胞表面的CD2結(jié)合后發(fā)揮共刺激作用,促進(jìn)NK細(xì)胞的裂解作用,F(xiàn)CγR3A突變影響CD16與CD2之間的相互作用,削弱了NK細(xì)胞的細(xì)胞毒性[146]。

部分效應(yīng)T細(xì)胞中也有FcγR3的表達(dá),這類細(xì)胞呈大顆粒細(xì)胞的形態(tài),胞內(nèi)穿孔素陽(yáng)性,可以直接介導(dǎo)ADCC的作用,體外實(shí)驗(yàn)中用EBV刺激PBMCs后,EBV-特異性T淋巴細(xì)胞系中出現(xiàn)這類細(xì)胞[153]。

5.2.7CARD11缺陷 彌漫性大B細(xì)胞淋巴瘤(DLBCL)中ABC亞型的存活依賴于NF-κB信號(hào)的激活,CARD11突變引起淋巴細(xì)胞中NF-κB活化,誘發(fā)初始B細(xì)胞擴(kuò)增和T細(xì)胞低反應(yīng),引起B(yǎng)細(xì)胞惡性腫瘤,尤其是DLBCL[154];CARD11突變通常表現(xiàn)為B細(xì)胞擴(kuò)增伴隨T細(xì)胞無(wú)能(BENTA)、EBV慢性感染、接觸性傳染性軟疣和博卡病毒感染[154]。EBV感染可引起細(xì)胞增殖和永生化,表現(xiàn)為持續(xù)多克隆B淋巴細(xì)胞增多癥,與BENTA的表型相似,EBV滴度也可以代表機(jī)體內(nèi)B淋巴細(xì)胞增加的程度,從而提示BENTA預(yù)后[154]。VR09細(xì)胞系具有活化的DLBCL的漿細(xì)胞分化特性,在免疫缺陷的小鼠中發(fā)展為腫瘤,這種模型可用于B細(xì)胞增生水平低且有漿細(xì)胞分化特點(diǎn)的DLBCL患者的相關(guān)研究中[155]。

BENTA尚無(wú)統(tǒng)一的治療方法,有發(fā)展為惡性腫瘤可能,需要進(jìn)行密切隨訪[156]。EZH2、CD79B、CARD11和MYD88突變影響NF-κB信號(hào)通路,可考慮分子靶向治療[157]。CARD11缺陷選擇性引起B(yǎng)細(xì)胞擴(kuò)增和轉(zhuǎn)化的具體機(jī)制尚不清楚。

5.2.8CORO1A缺陷CORO1A編碼冠狀素-1A,冠蛋白家族是肌動(dòng)蛋白支架的重要調(diào)節(jié)因子,主要在淋巴細(xì)胞表面表達(dá),CORO1A突變引起T-B+NK+聯(lián)合免疫缺陷或T淋巴細(xì)胞減少癥[158]。冠狀素-1A直接與F肌動(dòng)蛋白結(jié)合,繼而與肌動(dòng)蛋白相關(guān)蛋白2/3復(fù)合體結(jié)合,調(diào)節(jié)肌動(dòng)蛋白的聚集[159]。以往認(rèn)為CORO1A突變的患者中NK細(xì)胞是不受影響的,但是最近發(fā)現(xiàn)裂解顆粒進(jìn)入突觸膜、發(fā)揮細(xì)胞毒作用的過(guò)程需要F肌動(dòng)蛋白的解離,故NK細(xì)胞的發(fā)育過(guò)程可能不受影響,但其效應(yīng)功能受損[159]。

CORO1A突變導(dǎo)致T細(xì)胞內(nèi)F-肌動(dòng)蛋白聚集,導(dǎo)致胸腺輸出T細(xì)胞減少、T細(xì)胞存活障礙[158],CORO1A在機(jī)體抗病毒和維持T細(xì)胞存活等方面發(fā)揮著重要的作用。

CORO1A突變的患者T細(xì)胞、B細(xì)胞和NK細(xì)胞水平低,容易感染多種病原體,但大多數(shù)患者的臨床表現(xiàn)與EBV感染相關(guān)。CORO1A缺陷患者都有上呼吸道的感染,其主要特征是EBV感染難以控制,患者在小時(shí)候就可出現(xiàn)致病性淋巴組織增生性綜合征和淋巴瘤[160]。部分患者表現(xiàn)為嚴(yán)重的水痘病毒感染、EBV相關(guān)的淋巴組織增生性疾病和疣等[158]。在疾病早期,尚未出現(xiàn)感染引發(fā)的不可逆的并發(fā)癥和EBV相關(guān)腫瘤時(shí),HSCT是有效的[160]。

5.3 與EB病毒感染后發(fā)生HLH相關(guān)的免疫缺陷 目前已發(fā)現(xiàn)與EBV-HLH相關(guān)的基因有PRF1、UNC13D、STX11和STXBP2。宿主細(xì)胞毒作用能夠迅速殺滅病毒感染的細(xì)胞、控制感染,但該過(guò)程受到影響后活化增殖的T/NK細(xì)胞不能清除病毒,而產(chǎn)生大量的細(xì)胞因子,引起HLH[161]。不同類型的HLH在不同的地區(qū)分布不同,在日本FHL2和FHL3的發(fā)病率分別約為55%和32%,F(xiàn)HL5約為6%;在西亞地區(qū),PRF1、UNC13D和STX11等突變占FHL患者的80%,STXBP2突變占10%;在朝鮮,大多數(shù)FHL患者有UNC13D突變;在北美,PRF1的突變最多見,其次是UNC13D和STXBP2[43]。

5.3.1PRF1缺陷 FHL2是原發(fā)型HLH中最常見的類型,占30%~40%,是PRF1基因突變引起的。PRF1基因編碼產(chǎn)生無(wú)活性的穿孔素前體,隨后在高爾基體內(nèi)加工為有活性的形式,成熟的穿孔素與顆粒酶儲(chǔ)存在NK細(xì)胞和CTLs特有的分泌性溶酶體中(溶解性顆粒)與靶細(xì)胞接觸后,溶解性顆粒釋放其內(nèi)容物,分泌的穿孔素介導(dǎo)靶細(xì)胞膜的溶解,使得顆粒酶進(jìn)入靶細(xì)胞,破壞靶細(xì)胞[161]。HLH患者中NK細(xì)胞的溶細(xì)胞作用和CTLs的細(xì)胞毒作用受損,不能控制病毒的擴(kuò)增,大量細(xì)胞因子的釋放,引起組織損傷[161]。穿孔素監(jiān)視病毒感染的細(xì)胞和異常轉(zhuǎn)化的細(xì)胞,PRF1基因突變導(dǎo)致穿孔素的減少或缺乏,易發(fā)生細(xì)胞增殖和淋巴組織增生[162]。部分患者體內(nèi)存在PRF1的錯(cuò)義突變,可以合成正常數(shù)量的突變PRF1,但是這一類蛋白沒(méi)有細(xì)胞毒作用[41]。PRF1突變的患者NK細(xì)胞功能受到抑制,故可以通過(guò)評(píng)價(jià)NK細(xì)胞的活性來(lái)協(xié)助診斷[163]。

5.3.2UNC13D缺陷UNC13D基因位于常染色體17q25,其突變引起FHL3。UNC13D編碼產(chǎn)生Munc13-4蛋白,在造血細(xì)胞表面大量表達(dá),參與囊泡啟動(dòng),促進(jìn)分泌型溶酶體胞吐。FHL3的患者,缺乏Munc13-4,影響溶細(xì)胞顆粒的胞吐[161]。Munc13-4與Rab27A結(jié)合,共同定位在CTLs和肥大細(xì)胞膜的分泌型溶酶體膜上,促進(jìn)血小板致密核心顆粒的分泌[161]。UNC13D突變大多是剪接突變,發(fā)生拼接錯(cuò)誤[164]。日本16例FHL患者中有6例發(fā)生UNC13D突變,F(xiàn)HL3可能占FHL的20%~25%[105]。

5.3.3STX11缺陷STX11基因位于常染色體6q24,編碼突觸融合蛋白11,該蛋白位于靶細(xì)胞膜可溶性N-乙基馬來(lái)酰亞胺敏感因子附著蛋白受體(t-SNARES)上[105]。突觸融合蛋白11在單核細(xì)胞、NK細(xì)胞和CTLs上表達(dá),參與囊泡的啟動(dòng)和膜融合過(guò)程,影響細(xì)胞毒作用[41]。STX11突變引起FHL4, FHL4患者中NK細(xì)胞的細(xì)胞毒作用缺陷,但CTLs的細(xì)胞毒作用正常[165]。目前在日本以及其他地區(qū)沒(méi)有發(fā)現(xiàn)STX11突變,該基因突變可能與種族有關(guān)[105]。

5.3.4STXBP缺陷 突觸結(jié)合蛋白2的編碼基因突變引起FHL5,該基因位于常染色體19p,編碼產(chǎn)生Munc18-2蛋白,參與調(diào)節(jié)胞內(nèi)運(yùn)輸、控制SNARE復(fù)合體裝配和分解,促使細(xì)胞毒顆粒的囊泡與漿細(xì)胞膜融合,釋放穿孔素1和顆粒酶等細(xì)胞毒性的顆粒,破壞病毒感染的細(xì)胞[166]。Munc18-2對(duì)突觸融合蛋白11起穩(wěn)定作用,STXBP2突變的淋巴細(xì)胞中突觸融合蛋白11的表達(dá)水平很低[41]。FHL5的發(fā)病年齡3天至17歲,平均3~15個(gè)月,多數(shù)患者都有肝臟損害,50%的患者有中樞神經(jīng)系統(tǒng)病變。有病例報(bào)告顯示CAEBV患者也發(fā)生STXBP突變,故該基因突變也可能導(dǎo)致嚴(yán)重的CAEBV[167]。

綜上所述,EBV感染臨床表現(xiàn)的多樣性與機(jī)體的免疫狀態(tài)密切相關(guān)。目前對(duì)EBV,缺乏有效的治療手段。探索機(jī)體發(fā)生難以控制的EBV感染的免疫機(jī)制,是當(dāng)前亟待進(jìn)行的工作。

[1]Sample J, Kieff EF, Kieff ED. Epstein-Barr virus types 1 and 2 have nearly identical LMP-1 transforming genes. J Gen Virol, 1994, 75 (Pt 10):2741-2746

[2]Odumade OA, Hogquist KA, Balfour HH Jr. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev, 2011, 24(1):193-209

[3]Palser AL, Grayson NE, White RE, et al. Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection. J Virol, 2015, 89(10):5222-5237

[4]Arvey A, Tempera I, Tsai K, et al. An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe, 2012, 12(2):233-245

[5]Reusch JA, Nawandar DM, Wright KL, et al. Cellular differentiation regulator BLIMP1 induces Epstein-Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters. J Virol, 2015, 89(3):1731-1743

[6]Seto E, Moosmann A, Gromminger S, et al. Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog, 2010, 6(8):e1001063

[7]Urquiza M, Lopez R, Patino H, et al. Identification of three gp350/220 regions involved in Epstein-Barr virus invasion of host cells. J Biol Chem, 2005, 280(42):35598-35605

[8]Murata T, Tsurumi T. Switching of EBV cycles between latent and lytic states. Rev Med Virol, 2014, 24(3):142-153

[9]Mansouri S, Pan Q, Blencowe BJ, et al. Epstein-Barr virus EBNA1 protein regulates viral latency through effects on let-7 microRNA and dicer. J Virol, 2014, 88(19):11166-11177

[10]Grimm T, Schneider S, Naschberger E, et al. EBV latent membrane protein-1 protects B cells from apoptosis by inhibition of BAX. Blood, 2005, 105(8):3263-3269

[11]Imadome K. The clinical condition and diagnosis of EBV-T/NK-LPD (CAEBV, EBV-HLH etc.). Rinsho Ketsueki, 2013, 54(10):1992-1998

[12]Laichalk LL, Thorley-Lawson DA. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol, 2005, 79(2):1296-1307

[13]Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer, 2016, 16(12):789-802

[14]McKenzie J, El-Guindy A. Epstein-Barr Virus Lytic Cycle Reactivation. Curr Top Microbiol Immunol, 2015, 391:237-261

[15]Hutt-Fletcher LM. Epstein-Barr virus entry. J Virol, 2007, 81(15):7825-7832

[16]Hoshino Y, Nishikawa K, Ito Y, et al. Kinetics of Epstein-Barr virus load and virus-specific CD8+ T cells in acute infectious mononucleosis. J Clin Virol, 2011, 50(3):244-246

[17]Taylor GS, Long HM, Brooks JM, et al. The immunology of Epstein-Barr virus-induced disease. Annu Rev Immunol, 2015, 33:787-821

[18]Jayasooriya S, de Silva TI, Njie-jobe J, et al. Early virological and immunological events in asymptomatic Epstein-Barr virus infection in African children. PLoS Pathog, 2015, 11(3):e1004746

[19]Dunmire SK, Hogquist KA, Balfour HH. Infectious mononucleosis. Curr Top Microbiol Immunol, 2015, 390(Pt 1):211-240

[20]Balfour HJ, Odumade OA, Schmeling DO, et al. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis, 2013, 207(1):80-88

[21]Hoshino Y, Morishima T, Kimura H, et al. Antigen-driven expansion and contraction of CD8+-activated T cells in primary EBV infection. J Immunol, 1999, 163(10):5735-5740

[22]Hoshino Y, Nishikawa K, Ito Y, et al. Kinetics of Epstein-Barr virus load and virus-specific CD8+ T cells in acute infectious mononucleosis. J Clin Virol, 2011, 50(3):244-246

[23]Long HM, Chagoury OL, Leese AM, et al. MHC II tetramers visualize human CD4+ T cell responses to Epstein-Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. J Exp Med, 2013, 210(5):933-949

[24]Chijioke O, Muller A, Feederle R, et al. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep, 2013, 5(6):1489-1498

[25]Selin LK, Brehm MA, Naumov YN, et al. Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. Immunol Rev, 2006, 211:164-181

[26]Maeda A, Sato T, Wakiguchi H. Epidemiology of Epstein-Barr virus (EBV) infection and EBV-associated diseases. Nihon Rinsho, 2006, 64 Suppl 3:609-612

[27]Fujiwara S, Kimura H, Imadome K, et al. Current research on chronic active Epstein-Barr virus infection in Japan. Pediatr Int, 2014, 56(2):159-166

[28]Okano M, Kawa K, Kimura H, et al. Proposed guidelines for diagnosing chronic active Epstein-Barr virus infection. Am J Hematol, 2005, 80(1):64-69

[29]Kikuta H, Taguchi Y, Tomizawa K, et al. Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature, 1988, 333(6172):455-457

[30]Eligio P, Delia R, Valeria G. EBV chronic infections. Mediterr J Hematol Infect Dis, 2010, 2(1):e2010022

[31]Kawano Y, Iwata S, Kawada J, et al. Plasma viral microRNA profiles reveal potential biomarkers for chronic active Epstein-Barr virus infection. J Infect Dis, 2013, 208(5):771-779

[32]Yamashita N, Kimura H, Morishima T. Virological aspects of Epstein-Barr virus infections. Acta Med Okayama, 2005, 59(6):239-246

[33]Kimura H, Hoshino Y, Kanegane H, et al. Clinical and virologic characteristics of chronic active Epstein-Barr virus infection. Blood, 2001, 98(2):280-286

[34]Kawa K, Sawada A, Sato M, et al. Excellent outcome of allogeneic hematopoietic SCT with reduced-intensity conditioning for the treatment of chronic active EBV infection. Bone Marrow Transplant, 2011, 46(1):77-83

[35]Sato E, Ohga S, Kuroda H, et al. Allogeneic hematopoietic stem cell transplantation for Epstein-Barr virus-associated T/natural killer-cell lymphoproliferative disease in Japan. Am J Hematol, 2008, 83(9):721-727

[36]Arai A, Nogami A, Imadome K, et al. Sequential monitoring of serum IL-6, TNF-alpha, and IFN-gamma levels in a CAEBV patient treated by plasma exchange and immunochemotherapy. Int J Hematol, 2012, 96(5):669-673

[37]Henter JI, Horne A, Arico M, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer, 2007, 48(2):124-131

[38]Jordan MB, Filipovich AH. Hematopoietic cell transplantation for hemophagocytic lymphohistiocytosis: a journey of a thousand miles begins with a single (big) step. Bone Marrow Transplant, 2008, 42(7):433-437

[39]Ishii E, Ohga S, Imashuku S, et al. Nationwide survey of hemophagocytic lymphohistiocytosis in Japan. Int J Hematol, 2007, 86(1):58-65

[40]Qiang Q, Zhengde X, Shuang Y, et al. Prevalence of coinfection in children with Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis. J Pediatr Hematol Oncol, 2012, 34(2):e45-e48

[41]Usmani GN, Woda BA, Newburger PE. Advances in understanding the pathogenesis of HLH. Br J Haematol, 2013, 161(5):609-622

[42]Yang X, Miyawaki T, Kanegane H. SAP and XIAP deficiency in hemophagocytic lymphohistiocytosis. Pediatr Int, 2012, 54(4):447-454

[43]Ishii E. Hemophagocytic Lymphohistiocytosis in Children: Pathogenesis and Treatment. Front Pediatr, 2016, 4:47

[44]Petrova M, Muhtarova M, Nikolova M, et al. Chronic Epstein-Barr virus-related hepatitis in immunocompetent patients. World J Gastroenterol, 2006, 12(35):5711-5716

[45]Danhaive O, Caniglia M, Devito R, et al. Neonatal liver failure and haemophagocytic lymphohistiocytosis caused by a new perforin mutation. Acta Paediatr, 2010, 99(5):778-780

[46]Tsunoda T, Inui A, Iwasawa K, et al. Acute liver dysfunction not resulting from hepatitis viruses in immunocompetent children. Pediatr Int, 2017, 59(5):551-556

[47]Lee JI, Lee SW, Han NI, et al. A case of severe chronic active Epstein-Barr virus infection with aplastic anemia and hepatitis. Korean J Gastroenterol, 2016, 67(1):39-43

[48]Sakai M, Togitani K, Tsukuda T, et al. Young adult onset systemic Epstein-Barr virus-positive T-cell lymphoproliferative disorders of childhood. Rinsho Ketsueki, 2015, 56(5):501-505

[49]Tsurumi T, Fujita M, Kudoh A. Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol, 2005, 15(1):3-15

[50]Iskra S, Kalla M, Delecluse HJ, et al. Toll-like receptor agonists synergistically increase proliferation and activation of B cells by epstein-barr virus. J Virol, 2010, 84(7):3612-3623

[51]Hislop AD, Taylor GS. T-Cell Responses to EBV. Curr Top Microbiol Immunol, 2015, 391:325-353

[52]Rickinson AB, Long HM, Palendira U, et al. Cellular immune controls over Epstein-Barr virus infection: new lessons from the clinic and the laboratory. Trends Immunol, 2014, 35(4):159-169

[53]Juno JA, van Bockel D, Kent SJ, et al. Cytotoxic CD4 T Cells-Friend or Foe during Viral Infection? Front Immunol, 2017, 8:19

[54]Haigh TA, Lin X, Jia H, et al. EBV latent membrane proteins (LMPs) 1 and 2 as immunotherapeutic targets: LMP-specific CD4+ cytotoxic T cell recognition of EBV-transformed B cell lines. J Immunol, 2008, 180(3):1643-1654

[55]Long HM, Haigh TA, Gudgeon NH, et al. CD4+T-cell responses to Epstein-Barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines. J Virol, 2005, 79(8):4896-4907

[56]Martin HJ, Lee JM, Walls D, et al. Manipulation of the toll-like receptor 7 signaling pathway by Epstein-Barr virus. J Virol, 2007, 81(18):9748-9758

[57]Merad M, Sathe P, Helft J, et al. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol, 2013, 31:563-604

[58]Severa M, Giacomini E, Gafa V, et al. EBV stimulates TLR- and autophagy-dependent pathways and impairs maturation in plasmacytoid dendritic cells: implications for viral immune escape. Eur J Immunol, 2013, 43(1):147-158

[59]Woellmer A, Arteaga-Salas JM, Hammerschmidt W. BZLF1 governs CpG-methylated chromatin of Epstein-Barr virus reversing epigenetic repression. PLoS Pathog, 2012, 8(9):e1002902

[60]Quan TE, Roman RM, Rudenga BJ, et al. Epstein-Barr virus promotes interferon-alpha production by plasmacytoid dendritic cells. Arthritis Rheum, 2010, 62(6):1693-1701

[61]Munz C. Dendritic cells during Epstein Barr virus infection. Front Microbiol, 2014, 5:308

[62]Lünemann A, Vanoaica LD, Azzi T, et al. A distinct subpopulation of human natural killer cells restricts B cell transformation by the Epstein-Barr virus. J Immunol, 2013, 191(10):4989-4995

[63]Iwakiri D, Zhou L, Samanta M, et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med, 2009, 206(10):2091-2099

[64]Carrega P, Ferlazzo G. Natural killer cell distribution and trafficking in human tissues. Front Immunol, 2012, 3:347

[65]Freud AG, Yu J, Caligiuri MA. Human natural killer cell development in secondary lymphoid tissues. Semin Immunol, 2014, 26(2):132-137

[66]Azzi T, Lunemann A, Murer A, et al. Role for early-differentiated natural killer cells in infectious mononucleosis. Blood, 2014, 124(16):2533-2543

[67]Chijioke O, Müller A, Feederle R, et al. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep, 2013, 5(6):1489-1498

[68]Hislop AD. Early virological and immunological events in Epstein-Barr virus infection. Curr Opin Virol, 2015, 15(12):75-79

[69]Zauner L, Nadal D. Understanding TLR9 action in Epstein-Barr virus infection. Front Biosci (Landmark Ed), 2012, 17:1219-1231

[70]Younesi V, Nikzamir H, Yousefi M, et al. Epstein Barr virus inhibits the stimulatory effect of TLR7/8 and TLR9 agonists but not CD40 ligand in human B lymphocytes. Microbiol Immunol, 2010, 54(9):534-541

[71]Martin HJ, Lee JM, Walls D, et al. Manipulation of the toll-like receptor 7 signaling pathway by Epstein-Barr virus. J Virol, 2007, 81(18):9748-9758

[72]Samanta M, Iwakiri D, Takada K. Epstein-Barr virus-encoded small RNA induces IL-10 through RIG-I-mediated IRF-3 signaling. Oncogene, 2008, 27(30):4150-4160

[73]Fathallah I, Parroche P, Gruffat H, et al. EBV latent membrane protein 1 is a negative regulator of TLR9. J Immunol, 2010, 185(11):6439-6447

[74]Zuo J, Thomas W, van Leeuwen D, et al. The DNase of gammaherpesviruses impairs recognition by virus-specific CD8+T cells through an additional host shutoff function. J Virol, 2008, 82(5):2385-2393

[75]van Gent M, Griffin BD, Berkhoff EG, et al. EBV lytic-phase protein BGLF5 contributes to TLR9 downregulation during productive infection. J Immunol, 2011, 186(3):1694-1702

[76]Vallabhapurapu S, Karin M. Regulation and Function of NF-κB Transcription Factors in the Immune System. Annu Rev Immunol, 2009, 27:693-733

[77]Shkoda A, Town JA, Griese J, et al. The germinal center kinase TNIK is required for canonical NF-kappaB and JNK signaling in B-cells by the EBV oncoprotein LMP1 and the CD40 receptor. PLoS Biol, 2012, 10(8):e1001376

[78]Chang LS, Wang JT, Doong SL, et al. Epstein-Barr virus BGLF4 kinase downregulates NF-kappaB transactivation through phosphorylation of coactivator UXT. J Virol, 2012, 86(22):12176-12186

[79]van Gent M, Braem SG, de Jong A, et al. Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog, 2014, 10(2):e1003960

[80]Buisson M, Geoui T, Flot D, et al. A bridge crosses the active-site canyon of the Epstein-Barr virus nuclease with DNase and RNase activities. J Mol Biol, 2009, 391(4):717-728

[81]Rowe M, Glaunsinger B, Van LD, et al. Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci USA. 2007, 104(9):3366-3371

[82]Horst D, Favaloro V, Vilardi F, et al. EBV protein BNLF2a exploits host tail-anchored protein integration machinery to inhibit TAP. J Immunol, 2011, 186(6):3594-3605

[83]Croft NP, Shannon-Lowe C, Bell AI, et al. Stage-specific inhibition of MHC class I presentation by the Epstein-Barr virus BNLF2a protein during virus lytic cycle. PLoS Pathog, 2009, 5(6):e1000490

[84]Paulsen SJ, Rosenkilde MM, Eugen-Olsen J, et al. Epstein-Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor. J Virol, 2005, 79(1):536-546

[85]Zuo J, Currin A, Griffin BD, et al. The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog, 2009, 5(1):e1000255

[86]Kim SY, Kim JE, Won J, et al. Characterization of the rapamycin-inducible EBV LMP1 activation system. J Microbiol, 2015, 53(10):732-738

[87]Xu D, Brumm K, Zhang L. The latent membrane protein 1 of Epstein-Barr virus (EBV) primes EBV latency cells for type I interferon production. J Biol Chem, 2006, 281(14):9163-9169

[88]Ning S, Pagano JS. The A20 deubiquitinase activity negatively regulates LMP1 activation of IRF7. J Virol, 2010, 84(12):6130-6138

[89]Geiger TR, Martin JM. The Epstein-Barr virus-encoded LMP-1 oncoprotein negatively affects Tyk2 phosphorylation and interferon signaling in human B cells. J Virol, 2006, 80(23):11638-11650

[90]Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol, 2008, 180(9):5771-5777

[91]Hu Z, Usherwood EJ. Immune escape of γ-herpesviruses from adaptive immunity. Rev Med Virol, 2014, 24(6):365-378

[92]Ahmed W, Philip PS, Tariq S, et al. Epstein-Barr virus-encoded small RNAs (EBERs) are present in fractions related to exosomes released by EBV-transformed cells. PLoS One, 2014, 9(6):e99163

[93]Lee N, Pimienta G, Steitz JA. AUF1/hnRNP D is a novel protein partner of the EBER1 noncoding RNA of Epstein-Barr virus. RNA, 2012, 18(11):2073-2082

[94]White EJ, Brewer G, Wilson GM. Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. Biochim Biophys Acta, 2013, 1829(6-7):680-688

[95]Lee N, Moss WN, Yario TA, et al. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell, 2015, 160(4):607-618

[96]Klinke O, Feederle R, Delecluse HJ. Genetics of Epstein-Barr virus microRNAs. Semin Cancer Biol, 2014, 26:52-59

[97]Qiu J, Thorley-Lawson DA. EBV microRNA BART 18-5p targets MAP3K2 to facilitate persistence in vivo by inhibiting viral replication in B cells. Proc Natl Acad Sci U S A, 2014, 111(30):11157-11162

[98]Kalla M, Hammerschmidt W. Human B cells on their route to latent infection-early but transient expression of lytic genes of Epstein-Barr virus. Eur J Cell Biol, 2012, 91(1):65-69

[99]Xia T, O'Hara A, Araujo I, et al. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res, 2008, 68(5):1436-1442

[100]Haneklaus M, Gerlic M, Kurowska-Stolarska M, et al. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. J Immunol, 2012, 189(8):3795-3799

[101]Feederle R, Linnstaedt SD, Bannert H, et al. A Viral microRNA Cluster Strongly Potentiates the Transforming Properties of a Human Herpesvirus. Plos Pathogens, 2011, 7(2):e1001294

[102]Shinozaki-Ushiku A, Kunita A, Isogai M, et al. Profiling of virus-encoded microRNAs in Epstein-Barr virus-associated gastric carcinoma and their roles in gastric carcinogenesis. J Virol, 2015, 89(10):5581-5591

[103]Skalsky RL, Kang D, Linnstaedt SD, et al. Evolutionary conservation of primate lymphocryptovirus microRNA targets. J Virol, 2014, 88(3):1617-1635

[104]Wada T, Kanegane H, Ohta K, et al. Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine, 2014, 65(1):74-78

[105]Gholam C, Grigoriadou S, Gilmour KC, et al. Familial haemophagocytic lymphohistiocytosis: advances in the genetic basis, diagnosis and management. Clin Exp Immunol, 2011, 163(3):271-283

[106]Pachlopnik Schmid J, Canioni D, Moshous D, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood, 2011, 117(5):1522-1529

[107]Kanegane H, Yang X, Zhao M, et al. Clinical features and outcome of X-linked lymphoproliferative syndrome type 1 (SAP deficiency) in Japan identified by the combination of flow cytometric assay and genetic analysis. Pediatr Allergy Immunol, 2012, 23(5):488-493

[108]Milone MC, Tsai DE, Hodinka RL, et al. Treatment of primary Epstein-Barr virus infection in patients with X-linked lymphoproliferative disease using B-cell-directed therapy. Blood, 2005, 105(3):994-996

[109]Speckmann C, Lehmberg K, Albert MH, et al. X-linked inhibitor of apoptosis (XIAP) deficiency: the spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis. Clin Immunol, 2013, 149(1):133-141

[110]Cohen JI. Primary immunodeficiencies associated with EBV disease. Curr Top Microbiol Immunol, 2015, 390(Pt 1):241-265

[111]Lopez-Granados E, Stacey M, Kienzler AK, et al. A mutation in X-linked inhibitor of apoptosis (G466X) leads to memory inflation of Epstein-Barr virus-specific T cells. Clin Exp Immunol, 2014, 178(3):470-482

[112]Krieg A, Correa RG, Garrison JB, et al. XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci U S A, 2009, 106(34):14524-14529

[113]Basiaga ML, Weiss PF, Behrens EM. BIRC4 Mutation: An Important Rare Cause of Uveitis. J Clin Rheumatol, 2015, 21(8):444-447

[114]Bienemann K, Borkhardt A, Klapper W, et al. High incidence of Epstein-Barr virus (EBV)-positive Hodgkin lymphoma and Hodgkin lymphoma-like B-cell lymphoproliferations with EBV latency profile 2 in children with interleukin-2-inducible T-cell kinase deficiency. Histopathology, 2015, 67(5):607-616

[115]Ghosh S, Bienemann K, Boztug K, et al. Interleukin-2-inducible T-cell kinase (ITK) deficiency - clinical and molecular aspects. J Clin Immunol, 2014, 34(8):892-899

[116]Coquet JM, Middendorp S, van der Horst G, et al. The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates associated autoimmunity. Immunity, 2013, 38(1):53-65

[117]Denoeud J, Moser M. Role of CD27/CD70 pathway of activation in immunity and tolerance. J Leukoc Biol, 2011, 89(2):195-203

[118]Izawa K, Martin E, Soudais C, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med, 2017, 214(1):73-89

[119]van Montfrans JM, Hoepelman AI, Otto S, et al. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol, 2012, 129(3):787-793

[120]Salzer E, Daschkey S, Choo S, et al. Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. Haematologica, 2013, 98(3):473-478

[121]Abolhassani H, Edwards ES, Ikinciogullari A, et al. Combined immunodeficiency and Epstein-Barr virus-induced B cell malignancy in humans with inherited CD70 deficiency. J Exp Med, 2017, 214(1):91-106

[122]Jacobs J, Deschoolmeester V, Zwaenepoel K, et al. CD70: An emerging target in cancer immunotherapy. Pharmacol Ther, 2015, 155:1-10

[123]Li FY, Lenardo MJ, Chaigne-Delalande B. Loss of MAGT1 abrogates the Mg2+flux required for T cell signaling and leads to a novel human primary immunodeficiency. Magnes Res, 2011, 24(3):S109-114

[124]Ravell J, Chaigne-Delalande B, Lenardo M. X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia disease: a combined immune deficiency with magnesium defect. Curr Opin Pediatr, 2014, 26(6):713-719

[125]Chaigne-Delalande B, Li FY, O'Connor GM, et al. Mg2+regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science, 2013, 341(6142):186-191

[126]Brigida I, Chiriaco M, Di Cesare S, et al. Large Deletion of MAGT1 Gene in a Patient with Classic Kaposi Sarcoma, CD4 Lymphopenia, and EBV Infection. J Clin Immunol, 2017,37(1):32-35

[127]Alangari A, Alsultan A, Adly N, et al. LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol, 2012, 130(2):481-488

[128]Bakhtiar S, Gámez-Díaz L, Jarisch A, et al. Treatment of infantile inflammatory bowel disease and autoimmunity by allogeneic stem cell transplantation in LPS-responsive beige-like anchor deficiency. Front Immunol, 2017, 8: 52

[129]Hou TZ, Verma N, Wanders J, et al. Identifying functional defects in patients with immune dysregulation due to LRBA and CTLA-4 mutations. Blood, 2017, 129(11):1458-1468

[130]Lo B, Zhang K, Lu W, et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science, 2015, 349(6246):436-440

[131]Lee S, Moon JS, Lee CR, et al. Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4. J Allergy Clin Immunol, 2016, 137(1):327-330

[132]Spender LC, Lucchesi W, Bodelon G, et al. Cell target genes of Epstein-Barr virus transcription factor EBNA-2: induction of the p55alpha regulatory subunit of PI3-kinase and its role in survival of EREB2.5 cells. J Gen Virol, 2006, 87(10):2859-2867

[133]Crank MC, Grossman JK, Moir S, et al. Mutations in PIK3CD can cause hyper IgM syndrome (HIGM) associated with increased cancer susceptibility. J Clin Immunol, 2014, 34(3):272-276

[134]Angulo I, Vadas O, Garcon F, et al. Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science, 2013, 342(6160):866-871

[135]Zou J, Duan X, Zheng G, et al. A novel PIK3CD C896T mutation detected in bilateral sudden sensorineural hearing loss using next generation sequencing: An indication of primary immunodeficiency. J Otol, 2016, 11(2):78-83

[136]Lucas CL, Kuehn HS, Zhao F, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol. 2014, 15(1):88-97

[137]Coulter TI, Chandra A, Bacon CM, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study. J Allergy Clin Immunol, 2017, 139(2):597-606

[138]Lucas CL, Zhang Y, Venida A, et al. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J Exp Med, 2014, 211(13):2537-2547

[139]Deau M, Heurtier L, Frange P, et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest, 2014, 124(9):3923-3928

[140]Chinen J, Notarangelo LD, Shearer WT. Advances in basic and clinical immunology in 2014. J Allergy Clin Immunol, 2015, 135(5):1132-1141

[141]Martin E, Palmic N, Sanquer S, et al. CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature, 2014, 510(7504):288-292

[142]Du X, Shi H, Li J, et al. Mst1/Mst2 regulate development and function of regulatory T cells through modulation of Foxo1/Foxo3 stability in autoimmune disease. J Immunol, 2014, 192(4):1525-1535

[143]Abdollahpour H, Appaswamy G, Kotlarz D, et al. The phenotype of human STK4 deficiency. Blood, 2012, 119(15):3450-3457

[144]Nehme NT, Pachlopnik SJ, Debeurme F, et al. MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood, 2012, 119(15):3450-3468

[145]Svobodova T, Mejstrikova E, Salzer U, et al. Diffuse parenchymal lung disease as first clinical manifestation of GATA-2 deficiency in childhood. BMC Pulm Med, 2015, 15:8

[146]Palendira U, Rickinson AB. Primary immunodeficiencies and the control of Epstein-Barr virus infection. Ann N Y Acad Sci, 2015, 1356(1):22-44

[147]Parta M, Cuellar-Rodriguez J, Freeman AF, et al. Resolution of multifocal Epstein-Barr virus-related mooth muscle tumor in a patient with GATA2 deficiency following hematopoietic stem cell transplantation. J Clin Immunol, 2017, 37(1):61-66

[148]Spinner MA, Sanchez LA, Hsu AP, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood, 2014, 123(6):809-821

[149]Casey JP, Nobbs M, McGettigan P, et al. Recessive mutations in MCM4 /PRKDC cause a novel syndrome involving a primary immunodeficiency and a disorder of DNA repair. J Med Genet, 2012, 49(4):242-245

[150]Tatsumi R, Ishimi Y. An MCM4 mutation detected in cancer cells affects MCM4/6/7 complex formation. J Biochem, 2017, 161(3):259-268

[151]Jouanguy E, Gineau L, Cottineau J, et al. Inborn errors of the development of human natural killer cells. Curr Opin Allergy Clin Immunol, 2013, 13(6):589-595

[152]Gineau L, Cognet C, Kara N, et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest, 2012, 122(3):821-832

[153]Clemenceau B, Vivien R, Berthome M, et al. Effector memory alphabeta T lymphocytes can express FcgammaRIIIa and mediate antibody-dependent cellular cytotoxicity. J Immunol, 2008, 180(8):5327-5334

[154]Brohl AS, Stinson JR, Su HC, et al. Germline CARD11 mutation in a patient with severe congenital B cell lymphocytosis. J Clin Immunol, 2015, 35(1):32-46

[155]Nichele I, Zamo A, Bertolaso A, et al. VR09 cell line: an EBV-positive lymphoblastoid cell line with in vivo characteristics of diffuse large B cell lymphoma of activated B-cell type. PLoS One, 2012, 7(12):e52811

[156]Outinen T, Syrj?nen J, Rounioja S, et al. Constant B cell lymphocytosis since early age in a patient with CARD11 mutation: A 20-year follow-up. Clin Immunol, 2016, 165:19-20

[157]Gebauer N, Gebauer J, Hardel TT, et al. Prevalence of targetable oncogenic mutations and genomic alterations in Epstein-Barr virus-associated diffuse large B-cell lymphoma of the elderly. Leuk Lymphoma, 2015, 56(4):1100-1106

[158]Yee CS, Massaad MJ, Bainter W, et al. Recurrent viral infections associated with a homozygous CORO1A mutation that disrupts oligomerization and cytoskeletal association. J Allergy Clin Immunol, 2016, 137(3):879-888

[159]Moshous D, Martin E, Carpentier W, et al. Whole-exome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol, 2013, 131(6):1594-1603

[160]Punwani D, Pelz B, Yu J, et al. Coronin-1A: Immune deficiency in humans and mice. J Clin Immunol, 2015, 35(2):100-107

[161]Marcenaro S, Gallo F, Martini S, et al. Analysis of natural killer-cell function in familial hemophagocytic lymphohistiocytosis (FHL): defective CD107a surface expression heralds Munc13-4 defect and discriminates between genetic subtypes of the disease. Blood, 2006, 108(7):2316-2323

[162]Ding Q, Yang LY. Perforin gene mutations in 77 Chinese patients with lymphomas. World J Emerg Med, 2013, 4(2):128-32

[163]Del Giudice E, Savoldi G, Notarangelo LD, et al. Acute inflammatory demyelinating polyradiculoneuropathy associated with perforin-deficient familial haemophagocytic lymphohistiocytosis. Acta Paediatr, 2003, 92(3):398-401

[164]Zhizhuo H, Junmei X, Yuelin S, et al. Screening the PRF1, UNC13D, STX11, SH2D1A, XIAP, and ITK gene mutations in Chinese children with Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer, 2012, 58(3):410-414

[165]Macartney CA, Weitzman S, Wood SM, et al. Unusual functional manifestations of a novel STX11 frameshift mutation in two infants with familial hemophagocytic lymphohistiocytosis type 4 (FHL4). Pediatr Blood Cancer, 2011, 56(4):654-657

[166]Filipovich AH. The expanding spectrum of hemophagocytic lymphohistiocytosis. Curr Opin Allergy Clin Immunol, 2011, 11(6):512-516

[167]Cohen JI, Niemela JE, Stoddard JL, et al. Late-onset severe chronic active EBV in a patient for five years with mutations in STXBP2 (MUNC18-2) and PRF1 (perforin 1). J Clin Immunol, 2015, 35(5):445-448

(本文編輯:張崇凡)

10.3969/j.issn.1673-5501.2017.03.012

復(fù)旦大學(xué)附屬兒科醫(yī)院臨床免疫科 上海,201102

孫金嶠,E-mail:jinqiaosun@sina.com

2017-06-01

2017-06-22)

猜你喜歡
活化細(xì)胞因子編碼
無(wú)Sn-Pd活化法制備PANI/Cu導(dǎo)電織物
生活中的編碼
成人HPS臨床特征及多種細(xì)胞因子水平與預(yù)后的相關(guān)性
抗GD2抗體聯(lián)合細(xì)胞因子在高危NB治療中的研究進(jìn)展
論非物質(zhì)文化遺產(chǎn)“活化”傳承
《全元詩(shī)》未編碼疑難字考辨十五則
小學(xué)生活化寫作教學(xué)思考
如何積累小學(xué)生活化作文素材
子帶編碼在圖像壓縮編碼中的應(yīng)用
Genome and healthcare