馮詩海,李紅,蔣佳俊,3,雷云,牛元哲,楊銳,劉永杰
1.大陸動(dòng)力學(xué)國家重點(diǎn)實(shí)驗(yàn)室 西北大學(xué),西安 710069 2.甘肅有色地質(zhì)勘查局天水礦產(chǎn)勘查院,甘肅天水 741025 3.中國科學(xué)院地球化學(xué)研究所,貴陽 550081
華北秦皇島地區(qū)柳江盆地馬家溝組碳酸鹽巖多期白云化作用
馮詩海1,2,李紅1,蔣佳俊1,3,雷云1,牛元哲1,楊銳1,劉永杰1
1.大陸動(dòng)力學(xué)國家重點(diǎn)實(shí)驗(yàn)室 西北大學(xué),西安 710069 2.甘肅有色地質(zhì)勘查局天水礦產(chǎn)勘查院,甘肅天水 741025 3.中國科學(xué)院地球化學(xué)研究所,貴陽 550081
華北秦皇島地區(qū)的中奧陶統(tǒng)馬家溝組以廣泛發(fā)育海相白云質(zhì)灰?guī)r、灰質(zhì)白云巖和白云巖為特征。在石門寨奧陶系亮甲山剖面,馬家溝組自下而上識(shí)別出四類碳酸鹽巖:含白云石泥晶灰?guī)r(類型I)、細(xì)—粉晶白云巖(類型II)、“麥粒狀”細(xì)—粉晶白云巖(類型III)和鈣質(zhì)泥晶白云巖(類型IV)。類型I主要由泥晶方解石構(gòu)成,含三葉蟲和介形類生物碎片,少量自形的粉晶白云石呈“漂浮狀”分布于壓溶縫合線內(nèi),基質(zhì)中少見。巖相學(xué)和地球化學(xué)特征表明此類白云石形成于埋藏成巖期壓溶作用之后,壓溶縫為云化流體提供通道,壓溶縫內(nèi)泥質(zhì)組分的成巖轉(zhuǎn)化可能為白云化作用提供了部分鎂離子來源;類型II白云巖主要由自形、半自形不等粒粉晶—細(xì)晶白云石構(gòu)成,白云石普遍具有“霧心亮邊”,在背散射和陰極發(fā)光照片中白云石可見清晰的多圈亮、暗相間環(huán)帶。環(huán)帶和帶間主量元素的差異表明白云石經(jīng)歷了埋藏成巖期多期成巖流體的改造;類型III白云巖中白云石呈單向延伸的“米粒”或“麥?!睜?,粉晶為主,晶體長軸方向具有垂直結(jié)晶軸c的特點(diǎn),白云石具富鐵、貧錳、鍶的特點(diǎn),長、短對(duì)角線上鈣、鎂離子的微小差異以及陰極發(fā)光特征表明此類白云石也經(jīng)歷了埋藏成巖期的改造,成巖流體使白云石發(fā)生微溶作用可能是導(dǎo)致白云石晶體單向延伸且光學(xué)性質(zhì)固定取向的主要原因;類型IV為鈣質(zhì)泥晶球粒白云巖,含石膏假晶,白云石多為微晶和微亮晶,球粒也多由微晶白云石構(gòu)成,溶孔發(fā)育,但全被亮晶貧鐵方解石充填,此類巖石的白云化作用發(fā)生得很早,可能形成于潮上帶澙湖或潮坪環(huán)境。綜上所述,研究區(qū)馬家溝組碳酸鹽巖具有經(jīng)歷了不同類型及多期白云化作用的特點(diǎn)。自剖面底部向頂部,白云石的有序度由0.8降至0.47,而去云化作用則呈現(xiàn)逐漸增強(qiáng)的趨勢(shì)。
中奧陶統(tǒng)馬家溝組;壓溶縫合線;麥粒狀白云石;埋藏白云化作用;華北秦皇島地區(qū)
“白云石(白云巖)問題”是地球科學(xué)領(lǐng)域長期存在爭議的熱點(diǎn)問題之一。由于白云石礦物低溫合成的動(dòng)力學(xué)障礙,絕大多數(shù)古代白云巖都被認(rèn)為屬于交代成因。上世紀(jì)六十年代起,人們通過對(duì)現(xiàn)代潮上帶蒸發(fā)鹽沼、高鹽度澙湖及某些潮下帶環(huán)境中白云石化作用的觀察及與古代白云巖的對(duì)比研究建立出了與蒸發(fā)作用有關(guān)的模式(如準(zhǔn)同生白云巖模式、薩布哈模式、庫龍模式等)[1-5]、滲透回流模式[6]、海水白云石化模式[7]、埋藏白云化模式[8-9]、熱液白云化模式[10-11]等來解釋古代白云巖的成因。這些經(jīng)典模式為研究地質(zhì)記錄中白云巖的成因提供了依據(jù),同時(shí)也反映出不同條件和環(huán)境下白云巖化作用的復(fù)雜性和多解性。特定地質(zhì)歷史時(shí)期的白云巖在漫長的沉積—成巖演化史中由于地質(zhì)背景和參與云化作用的流體性質(zhì)的改變,常常會(huì)受到多期成巖流體的改造。近二十年來,盡管微生物活動(dòng)參與白云石的低溫沉淀取得了重要進(jìn)展,然而在白云石礦物的合成以及地質(zhì)歷史時(shí)期厚層白云巖的成因等方面仍有許多值得關(guān)注的問題尚未得到圓滿解決[12-21]。
中國西北、華北和東北地區(qū)廣泛發(fā)育中奧陶統(tǒng)馬家溝組[22-25],以厚層粉、細(xì)晶白云巖、含燧石白云巖為特點(diǎn),此套白云巖也是鄂爾多斯盆地下古生界重要的產(chǎn)氣層段。前人對(duì)于鄂爾多斯盆地馬家溝組白云巖做了大量豐富而細(xì)致的研究[25-33],對(duì)該區(qū)白云巖的分類、成因、成巖作用、儲(chǔ)集層性質(zhì)及其影響因素已有深入見解,然而針于華北地區(qū)東部馬家溝組白云巖的研究相對(duì)匱乏[22,34]。本文以秦皇島柳江盆地石門寨亮甲山剖面中奧陶統(tǒng)馬家溝組白云巖為研究對(duì)象,擬通過詳細(xì)的巖石學(xué)及地球化學(xué)分析對(duì)該區(qū)白云巖化機(jī)理尤其是埋藏成巖期流體對(duì)白云石晶體的改造進(jìn)行探討,以期為我國早古生代白云巖成因研究提供實(shí)例。
秦皇島地區(qū)柳江盆地位于華北板塊東北緣,是以古生界向斜為基礎(chǔ)并受中—新生代構(gòu)造運(yùn)動(dòng)改造的復(fù)合盆地,其構(gòu)造演化基本與華北地臺(tái)一致,總體演化特征表現(xiàn)為:基底形成、蓋層發(fā)育和強(qiáng)烈活動(dòng)三個(gè)演化階段,即自中太古代—早元古代陸殼形成—成熟—拼合期、中太古代—中生代蓋層發(fā)育期、印支和燕山期褶皺侵入活動(dòng)和喜山期強(qiáng)烈差異升降的復(fù)雜演化過程[35-36]。柳江盆地由邊緣到中央完整地保存著從前寒武紀(jì)到中生代沉積地層(圖1),沉積環(huán)境也具有由海相向陸相演化的特點(diǎn),由于地層連續(xù)、界限清楚、構(gòu)造簡單,是我國北方理想的野外地質(zhì)教學(xué)和實(shí)習(xí)基地[38]。
柳江盆地奧陶系自下而上發(fā)育下奧陶統(tǒng)冶里組、亮甲山組和中奧陶統(tǒng)馬家溝組,為海相碳酸鹽巖沉積,上奧陶統(tǒng)缺失。奧陶系與下伏上寒武統(tǒng)鳳山組為整合接觸,與上覆上石炭統(tǒng)本溪組為假整合接觸。馬家溝組主要由淺?!鄙檄h(huán)境的暗灰色白云質(zhì)灰?guī)r、白云巖、含燧石結(jié)核豹皮狀白云質(zhì)灰?guī)r構(gòu)成,底部以含燧石條帶黃灰色白云質(zhì)灰?guī)r與下伏亮甲山組灰色灰?guī)r整合接觸。
2.1 剖面概述及取樣
研究剖面位于柳江盆地石門寨以西亮甲山,發(fā)育下奧陶統(tǒng)冶里組、亮甲山組和中奧陶統(tǒng)馬家溝組。冶里組發(fā)育灰色泥晶灰?guī)r與灰色竹葉狀礫屑灰?guī)r的互層沉積,偶夾灰綠色、灰黑色鈣質(zhì)泥巖,礫屑多平行層面且略具定向,灰至灰綠色,表明形成于淺海較深水還原環(huán)境(圖2 A),與上覆亮甲山組以一層灰綠色鈣質(zhì)頁巖為界,二者整合接觸。亮甲山組在該剖面厚度109.29 m,下部由1.3~9.4 m厚的淺灰色礫屑灰?guī)r、泥晶灰?guī)r及豹皮灰?guī)r構(gòu)成,偶含土黃色泥質(zhì)條帶或薄層灰綠色鈣質(zhì)泥巖;上部為0.8~11.1 m厚的灰色、黃灰色泥晶灰?guī)r、礫屑灰?guī)r及豹皮灰?guī)r互層,以頂部出現(xiàn)含燧石條帶豹皮灰?guī)r而與馬家溝組分界。豹皮灰?guī)r中水平、垂直及斜交蟲跡非常發(fā)育并充填灰黃色鈣、泥質(zhì)組份因而呈豹紋狀(圖2 B)。剖面上馬家溝組厚28.79 m,與下伏亮甲山組也為整合接觸關(guān)系,頂部為厚約2 m的覆蓋層與上覆石炭系本溪組為平行不整合接觸關(guān)系。馬家溝組底部為一層厚約1.8 m的灰黑色含云泥晶灰?guī)r,向上為厚度0.4~7.5 m灰黑色、灰色、土黃色粉—細(xì)晶白云巖,底部含燧石結(jié)核;馬家溝組上部發(fā)育3.2~5.0 m灰色、土黃色塊狀粉—細(xì)晶白云巖,普遍含燧石結(jié)核或硅質(zhì)條帶,中間夾一層厚約0.9 m角礫狀鈣質(zhì)白云巖,網(wǎng)狀粗大的方解石脈將圍巖切割呈角礫狀(圖2C~F、圖3),頂部為中—厚層(0.2~2.3 m)土黃色塊狀鈣質(zhì)泥晶白云巖,燧石結(jié)核逐漸減少,白云巖表面刀砍紋發(fā)育。
圖1 柳江盆地石門寨地區(qū)地質(zhì)簡圖[37]Fig.1 Simplified map of Liujiang Basin, showing the location of Shimenzhai area[37]
圖2 柳江盆地石門寨地區(qū)奧陶系灰?guī)r、白云巖A.下奧陶統(tǒng)冶里組竹葉狀礫屑灰?guī)r,礫屑排列略具定向;B.下奧陶統(tǒng)亮甲山組豹紋狀灰?guī)r,豹紋為蟲跡構(gòu)造,充填土黃色鈣泥質(zhì)組分;C,D.中奧陶統(tǒng)馬家溝組白云巖;E.馬家溝組白云巖中順層分布的燧石條帶;F.馬家溝組上部,白云巖被網(wǎng)狀方解石脈切割呈角礫狀。Fig.2 Ordovician limestones and dolostones in Shimenzhai area, Liujiang Basin
圖3 石門寨地區(qū)奧陶系亮甲山剖面實(shí)測(cè)柱狀圖Fig.3 Ordovician lithological profile of Liangjiashan section, Shimenzhai area
2.2 測(cè)試方法及實(shí)驗(yàn)條件
本文涉及樣品均采自亮甲山剖面馬家溝組,共15件(圖3)。普通染色巖石薄片來自于新鮮塊狀樣品,用于樣品基礎(chǔ)礦物學(xué)及巖石學(xué)分析,染色劑選用莤素紅-S與鐵氰化鉀,以區(qū)分方解石、白云石、鐵方解石及鐵白云石。粉末樣品用于全巖粉晶X射線衍射分析,利用瑪瑙研缽將小塊樣品粉碎并篩至200目以下備用。
全巖粉晶X射線衍射用于確定巖石的礦物組成及白云石有序度分析,由西北大學(xué)化學(xué)與材料科學(xué)學(xué)院分析測(cè)試研究中心完成,儀器型號(hào)為日本理學(xué)D/MAX-3C型X射線衍射儀,銅靶,常用電壓35 kV,電流35 mA,掃描步長為0.02°,角度為15°~70°,掃描速度為4°/min。電子探針、掃描電鏡、能譜分析、流體包裹體測(cè)溫由西北大學(xué)大陸動(dòng)力學(xué)國家重點(diǎn)實(shí)驗(yàn)室完成。電子探針用于單礦物微區(qū)組分分析,儀器由日本電子(JEOL)生產(chǎn),型號(hào)為JXA—8230,實(shí)驗(yàn)電壓15 kV,入射電子束電流10 nA,測(cè)定Si,K,Al,Ti,Cr,Na,Ca,Mg,Sr,Mn,F(xiàn)e選用的標(biāo)樣分別為石英、鉀長石、斜長石、金紅石、Cr2O3、鈉長石、方解石、白云石、SrO、薔薇輝石、磁鐵礦。掃描電鏡用于碳酸鹽巖的微形貌分析,為新鮮樣品噴金鍍膜,未做酸蝕處理,儀器型號(hào)FEI Quanta 400 FEG型環(huán)境掃描電子顯微鏡。能譜分析用于礦物成分半定量分析,儀器型號(hào)OXFORD IE 350型能譜儀,分辨率:138 eV, 分析范圍:B5—U92。流體包裹體測(cè)溫在兩面拋光薄片上進(jìn)行,用于細(xì)晶和粉晶白云石中流體包裹體均一溫度的測(cè)量,顯微冷熱臺(tái)為Linkam THMS 600冷/熱臺(tái),溫度控制范圍-196°C~600°C,冷熱臺(tái)溫度穩(wěn)定性和測(cè)量精度±0.1°C。
3.1 巖石學(xué)特征
亮甲山剖面中奧陶統(tǒng)馬家溝組碳酸鹽巖自下而上主要發(fā)育四種類型:含白云石泥晶灰?guī)r、細(xì)—粉晶白云巖、“麥粒狀”細(xì)—粉晶白云巖和鈣質(zhì)泥晶白云巖。
3.1.1 含白云石泥晶灰?guī)r
含白云石泥晶灰?guī)r發(fā)育于馬家溝組最底部,厚約1.8 m,新鮮面灰黑色?;|(zhì)主要為泥(微)晶方解石(Micrites, <4 μm),少數(shù)為微亮晶(Microspar, 5~30 μm),泥晶方解石之間含有泥質(zhì)組分。灰?guī)r偶含溶孔但又全被亮晶方解石充填,壓溶作用強(qiáng)烈,壓溶縫合線發(fā)育,壓溶縫內(nèi)主要有灰泥、白云石、和鐵泥質(zhì)難溶組分(圖4A~E)。沿壓溶縫分布有黃鐵礦微粒(圖4D,E,F(xiàn))。白云石含量約10%~15%左右,粒徑介于0.02~0.11 mm,粉晶為主,多為自形晶,有序度0.8,光學(xué)顯微鏡和背散射照片中隱約可見白云石具環(huán)帶結(jié)構(gòu)(圖4C,D),白云石的分布局限,多呈“漂浮”狀分布于壓溶縫內(nèi),基質(zhì)中少見。鏡下觀察此類灰?guī)r偶含少量亮晶球?;?guī)r礫屑,礫屑和基質(zhì)中均有較多三葉蟲及介形類殼體碎片,完整化石少見(圖4A,B)。
3.1.2 細(xì)—粉晶白云巖
細(xì)—粉晶白云巖是馬家溝組最主要、分布最廣的白云巖類型,整個(gè)馬家溝組均有分布,厚度約20.14 m。單層為中到厚層狀,新鮮面灰色,風(fēng)化面土黃色,局部層段含壓扁狀黑色燧石結(jié)核或不連續(xù)條帶,燧石結(jié)核長軸平行層面(圖2 E)。全巖粉晶X射線衍射分析表明主要成分為白云石(60%~93.5%),有序度介于0.74~0.78,另有少量方解石(4%~30.2%)及石英(2.5%~25.7%)(圖5)。鏡下觀察白云巖具晶粒結(jié)構(gòu),白云石為不等粒狀,大小介于0.02~0.60 mm,主體為粉晶、細(xì)粉晶,多為菱形自形晶,半自形晶次之,晶體邊界平直(圖6,7)。多數(shù)白云石晶體中心呈混濁云霧狀,邊緣則相對(duì)潔凈,構(gòu)成“霧心亮邊”狀(圖6A~E),“霧心”主要由微細(xì)的非碳酸鹽組分、方解石殘余物及流體包裹體組成(圖6B,C,E、圖7A,B)。白云石晶粒之間往往充填著更細(xì)粒的白云石、亮晶方解石、泥晶方解石及鐵泥質(zhì)組分,溶蝕孔或溶蝕縫則被粗大亮晶方解石充填,由于晶間泥質(zhì)組分較多使巖石整體顯示較臟,有時(shí)可見零星分布的黃鐵礦微粒分布于碳酸鹽顆粒間或粒表(圖6)。
陰極發(fā)光照片可見細(xì)、粉晶白云石自形程度好,且發(fā)育明暗相間的環(huán)帶構(gòu)造,白云石核部往往發(fā)育1~2圈明亮的橙紅色環(huán)帶,向邊緣逐漸過渡為較暗的橙紅色與黑色環(huán)帶相間分布,可達(dá)為2~8圈(圖6F)。背散射照片也可清晰見到白云石亮暗相間的的環(huán)帶構(gòu)造,環(huán)帶多分布于邊部,晶體中間可見零散分布的微小方解石殘晶。白云石晶體間往往充填方解石膠結(jié)物,有時(shí)可見粒間溶孔(圖7A,B)。
此類白云巖普遍經(jīng)歷壓溶作用,鏡下常見多條近平行或鋸齒狀壓溶縫(圖6A,C),縫間充填黑色鐵泥質(zhì)組分。顯微鏡、掃描電鏡和背散射照片可見自形的白云石晶體間充填更細(xì)粒的半自形或它形白云石、泥晶方解石等,表明細(xì)晶、粉晶白云石發(fā)生了重結(jié)晶作用。染色薄片觀察細(xì)晶、粉晶白云石晶體內(nèi)部和邊緣有溶蝕現(xiàn)象,溶孔被粉紅色(貧鐵)亮晶方解石充填(圖6C,D),部分粉晶白云石邊緣被溶蝕呈港灣狀(圖7A),偶見白云石鑄模孔,但也被亮晶方解石完全充填,說明樣品經(jīng)歷了去云化作用的改造。此外,此類白云巖裂縫也較發(fā)育,縫內(nèi)常充填粗晶方解石或白云石。
圖4 馬家溝組含白云石泥晶灰?guī)r(類型I)顯微特征A,B.含白云石泥晶灰?guī)r,含亮晶球?;?guī)r礫屑,基質(zhì)為泥晶方解石,常見破碎的三葉蟲(白色箭頭)及介殼類化石碎片,單偏光;C,D.含白云石泥晶灰?guī)r,基質(zhì)以泥晶方解石為主,壓溶縫內(nèi)充填鐵泥質(zhì)組分和白云石,白云石呈漂浮狀分布于灰泥和鐵泥質(zhì)之間,少量溶孔被亮晶方解石全充填,單偏光;E.染色薄片,泥晶方解石呈淺紅色,壓溶縫內(nèi)白云石晶體可見環(huán)帶結(jié)構(gòu),單偏光;F.背散射照片,黃鐵礦微粒沿壓溶縫零散分布,縫內(nèi)白云石多為自形晶,基質(zhì)為淺灰色泥晶方解石。Fig.4 Microphotographs of dolomitic wackstones(type I) of Majiagou Group
圖5 馬家溝組細(xì)晶—粉晶白云巖(類型II)X射線衍射特征Fig.5 X-ray diffraction patterns of fine to medium grained dolostones(type II) of Majiagou Group
圖6 馬家溝組細(xì)晶—粉晶白云巖(類型II)顯微特征A.粉晶白云巖,白云石粒間充填泥質(zhì)組分使巖石呈混濁狀。發(fā)育多條彼此近平行的壓溶縫,縫內(nèi)鐵泥質(zhì)充填,單偏光;B.白云石普遍發(fā)育霧心亮邊結(jié)構(gòu),黑色為黃鐵礦微粒,單偏光;C.白云巖中的壓溶縫合線,白云石晶粒間充填亮晶方解石和鐵泥質(zhì)組分,部分白云晶體表面被方解石交代。染色薄片,粉紅色者為方解石,無色為白云石;D.去云化作用,可見部分白云石內(nèi)部及邊緣溶蝕并被亮晶方解石充填,白云石晶體間充填亮晶方解石,單偏光;E. 粉晶白云石具霧心亮邊,晶體間充填鐵泥質(zhì)組分,單偏光;F.照片E的陰極發(fā)光圖像,可見粉晶白云石具清晰的明暗相間環(huán)帶結(jié)構(gòu),表明經(jīng)歷了多期成巖流體的改造。Fig.6 Microphotographs of fine to medium grained dolostones(type II) of Majiagou Group
3.1.3 “麥粒狀”粉晶白云巖
此類白云巖分布于剖面馬家溝組上部與頂部,與粉—細(xì)晶白云巖和含石膏假晶鈣質(zhì)泥晶球粒白云巖互層,偶含燧石團(tuán)塊,單層厚度0.2~2.0 m,總厚度約4.5 m。全巖粉晶X射線衍射分析主要成分為白云石(67.8%~86.5%),有序度0.6~0.73,方解石(約27.5%)及石英(4.7%~13.5%)含量較低。鏡下觀察白云巖樣品具晶粒結(jié)構(gòu),部分樣品可見分布不均的暗色團(tuán)塊,熒光照片顯示暗色團(tuán)塊發(fā)光較強(qiáng),很可能為殘余的有機(jī)質(zhì)(圖8 A,D),生物碎片主要為三葉蟲及棘皮類,燧石團(tuán)塊中未見化石,白云石晶體間泥質(zhì)組分較多而使巖石顯得略臟(圖8)。
該巖類白云石晶形特殊,呈略具單向拉長的菱形或透鏡狀,不等粒狀,形似麥粒,故稱為“麥粒狀”或“米粒狀”, 長軸直徑介于0.06~0.12 mm,長/短軸比值約為2~4(圖8,9),晶體排列雜亂,不具明顯定向性,個(gè)別樣品可見“霧心亮邊”構(gòu)造,但不如細(xì)—粉晶白云巖中白云石的“霧心”明顯。單偏光鏡下隨機(jī)觀察白云石晶體的光性方位,發(fā)現(xiàn)白云石均有長對(duì)角線方向的突起和糙面明顯高于短對(duì)角線方向的特征,表明長軸方向平行于光學(xué)主軸No方向(常光的振動(dòng)方向),即在平面上白云石單向延伸方向垂直于結(jié)晶軸c。
圖7 馬家溝組細(xì)—粉晶白云巖(類型II)背散射及掃描電鏡特征A.背散射圖像,白云石(Dol)為自形的菱形晶,內(nèi)部可見方解石殘晶,部分白云石邊緣和內(nèi)部可見溶蝕并被方解石(Cal)充填;B.背散射圖像,可見白云石晶體發(fā)育清晰的亮、暗相間環(huán)帶,白云石晶體內(nèi)部可見少量方解石殘晶,數(shù)字“1~8”為電子探針分析點(diǎn),亮色環(huán)帶含鐵較高;C.背散射圖像,白云石多呈自形的菱形,可見清晰的環(huán)帶,數(shù)字“1~4”為電子探針分析點(diǎn),亮色環(huán)帶含鐵較高;D.掃描電鏡圖像,可見粉晶白云石多呈自形的菱面體。Fig.7 Back scatter and SEM microphotographs of type II dolostones
圖8 “麥粒狀”粉晶白云巖(類型III)顯微特征A.“麥粒狀”白云巖,白云石略呈單向拉長的菱形,排列雜亂,晶形與類型II中白云石自形晶有差別,薄片中可見明顯暗色團(tuán)塊;B.白云石呈單向延伸的菱形,晶體長軸垂直結(jié)晶軸c;C.為染色薄片,粉紅色為方解;D.熒光照片,與照片A同視域,可見暗色團(tuán)塊部分熒光顯示明顯,可能為殘留的有機(jī)質(zhì);E.“麥粒狀”白云巖含有較多泥質(zhì)組分使巖石整體看起來較臟;F.陰極發(fā)光照片,與E同視域,可見白云石顆粒中心發(fā)橙紅色光,邊緣為暗紅色光。Fig.8 Microphotographs of “wheat shaped” fine to medium grained dolostones(type III)
陰極發(fā)光照片顯示白云石中心發(fā)橙紅色光,邊緣為暗紅色光(圖8 F)。背散射照片顯示白云石晶體環(huán)帶結(jié)構(gòu)不明顯,僅局部發(fā)育,邊緣凹凸?fàn)钏朴腥芪g現(xiàn)象,少見平直完善的晶體邊界,這一點(diǎn)與類型II 自形的細(xì)、粉晶白云石平直的晶體邊界不同,麥粒狀白云石粒間往往充填更細(xì)小的白云石晶粒、鐵泥質(zhì)組分及少量黃鐵礦(圖9 A,B)。掃描電鏡圖像可見白云石晶體邊緣并不平直,晶面粗糙,伴有顯微溶孔并發(fā)育大量丘狀突起和納米級(jí)小粒,丘狀突起上也分布有納米小粒,能譜分析表明白云石顆粒及其表面的丘狀突起成分一致(圖9 C,D),這些丘狀突起及納米小粒很可能為白云石晶面生長特征。鏡下觀察“麥粒狀”白云巖普遍發(fā)育鋸齒狀壓溶縫,剖分樣品溶孔發(fā)育,但粒間溶孔及粒內(nèi)溶孔均被方解石充填,表明巖石也經(jīng)歷了溶蝕作用和去云化作用(圖8 C)。
3.1.4 鈣質(zhì)泥晶球粒白云巖
此類白云巖僅分布于馬家溝組頂部,夾于“麥粒狀”粉晶白云巖之間,厚約1.3 m。全巖粉晶X衍射分析表明方解石含量31.3%,白云石含量68.7%,白云石有序度0.47。鏡下觀察該類白云巖多具有球粒結(jié)構(gòu)(圖10A,B,C),含大量藻類及少量棘皮類生物碎片?;|(zhì)為泥晶(微晶)白云石(<4 μm),球粒則由微晶或微亮晶白云石構(gòu)成,局部球粒發(fā)生重結(jié)晶作用變?yōu)榱辆О自剖?,藻類由于白云化作用而使?nèi)部結(jié)構(gòu)不可辨,棘皮類碎片具有同軸消光(single-crystal extinction)特征,還可見板狀石膏假晶被亮晶白云石充填(圖10A,B)。顯微鏡和背散射照片顯示球粒間常見不規(guī)則溶孔,但也都被亮晶方解石全充填(圖10C,D),裂縫非常發(fā)育,常被粗晶方解石充填,表明該類巖石也經(jīng)歷了去云化作用的改造。
3.2 白云巖地球化學(xué)特征
3.2.1 含白云石泥晶灰?guī)r和細(xì)—粉晶白云巖地化特征
圖9 “麥粒狀”白云石(類型III)顯微特征A.背散射照片,白云石(Dol)呈單向拉長的菱形或透鏡狀,部分邊緣呈凹凸?fàn)钏朴腥芪g,粒表及粒間有少量黃鐵礦(Pyr),粒間充填細(xì)小的白云石顆粒及鐵泥質(zhì),數(shù)字“1~6”為長對(duì)角線電子探針分析點(diǎn),字母“a~d”為短對(duì)角線電子探針分析點(diǎn);B.背散射照片,C,D.掃描電鏡照片,“麥粒狀”白云石晶面發(fā)育顯微溶孔,還可見大量丘狀突起和納米級(jí)小粒,“+”為能譜分析點(diǎn),左上角為相應(yīng)點(diǎn)的能譜分析圖,照片D中“+”位于丘狀突起上。Fig.9 Back scatter and SEM microphotographs of “wheat shaped” dolostones(type III)
圖10 鈣質(zhì)泥晶球粒白云巖(類型IV)顯微特征A,B.泥晶球粒白云巖,基質(zhì)主體為微晶白云石,球粒也為微晶或微亮晶白云石,部分球粒、生物碎屑重結(jié)晶為亮晶白云石。白色箭頭指示為石膏假晶,被亮晶白云石充填;C.染色薄片,微晶白云石間不規(guī)則的溶孔被粉紅色亮晶方解石充填;D.背散射照片,深灰色為泥晶白云石(Dol),淺灰白色為方解石(Cal),可見方解石充填于不規(guī)則的白云石溶孔內(nèi)。Fig.10 Microphotographs of calcareous microcrystalline pellets dolostones(type IV)
亮甲山剖面馬家溝組含云泥晶灰?guī)r和細(xì)—粉晶白云巖中碳酸鹽礦物的電子探針成分組成見表1。含白云石泥晶灰?guī)r中和粉晶白云巖中白云石普遍具有富鐵、貧錳、鍶、鈦、鉻、鎳等特點(diǎn)。其中含云泥晶灰?guī)r中方解石基質(zhì)極度貧Fe、Mn,而壓溶縫內(nèi)的白云石則具有富Fe及略富Mn的特征(表1)。
對(duì)細(xì)—粉晶白云巖中的環(huán)帶白云石的中心、亮色環(huán)帶、環(huán)帶間及邊緣分別測(cè)其成分,結(jié)果表明,白云石亮色環(huán)帶的FeO含量介于0.34%~2.12%,明顯高于白云石中心、環(huán)帶間及邊緣相對(duì)暗色部分FeO含量(0~0.75%,圖7B,C、表1)。此外,含云灰?guī)r中白云石Mg/Ca離子比值介于0.49~0.51,鈣離子相對(duì)于理想白云石中鈣離子的質(zhì)量偏差介于1.05~1.11(表1),鎂離子相對(duì)于理想白云石中鎂離子的質(zhì)量偏差介于0.91~0.93。細(xì)—粉晶白云巖中白云石Mg/Ca離子比介于0.46~0.57(表1),鈣離子的標(biāo)準(zhǔn)質(zhì)量偏差介于0.94~1.15,鎂離子的標(biāo)準(zhǔn)質(zhì)量偏差介于0.82~0.94。細(xì)—粉晶白云巖的粒間方解石膠結(jié)物也具有貧鐵、錳的特征(表1)。
3.2.2 “麥粒狀”白云石地化特征
從表2可以看出“麥粒狀”白云石也多表現(xiàn)出富鐵、貧錳、鍶、鈦、鎳的特點(diǎn)。沿著“麥粒狀”白云石長對(duì)角線和短對(duì)角線分別進(jìn)行電子探針分析,顆粒1長對(duì)角線各點(diǎn)CaO平均為31.73%,MgO平均為20.78%;短對(duì)角線上各點(diǎn)CaO平均含量33.28%,MgO平均含量20.30%。顆粒2長對(duì)角線各點(diǎn)CaO平均30.76%,MgO平均20.73%;短對(duì)角線CaO平均31.15%,MgO平均20.64%。顆粒3長對(duì)角線各點(diǎn)CaO平均32.58%,MgO平均20.77%;短對(duì)角線CaO平均32.80%,MgO平均20.77%。三個(gè)顆粒長、短對(duì)角線CaO含量的差異依次為1.55%、0.39%和0.22%,而MgO的差異依次為0.47%、0.09%和0%。由上可知,“麥粒狀”白云石短對(duì)角線CaO含量略高于長對(duì)角線CaO含量;而MgO含量在長、短對(duì)角線上的差異不甚明顯,長對(duì)角線MgO含量微弱高于短對(duì)角線MgO(圖9A、表2)。相應(yīng)地,三個(gè)顆粒長對(duì)角線上各點(diǎn)Mg/Ca離子比的變化分別為0.54~0.57,0.55~0.58,0.51~0.55;短對(duì)角線上各點(diǎn)Mg/Ca離子比的變化分別為0.44~0.54,0.54~0.59,0.52~0.55之間(表2)。三個(gè)顆粒長對(duì)角線上各點(diǎn)鈣離子相對(duì)于理想白云石鈣離子質(zhì)量偏差分別為0.98~1.05,0.98~1.04,1.04~1.08,短對(duì)角線上各點(diǎn)鈣離子的標(biāo)準(zhǔn)質(zhì)量偏差分別為1.06~1.14,0.97~1.04,1.04~1.09(表2)。三個(gè)顆粒長對(duì)角線上各點(diǎn)鎂離子標(biāo)準(zhǔn)質(zhì)量偏差分別為0.92~0.99,0.95~0.97,0.94~0.98,短對(duì)角線上各點(diǎn)鎂離子標(biāo)準(zhǔn)質(zhì)量偏差分別為0.85~0.98,0.94~0.98,0.95~0.99(表2)。
3.3 細(xì)—粉晶白云巖流體包裹體均一溫度
對(duì)三件細(xì)—粉晶白云巖(類型II)和一件“麥粒狀”粉晶白云巖樣品白云石內(nèi)的流體包裹體測(cè)均一溫度,得到15組數(shù)據(jù)(表3)。所測(cè)包體均為氣—液兩相水溶液包體,無色透明,形態(tài)以渾圓、橢圓、長條狀為主,絕大多數(shù)為孤立狀分布于粉晶白云石內(nèi)部(圖11 A),根據(jù)巖相學(xué)推測(cè)應(yīng)屬白云石重結(jié)晶時(shí)捕獲的原生包體。流體包裹體中液相部分大小介于1.6~5.0 μm之間,氣相部分大小約為液相的15%~20%。流體包裹體的均一溫度介于76.4°C~137.1°C之間,平均105.1°C,大致分布在三個(gè)溫度區(qū)間,分別為:75°C~90°C區(qū)間,包含6組數(shù)據(jù);105°C~120°C,包含4組數(shù)據(jù);120°C~135°C區(qū)間,包含3組數(shù)據(jù)(圖11B)。
4.1 含白云石泥晶灰?guī)r的白云石化機(jī)理
出現(xiàn)在灰?guī)r壓溶縫合線內(nèi)的白云石可見下列報(bào)道[8, 39-42],往往被認(rèn)為發(fā)生在埋藏成巖階段。
研究區(qū)泥晶灰?guī)r中白云石的分布受限于壓溶縫合線,白云石為自形的粉晶呈漂浮狀分布在壓溶縫內(nèi)的暗色組分中,壓溶縫外鮮有分布。偏光顯微鏡和背散射鏡下可見部分白云石具有1-2圈環(huán)帶結(jié)構(gòu),此外,壓溶縫普遍不切割白云石,表明白云石形成于壓溶作用之后,并且該類巖石的選擇性白云化作用與壓溶縫密切相關(guān)。從該類白云石地化特征來看,白云石往往富Fe,且FeO含量明顯高于泥晶方解石基質(zhì)(表1),也說明白云石的形成應(yīng)為埋藏期(機(jī)械壓實(shí)以后)的還原環(huán)境;此外,沿壓溶縫常見大量黃鐵礦微粒與白云石相伴生(圖4B,D),這些均從側(cè)面反應(yīng)泥晶灰?guī)r的選擇性白云化作用發(fā)生在埋藏成巖期。
表1 馬家溝組碳酸鹽礦物電子探針成分(mass%)
注:TFeO為全鐵含量。
表2 馬家溝組“麥粒狀”白云石電子探針成分(mass%)
注:TFeO為全鐵含量。Ca|Mg為鈣、鎂離子分別相對(duì)于理想白云石鈣、鎂離子的質(zhì)量偏差。
表3 馬家溝組白云巖流體包裹體均一溫度表
圖11 馬家溝組白云巖流體包裹體均一溫度直方圖A. 箭頭指示為粉晶白云石內(nèi)部孤立的氣、液兩相流體包裹體;B. 流體包裹體均一溫度直方圖Fig.11 Histogram of homogenization temperatures of fluid inclusions in Majiagou dolostones
縫合線作為灰?guī)r和白云巖中常見的粒間壓溶作用產(chǎn)物,常常被認(rèn)為會(huì)降低圍巖的物性或作為流體的隔擋層[43-45]。然而,另一些研究卻發(fā)現(xiàn)沿著灰?guī)r壓溶縫合線的側(cè)面及末端能夠發(fā)育相對(duì)高孔隙帶,這些高孔隙帶可能提高流體的循環(huán)[46-47]。Heapetal.[42]進(jìn)行了灰?guī)r縫合線對(duì)滲透率影響的實(shí)驗(yàn)研究,實(shí)驗(yàn)數(shù)據(jù)表明縫合線不但不能起到阻障流體的作用,而且當(dāng)縫合線與流體方向平行時(shí),其滲透率會(huì)比垂直流體方向時(shí)的滲透率高出一個(gè)數(shù)量級(jí)??梢?,在某些情況下,縫合線能夠成為成巖流體或白云化流體的輸導(dǎo)管。Kahle[48]曾提到黏土礦物能夠催化某些白云石的沉淀,不僅能為白云化作用提供鎂離子來源,而且還可能為白云石提供初始成核位點(diǎn)。McHargueetal.[49]認(rèn)為埋藏期蒙脫石向伊利石的轉(zhuǎn)化會(huì)釋放大量Fe, Mg, Ca, Na和Si,能夠?yàn)楹嗷規(guī)r中分散狀的白云石提供離子來源。盡管有人對(duì)這種分散在泥質(zhì)沉積物中的白云石成因有所質(zhì)疑[50],然而,研究區(qū)泥晶灰?guī)r的巖相學(xué)特征似乎支持黏土礦物轉(zhuǎn)化可為白云石提供離子來源的觀點(diǎn)。研究區(qū)這類灰?guī)r壓溶縫中黏土質(zhì)占主導(dǎo)地位,而且,白云石多為自形晶分散狀分布于壓溶縫內(nèi),基質(zhì)中分布的非常少,既使有,也往往散布在壓溶縫附近的基質(zhì)內(nèi),這些均暗示了白云石的形成可能與壓溶縫內(nèi)的黏土礦物有關(guān)。因此,研究區(qū)含白云石泥晶灰?guī)r的白云石化作用可能發(fā)生在埋藏環(huán)境下壓溶作用之后,云化作用僅局限于壓溶縫內(nèi),壓溶縫不僅為白云化流體提供通道,而且縫合線內(nèi)黏土礦物的成巖轉(zhuǎn)化很可能為白云石的形成提供離子來源。
4.2 細(xì)—粉晶白云巖化機(jī)理
“霧心亮邊”是白云石常見的特征之一,可以形成于各種環(huán)境[51-54]。Sibley[51]指出“霧心”主要為隱晶質(zhì)的方解石包裹體及顯微溶孔,“亮邊”是由不含方解石微晶的低鎂方解石被白云石交來而來;Landetal.[55]通過“霧心”和“亮邊”的微量元素差異認(rèn)為“亮邊”沉淀于比霧心更稀釋的溶液中。
研究區(qū)類型II白云巖巖相學(xué)分析表明粉、細(xì)晶白云石的“霧心” 除了微晶方解石及少量流體包裹外,還有少量黏土物質(zhì),微晶方解石可能為早期白云化作用的殘留物。針對(duì)白云石內(nèi)部及外側(cè)環(huán)帶的電子探針分析點(diǎn)數(shù)據(jù)(表1)表明白云石中心及環(huán)帶均較富鐵,表明云化作用發(fā)生在還原環(huán)境。“亮邊”在背散射和陰極發(fā)光照片下可見明顯的多圈環(huán)帶構(gòu)造(圖6,7),表明白云石經(jīng)歷過多次成巖流體的改造,而環(huán)帶和環(huán)間元素的變化可能反映了不同期成巖流體的成分差異。這種環(huán)帶結(jié)構(gòu)與德國南部Swabian Alb地區(qū)上侏羅統(tǒng)白云質(zhì)灰?guī)r[56]以及美國田納西州東部Cooper Ridge區(qū)下奧陶統(tǒng)Kingsport組中—粗粒白云巖[52]中具環(huán)帶結(jié)構(gòu)的白云石類似,代表了埋藏成巖期間多幕式白云化作用和重結(jié)晶作用。
研究區(qū)細(xì)—粉晶白云巖的流體包裹體均一溫度顯示出小于100°C(76.4°C~95.1°C)和大于100°C(112.1°C~137.1°C)兩個(gè)溫度區(qū)間,與鄂爾多斯盆地南部馬家溝組埋藏成因的“糖粒狀”粗粉晶—細(xì)晶白云巖(Type IV dolostones)的巖相學(xué)特征及流體包體均一溫度(140°C~203°C)[22]均有相似之處。兩個(gè)均一溫度區(qū)間表明此類白云巖的多幕式白云化作用可能從淺埋藏一直持續(xù)到深埋藏期。因此,類型II白云巖的形成不是一次云化作用形成的,很可能是在早期云化作用(準(zhǔn)同生蒸發(fā)作用、滲透回流作用,或其他)的基礎(chǔ)上經(jīng)歷了埋藏期多次云化作用的產(chǎn)物。此外,該類巖石發(fā)育晶粒結(jié)構(gòu),鏡下未見殘余的原巖結(jié)構(gòu)或任何化石碎片,也說明此類白云巖的白云化程度很深且徹底,可能為多期云化作用和重結(jié)晶改造的結(jié)果。
4.3 “麥粒狀”白云巖化機(jī)理
研究區(qū)“麥粒狀”白云巖具有的殘余球粒結(jié)構(gòu)表明原巖可能形成于潮上帶潮坪環(huán)境,而且白云石的形成是由云化作用交代方解石形成的。鏡下觀察 “麥粒狀”白云石晶間含有比類型II細(xì)—粉晶白云巖更多的陸源泥質(zhì)組分。從化學(xué)成分來看,“麥粒狀”白云石的鈣、鎂離子含量比類型II白云巖中的白云石更接近于理想白云巖的鈣、鎂子含量(表2),“麥粒狀”白云石短對(duì)角線上各點(diǎn)CaO含量略高于長對(duì)角線(垂直于結(jié)晶軸c方向)上各點(diǎn),而MgO的差異并不明顯,而鈣、鎂離子含量的微小差異能否導(dǎo)致白云石沿垂直結(jié)晶軸c方向單向延伸還需更多實(shí)驗(yàn)研究的支持。此外,該類白云巖的背散射照片中可見大多數(shù)“麥粒狀”白云石晶體邊緣有微溶現(xiàn)象,且發(fā)育不甚清晰的環(huán)帶,陰極發(fā)光照片顯示白云石的發(fā)光普遍分為兩部分,核部橙紅色光,邊緣發(fā)暗紅色光,暗示了此類白云石也經(jīng)歷了埋藏成巖作用的改造,只是成巖流體對(duì)白云石的影響程度和頻率不如類型II白云巖中的細(xì)、粉晶白云石強(qiáng)烈。據(jù)此,推測(cè) “麥粒狀”白云石的晶體形貌可能與埋藏期間的成巖流體的溶蝕作用有關(guān),由于白云石短軸方向CaO含量相對(duì)較高,導(dǎo)致其被溶蝕程度強(qiáng)于長軸方向,因此形成了目前觀察到的白云石晶體呈單向延長的現(xiàn)象。
4.4 鈣質(zhì)泥晶球粒白云巖化機(jī)理
此類白云巖基本保留了原巖結(jié)構(gòu),白云石多為微晶和微亮晶,可見白云化作用發(fā)生得相當(dāng)早,生物類型單一,主要為藻類,球粒與基質(zhì)均為微晶或微亮晶白云石,白云石有序度低小于0.5,石膏假晶的出現(xiàn)意味著沉積環(huán)境為強(qiáng)烈蒸發(fā)作用為主,該類白云巖很可能在潮上帶潮坪環(huán)境(如薩布哈等)中由于強(qiáng)烈蒸發(fā)作用導(dǎo)致的白云化作用形成,據(jù)報(bào)道[1-4],這類環(huán)境原始碳酸鹽沉積物多以文石為主,而白云石很可能為交代文石而來。此類白云巖與大巴哈馬灘地區(qū)Andros島潮上帶潮坪環(huán)境中富含球粒的白云質(zhì)結(jié)殼層非常類似[60],而后者形成于強(qiáng)蒸發(fā)的潮上帶封閉或半封閉的澙湖或潮坪環(huán)境。
4.5 去云化作用
根據(jù)亮甲山剖面各類碳酸鹽巖的巖石學(xué)分析表明馬家溝組四類白云巖均經(jīng)歷了去云化作用的影響,自下而上,去云化作用趨于強(qiáng)烈。類型I的去云化作用最微弱,灰?guī)r基質(zhì)偶見溶孔被亮晶貧鐵方解石充填。類型II細(xì)—粉晶白云巖的去云化作用表現(xiàn)為白云石晶間孔幾乎全被貧鐵、錳的方解石(表2)充填,部分白云石粒內(nèi)也被方解石交代,白云顆粒邊緣因淋濾溶蝕而呈現(xiàn)破碎狀(圖7A)。類型IIII麥粒狀白云巖和類型IV鈣質(zhì)泥晶球粒白云巖的去云化作用最強(qiáng)烈,基質(zhì)中淋濾溶孔大量發(fā)育且全被貧鐵亮晶方解石充填(圖8C、圖10C)。與鄂爾多斯盆地奧陶系白云巖晶間孔隙及溶蝕孔隙改善了儲(chǔ)層物性相比[28-29, 61],研究區(qū)白云巖的晶間孔及與去云化作用有關(guān)的淋濾溶蝕孔又被后期亮晶方解石充填,儲(chǔ)層物性未得到明顯改善。
石門寨亮甲山剖面馬家溝組的四類碳酸鹽巖的白云化作用具有隨埋藏深增加由早期蒸發(fā)白云化作用轉(zhuǎn)為受多期埋藏白云化作用改造的特征。剖面底部類型I泥晶灰?guī)r中白云石的分布受限于壓溶縫,自形的粉晶白云石呈“漂浮狀”分布于壓溶縫合線內(nèi),基質(zhì)中少見白云石,白云化作用發(fā)生在壓溶作用之后,壓溶縫為云化流體提供通道,壓溶縫內(nèi)泥質(zhì)組分可能為云化作用提供了部分離子來源;類型II白云巖主要由自形、半自形不等粒粉晶—細(xì)晶白云石構(gòu)成,白云石具有“霧心亮邊”,在背散射和陰極發(fā)光照片中白云石可見清晰的多圈亮、暗相間環(huán)帶,白云石富鐵、貧錳、鍶的特征,以及環(huán)帶和帶間主量元素的差異表明白云石在埋藏期經(jīng)歷多次成巖流體的改造;類型III白云巖中白云石呈單向延伸的“米?!被颉胞溋!睜睿劬橹?,晶體長軸方向具有垂直結(jié)晶軸c的特點(diǎn),白云石也具富鐵、貧錳、鍶的特點(diǎn),長、短對(duì)角線上鈣、鎂離子的微小差異以及陰極發(fā)光特征表明此類白云石也經(jīng)歷了埋藏成巖期的改造,成巖流體使白云石發(fā)生微溶作用可能是導(dǎo)致白云石晶體單向延伸且光學(xué)性質(zhì)固定取向的主要原因;剖面頂部類型IV為鈣質(zhì)泥晶球粒白云巖,含石膏假晶,白云石多為微晶和微亮晶,球粒及藻類也由微晶白云石構(gòu)成,溶孔發(fā)育,但全被亮晶貧鐵方解石充填,此類巖石的白云作用發(fā)生得很早,可能形成于潮上帶澙湖或潮坪環(huán)境。
研究剖面從頂向底,白云石的有序度由0.47增加至0.8,表明隨埋深增加白云石晶體趨于更有序。而去云化作用則呈現(xiàn)逐漸減弱的趨勢(shì),剖面頂部類型III和類型IV白云巖去云化作用最強(qiáng)。
致謝 非常感謝西北大學(xué)大陸動(dòng)力學(xué)國家重點(diǎn)實(shí)驗(yàn)室和化學(xué)與材料科學(xué)學(xué)院分析測(cè)試研究中心的張宏法老師、余向陽老師、弓虎軍老師、楊文強(qiáng)老師、龐云龍老師在樣品分析測(cè)試過程中提供的大力幫助。同時(shí),也衷心感謝兩位評(píng)審專家為本文提供的寶貴意見和建議。
References)
[1] Illing L V, Wells A J, Taylor J C M. Penecontemporary dolomite in the Persian Gulf[M]//Pray L C, Murray R C. Dolomitization and Limestone Diagenesis. Tulsa, Ok, USA: Society of Economic Paleontologists and Mineralogists, Special Publication, 1965, 13: 89-111.
[2] Butler G P. Modern evaporite deposition and geochemistry of coexisting brines, the Sabkha, Trucial coast, Arabian Gulf[J]. Journal of Sedimentary Research, 1969, 39(1): 70-89.
[3] Hsü K J, Siegenthaler C. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem[J]. Sedimentology, 1969, 12(1/2): 11-25.
[4] McKenzie J A. Holocene dolomitization of calcium carbonate sediments from the coastal Sabkhas of Abu Dhabi, U.A.E.: a stable isotope study[J]. The Journal of Geology, 1981, 89(2): 185-198.
[5] von der Borch C C. Stratigraphy and formation of Holocene dolomitic carbonate deposits of the Coorong Area, South Australia[J]. Journal of Sedimentary Research, 1976, 46(4): 952-966.
[6] Adams J E, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1912-1920.
[7] Saller A H. Petrologic and geochemical constraints on the origin of subsurface dolomite, Enewetak Atoll: an example of dolomitization by normal seawater[J]. Geology, 1984, 12(4): 217-220.
[8] Zenger D H. Burial dolomitization in the Lost Burro Formation (Devonian), east-central California, and the significance of late diagenetic dolomitization[J]. Geology, 1983, 11(9): 519-522.
[9] Gawthorpe R L. Burial dolomitization and porosity development in a mixed carbonate-clastic sequence: an example from the Bowland Basin, northern England[J]. Sedimentology, 1987, 34(4): 533-558.
[10] Qing Hairuo, Mountjoy E W. Formation of coarsely crystalline, hydrothermal dolomite reservoirs in the Presqu'ile barrier, Western Canada sedimentary basin[J]. AAPG Bulletin, 1994, 78(1): 55-77.
[11] Davies G R, Smith L B Jr. Structurally controlled hydrothermal dolomite reservoir facies: an overview[J]. AAPG Bulletin, 2006, 90(11): 1641-1690.
[12] Shukla V, Baker P A. Sedimentology and geochemistry of dolostones: based on a symposium[M]. Tulsa, Ok, USA: Society of Economic Paleontologists and Mineralogists, Special Publication, 1988, 43: 41-52.
[13] Vásconcelos C, Mckenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222.
[14] Vásconcelos C, Mckenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3): 378-390.
[15] Burns S J, Mckenzie J A, Vásconcelos C. Dolomite formation and biogeochemical cycles in the Phanerozoic[J]. Sedimentology, 2000, 47(S1): 49-61.
[16] Zhang Fangfu, Xu Huifang, Konishi H, et al. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: a potential precursor of sedimentary dolomite[J]. American Mineralogist, 2012, 97(4): 556-567.
[17] Zhang Fangfu, Xu Huifang, Konishi H, et al. Dissolved sulfide-catalyzed precipitation of disordered dolomite: implications for the formation mechanism of sedimentary dolomite[J]. Geochimica et Cosmochimica Acta, 2012, 97: 148-165.
[18] Roberts J A, Kenward P A, Fowle D A, et al. Surface chemistry allows for abiotic precipitation of dolomite at low temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14540-14545.
[19] Gregg J M, Bish D L, Kaczmarek S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review[J]. Sedimentology, 2015, 62(6): 1749-1769.
[20] 由雪蓮,孫樞,朱井泉,等. 微生物白云巖模式研究進(jìn)展[J]. 地學(xué)前緣,2011,18(4):52-64. [You Xuelian, Sun Shu, Zhu Jingquan, et al. Progress in the study of microbial dolomite model[J]. Earth Science Frontiers, 2011, 18(4): 52-64.]
[21] You Xuelian, Sun Shu, Zhu Jingquan. Significance of fossilized microbes from the Cambrian stromatolites in the Tarim Basin, Northwest China[J]. Science China Earth Sciences, 2014, 57(12): 2901-2913.
[22] Feng Zengzhao, Zhang Yongsheng, Jin Zhenkui. Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou Group, Ordos, North China Platform[J]. Sedimentary Geology, 1998, 118(1/2/3/4): 127-140.
[23] 遼寧省地質(zhì)礦產(chǎn)勘查開發(fā)局. 遼寧省巖石地層[M]. 武漢:中國地質(zhì)大學(xué)出版社,1997:72-73. [Liaoning Bureau of Geology and Mineral Resources Exploration. Stratigraphy (Lithostratic) of Liaoning province[M]. Wuhan: China University of Geosciences Press, 1997: 72-73.]
[24] 李晶晶,楊一鳴. 遼河油田東部凹陷奧陶系碳酸鹽巖儲(chǔ)層特征分析及評(píng)價(jià)[J]. 復(fù)雜油氣藏,2011,4(4):1-4. [Li Jingjing, Yang Yiming. Study and evaluation of carbonate reservoir characteristics of Ordovician System in eastern sag of Liaohe oilfield[J]. Complex Hydrocarbon Reservoirs, 2011, 4(4): 1-4.]
[25] 馬永生,李啟明,關(guān)德師. 鄂爾多斯盆地中部氣田奧陶系馬五1-4碳酸鹽巖微相特征與儲(chǔ)層不均質(zhì)性研究[J]. 沉積學(xué)報(bào),1996,14(1):22-32. [Ma Yongsheng, Li Qiming, Guan Deshi. Carbonate microfacies characteristics and reservoir heterogeneity of the Ordovician weathering crust (O1ma51-4) of the Zhongbu gasfield, Ordos Basin, Northwest China[J]. Acta Sedimentologica Sinica, 1996, 14(1): 22-32.]
[26] 張永生. 鄂爾多斯地區(qū)奧陶系馬家溝群中部塊狀白云巖的深埋藏白云石化機(jī)制[J]. 沉積學(xué)報(bào),2000,18(3):424-430. [Zhang Yongsheng. Mechanism of deep burial dolomitization of massive dolostones in the Middle Majiagou Group of the Ordovician, Ordos Basin[J]. Acta Sedimentologica Sinica, 2000, 18(3): 424-430.]
[27] 侯方浩,方少仙,董兆雄,等. 鄂爾多斯盆地中奧陶統(tǒng)馬家溝組沉積環(huán)境與巖相發(fā)育特征[J]. 沉積學(xué)報(bào),2003,21(1):106-112. [Hou Fanghao, Fang Shaoxian, Dong Zhaoxiong, et al. The developmental characters of sedimentary environments and lithofacies of Middle Ordovician Majiagou Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2003, 21(1): 106-112.]
[28] 吳亞生,何順利,盧濤,等. 長慶中部氣田奧陶紀(jì)馬家溝組儲(chǔ)層成巖模式與孔隙系統(tǒng)[J]. 巖石學(xué)報(bào),2006,22(8):2171-2181. [Wu Yashneg, He Shunli, Lu Tao, et al. Diagenetic patterns and pore systems of the Lower Ordovician Majiagou Formation reservoirs of the central Changqing gas fields[J]. Acta Petrologica Sinica, 2006, 22(8): 2171-2181.]
[29] 方少仙,何江,侯方浩,等. 鄂爾多斯盆地中部氣田區(qū)中奧陶統(tǒng)馬家溝組馬五5-馬五1亞段儲(chǔ)層孔隙類型和演化[J]. 巖石學(xué)報(bào),2009,25(10):2425-2441. [Fang Shaoxian, He Jiang, Hou Fanghao, et al. Reservoirs pore space types and evolution in Ma55to Ma51submembers of Majiagou Formation of Middle Ordovician in central gasfield area of Ordos Basin[J]. Acta Petrologica Sinica, 2009, 25(10): 2425-2441.]
[30] 姚涇利,王保全,王一,等. 鄂爾多斯盆地下奧陶統(tǒng)馬家溝組馬五段白云巖的地球化學(xué)特征[J]. 沉積學(xué)報(bào),2009,27(3):381-389. [Yao Jingli, Wang Baoquan, Wang Yi, et al. Geochemical characteristics of dolomites in Lower Ordovician Majiagou Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2009, 27(3): 381-389.]
[31] 周進(jìn)高,張帆,郭慶新,等. 鄂爾多斯盆地下奧陶統(tǒng)馬家溝組障壁潟湖沉積相模式及有利儲(chǔ)層分布規(guī)律[J]. 沉積學(xué)報(bào),2011,29(1):64-71. [Zhou Jingao, Zhang Fan, Guo Qingxin, et al. Barrier-Lagoon sedimentary model and reservoir distribution regularity of Lower Ordovician Majiagou Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2011, 29(1): 64-71.]
[32] 孫瑞,陳曦,明爽,等. 鄂爾多斯盆地西北部奧陶系馬家溝組斑狀白云巖成因機(jī)理及儲(chǔ)集特征[J]. 新疆地質(zhì),2012,30(4):442-446. [Sun Rui, Chen Xi, Ming Shuang, et al. Formation mechanism and its reservoir characteristics of Ordovician Majiagou Formation mottled dolomite in northwestern Ordos Basin[J]. Xinjiang Geology, 2012, 30(4): 442-446.]
[33] 袁路朋,周洪瑞,景秀春,等. 鄂爾多斯盆地南緣奧陶系碳酸鹽微相及其沉積環(huán)境分析[J]. 地質(zhì)學(xué)報(bào),2014,88(3):421-432. [Yuan Lupeng, Zhou Hongrui, Jing Xiuchun, et al. Microfacies and facies analysis of the Ordovician carbonates in the South Margin of the Ordos Basin[J]. Acta Geologica Sinica, 2014, 88(3): 421-432.]
[34] 金振奎,馮增昭. 華北地臺(tái)東部下古生界白云巖的類型及儲(chǔ)集性[J]. 沉積學(xué)報(bào),1993,11(2):11-18. [Jin Zhenkui, Feng Zengzhao. Types and reservoiring performance of dolostones of the Lower Paleozoic in eastern North-China Platform[J]. Acta Sedimentologica Sinica, 1993, 11(2): 11-18.]
[35] 鄧晉福,吳宗絮,趙國春,等. 華北地臺(tái)前寒武花崗巖類、陸殼演化與克拉通形成[J]. 巖石學(xué)報(bào),1999,15(2):190-198. [Deng Jinfu, Wu Zongxu, Zhao Guochun, et al. Precambrian granitic rocks, continental crustal evolution and craton formation of the North China Platform[J]. Acta Petrologica Sinica, 1999, 15(2): 190-198.]
[36] 王荃. 華北克拉通與全球構(gòu)造[J]. 地質(zhì)通報(bào),2011,30(1):1-18. [Wang Quan. North China Craton and global tectonics[J]. Geological Bulletin of China, 2011, 30(1): 1-18.]
[37] 龔一鳴,張立軍,吳義布. 秦皇島石炭紀(jì)糞化石[J]. 中國科學(xué)(D輯):地球科學(xué),2009,39(10):1421-1428. [Gong Yiming, Zhang Lijun, Wu Yibu. Carboniferous coprolites from Qinhuangdao, North China[J]. Science China(Seri.D): Earth Sciences, 2009, 39(10): 1421-1428.]
[38] 陳丹玲,賴紹聰,劉養(yǎng)杰. 秦皇島柳江盆地混合花崗巖的鋯石U-Pb定年[J]. 西北大學(xué)學(xué)報(bào):自然科學(xué)版,2007,37(2):277-281. [Chen Danling, Lai Shaocong, Liu Yangjie. LA-ICP-MS zircon U-Pb dating for magmatitic granite from Liujiang Basin in Qinhuangdao area[J]. Journal of Northwest University: Natural Science Edition, 2007, 37(2): 277-281.]
[39] Barnaby R J, Read J F. Dolomitization of a carbonate platform during late burial; lower to Middle Cambrian Shady dolomite, Virginia Appalachians[J]. Journal of Sedimentary Research, 1992, 62(6): 1023-1043.
[40] Srinivasan K, Walker K R, Goldberg S A. Determining fluid source and possible pathways during burial dolomitization of Maryville limestone (Cambrian), Southern Appalachians, USA[J]. Sedimentology, 1994, 41(2): 293-308.
[41] Marfil R, Caja M A, Tsige M, et al. Carbonate-cemented stylolites and fractures in the Upper Jurassic limestones of the Eastern Iberian Range, Spain: a record of palaeofluids composition and thermal history[J]. Sedimentary Geology, 2005, 178(3/4): 237-257.
[42] Heap M J, Baud P, Reuschlé T, et al. Stylolites in limestones: barriers to fluid flow?[J]. Geology, 2013, 42(1): 51-54.
[43] Nelson R A. Significance of fracture sets associated with stylolite zones[J]. AAPG Bulletin, 1981, 65(11): 2417-2425.
[44] Koepnick R B. Distribution and permeability of stylolite-bearing horizons within a Lower Cretaceous carbonate reservoir in the Middle East[J]. SPE Formation Evaluation, 1987, 2(2): 137-142.
[45] Alsharhan A S, Sadd J L. Stylolites in Lower Cretaceous Carbonate Reservoirs, U.A.E.[M]. Society of Economic Paleontologists and Mineralogists, Special Publications, 2000: 185-207.
[46] Von Bergen D, Carozzi A V. Experimentally-simulated stylolitic porosity in carbonate rocks[J]. Journal of Petroleum Geology, 1990, 13(2): 179-192.
[47] Van Geet M, Swennen R, Wevers M. Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography[J]. Sedimentary Geology, 2000, 132(1/2): 25-36.
[48] Kahle C F. Possible roles of clay minerals in the formation of dolomite[J]. Journal of Sedimentary Research, 1965, 35(2): 448-453.
[49] McHargue T R, Price R C. Dolomite from clay in argillaceous or shale-associated marine carbonates[J]. Journal of Sedimentary Research, 1982, 52(3): 873-886.
[50] Narkiewicz M, Price R C, McHargue T R. Dolomite from clay in argillaceous or shale-associated marine carbonates; discussion and reply[J]. Journal of Sedimentary Research, 1983, 53(4): 1353-1355.
[51] Sibley D F. The origin of common dolomite fabrics; clues from the Pliocene[J]. Journal of Sedimentary Research, 1982, 52(4): 1087-1100.
[52] Churnet H G, Misra K C, Walker K R. Deposition and dolomitization of Upper Knox carbonate sediments, Copper Ridge district, east Tennessee[J]. Geological Society of America Bulletin, 1982, 93(1): 76-86.
[53] Nielsen P, Swennen R, Keppens E. Multiple-step recrystallization within massive ancient dolomite units: an example from the Dinantian of Belgium[J]. Sedimentology, 1994, 41(3): 567-584.
[54] Qing Hairuo, Bosence D W J, Rose E P F. Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean[J]. Sedimentology, 2001, 48(1): 153-163.
[55] Land L S, Salem M R I, Morrow D W. Paleohydrology of ancient dolomite; geochemical evidence[J]. AAPG Bulletin, 1975, 59(9): 1602-1625.
[56] Reinhold C. Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany[J]. Sedimentary Geology, 1998, 121(1/2): 71-95.
[57] 鄔金華,F(xiàn)ralick P. 米粒狀白云石及其出溶成因[J]. 沉積學(xué)報(bào),1992,10(2):45-53. [Wu Jinhua, Fralick P. Rice-shaped dolomite and its exsolution origin[J]. Acta Sedimentologica Sinica, 1992, 10(2): 45-53.]
[58] Zhu Jingquan. Characteristics and origin of polycrystalline dolomite needles in the Triassic Jialingjiang Formation, Upper Yangtze Platform, southwest China[J]. Sedimentary Geology, 1998, 118(1/2/3/4): 119-126.
[59] 張永生,金振奎,譚健. 鄂爾多斯地區(qū)奧陶系馬四組麥粒狀白云石的發(fā)現(xiàn)及其成因探討[J]. 巖石礦物學(xué)雜志,1999,18(1):18-25. [Zhang Yongsheng, Jin Zhenkui, Tan Jian. The discovery and genetic study of wheat dolomite crystals in the Ordovician Majiagou 4th Formation, Ordos area[J]. Acta Petrologica et Mineralogica, 1999, 18(1): 18-25.]
[60] Shinn E A, Lloyd R M, Ginsburg R N. Anatomy of a modern carbonate tidal-flat, Andros Island, Bahamas[J]. Journal of Sedimentary Research, 1969, 39(3): 1202-1228.
[61] Li Jian, Zhang Wenzheng, Luo Xia, et al. Paleokarst reservoirs and gas accumulation in the Jingbian field, Ordos Basin[J]. Marine and Petroleum Geology, 2008, 25(4/5): 401-415.
The Multiple Dolomitizations in Ordovician Majiagou Carbonate Rocks in Liujiang Basin, Qinhuangdao Area, North China
FENG ShiHai1,2,LI Hong1,JIANG JiaJun1,3,LEI Yun1,NIU YuanZhe1,YANG Rui1,LIU YongJie1
1. State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China 2. Gansu Non-ferrous Metal Geological Exploration Bureau-Tianshui Mineral Exploration Institute, Tianshui, Gansu 741025, China 3. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
Middle Ordovician Majiagou Group, widely distributed in North China, was characterized by layers of marine dolomitic limestones, calcareous dolostones and dolostones in Liujiang Basin, Qinhuangdao area, North China. Four types of carbonate rocks in Majiagou Group were recognized in Liangjiashan Section, Shimenzhai area. From bottom to the top, they are type I- dolomitic wackstones; type II-fine to medium grained dolostones; type III- “wheat shaped” fine to medium grained dolostones; and type IV- calcareous microcrystalline pellets dolostones. Type I rock is mainly composed of microcrystalline calcite with fragments of trilobites and ostracods. Some fine-grained euhedral dolomites are “floating” in the pressolution stylolites and seams, rare in matrix. Petrological analysis and geochemical features of type I rocks indicate that the dolomitization occurred after the pressolution. The pressolution seams and stylolites provided pathways for dolomitizing fluids. Meanwhile, the conversion of clay minerals within the stylolites could provide part of magnesium for the dolomitization; Type II dolostone consists largely of euhedral to subhedral inequigranular (fine to medium grained) dolomites with “cloudy center and clear rim” structure. Photomicrographs of backscattered electron and cathodeluminescence of type II dolostones show that most dolomites have clear zonal structures. The variations of major elements, especially Fe ions between the rings and the intervals in a single dolomite crystal suggest that type II dolomites were formed by multi-stage dolomitizations during the burial history. The dolomite in type III dolostone reveals the feature of unidirectional extending, named as “wheat -shaped” crystals. The long axis orientation of the dolomite is fixed and perpendicular to crystalcaxis. The EPMA analysis indicates that type III dolomite is Fe rich and poor with Mn and Sr. The content of MgO along the long axes is slightly higer than that along the short axes, while CaO content shows the opposite tendency. Both the geochemical and cathodeluminescence features indicate that the “wheat-shaped” dolomite was also the result of burial dolomitization. The diagenetic fluids may play an important role in the formation of the unidirectional extending dolomite crystals; Type IV is calcareous microcrystalline pellets dolostones, with pseudomorphisms of gypsum. This type is mainly composed of microcrystalline to microsparry dolomite, including pellets and algae. The dissolution pores are common in type IV rocks, but had already been filled by poor-Fe sparry calcites totally. The petrology of type IV dolostones indicates that the dolomitization occurred very early, probably formed in lagoon or tidal flat of supratidal zones. In summary, these four types of dolomite in research area are the products of different dolomitizations, varied from very early to burial dolomitizations. From the bottom to the top of this section, the dolomite degree of order declined from 0.8 to 0.47, while the dedolomitization in four types of rocks appears the reverse tendency.
Middle Ordovician Majiagou Group; pressolution stylolite; “wheat-shaped” dolomite; burial dolomitization; Qinhuangdao area of North China
1000-0550(2017)04-0664-17
10.14027/j.cnki.cjxb.2017.04.002
2016-02-23; 收修改稿日期: 2016-09-12
國家自然科學(xué)基金項(xiàng)目(41272115,41272116)[Foundation: National Natural Science Foundation of China, No. 41272115, 41272116]
馮詩海,男,26歲,碩士研究生,石油與天然氣工程,E-mail: fshwsu@126.com
李紅,女,副教授,E-mail: lihong2008@nwu.edu.cn
P588.24+5
A