張寶幸
(中國(guó)石油化工股份有限公司 科技部,北京 100728)
甲烷直接轉(zhuǎn)化研究進(jìn)展
張寶幸
(中國(guó)石油化工股份有限公司 科技部,北京 100728)
甲烷是天然氣、沼氣及可燃冰的主要成分,在世界范圍內(nèi)具有廣泛的分布和巨大的儲(chǔ)量,但目前為止甲烷的使用仍以燃燒的方式為主。如何將儲(chǔ)量巨大的甲烷資源轉(zhuǎn)化為具有更高經(jīng)濟(jì)附加值的產(chǎn)品具有重要的意義。綜述了在多相催化中常見(jiàn)的甲烷直接轉(zhuǎn)化反應(yīng),包括甲烷氧化偶聯(lián)、甲烷無(wú)氧芳構(gòu)化、甲烷無(wú)氧制乙烯和甲烷選擇性氧化制甲醇/甲醛等當(dāng)前的研究熱點(diǎn),并對(duì)其未來(lái)發(fā)展進(jìn)行了展望。
甲烷直接轉(zhuǎn)化;甲烷氧化偶聯(lián);甲烷無(wú)氧芳構(gòu)化;甲烷無(wú)氧直接制乙烯
甲烷是最簡(jiǎn)單也是最穩(wěn)定的一種碳?xì)浠衔铮膬?chǔ)量非常巨大,在天然氣中的比例高達(dá)70%~90%。目前,世界范圍內(nèi)可開(kāi)采的天然氣資源儲(chǔ)量為1.87×1014m3[1],這其中還未包括由于地質(zhì)構(gòu)造復(fù)雜而無(wú)法開(kāi)采的儲(chǔ)量以及更為巨大的可燃冰水合物的含量。由此可知,隨著開(kāi)發(fā)技術(shù)的進(jìn)步,大量的天然氣資源將進(jìn)一步被釋放出來(lái),如何高效利用天然氣資源,尤其是其中的甲烷資源成為一個(gè)不容忽視的命題。盡管甲烷的儲(chǔ)量非常巨大,但目前甲烷的利用方法仍停留在非常原始的階段,約90%的甲烷資源被用作化石燃料直接燃燒,剩余不到10%的甲烷資源也多用于一些間接方法的應(yīng)用,包括將其氧化為CO制成合成氣,再做進(jìn)一步深加工等。
甲烷的選擇活化和定向轉(zhuǎn)化是世界性難題,被譽(yù)為是催化,乃至化學(xué)領(lǐng)域的“圣杯”,長(zhǎng)期以來(lái)一直是國(guó)內(nèi)外科學(xué)家的研究熱點(diǎn)[2-5]。眾所周知,具有四面體對(duì)稱(chēng)性的甲烷分子是自然界中最穩(wěn)定的有機(jī)小分子,它的四個(gè)碳?xì)滏I非常穩(wěn)定,因而往往需要非常劇烈的反應(yīng)條件,如高溫、超強(qiáng)酸等條件才能被活化。在多相催化領(lǐng)域,甲烷的轉(zhuǎn)化主要分為間接轉(zhuǎn)化和直接轉(zhuǎn)化兩方面,其中典型的間接轉(zhuǎn)化包括間接濕法重整、干法重整等,目的是將甲烷轉(zhuǎn)化為合成氣,進(jìn)而從合成氣出發(fā)經(jīng)過(guò)費(fèi)托合成反應(yīng)或甲醇制烯烴等過(guò)程制成高附加值產(chǎn)品[6-10]。這種方法不僅能耗相對(duì)較高、工藝路線較長(zhǎng)、成本較高,而且碳原子的利用率也不高。
本文主要對(duì)甲烷直接轉(zhuǎn)化的研究進(jìn)展進(jìn)行了綜述,包括甲烷氧化偶聯(lián)、甲烷無(wú)氧芳構(gòu)化、甲烷無(wú)氧制乙烯和甲烷選擇性氧化制甲醇/甲醛等。
甲烷氧化偶聯(lián)是指甲烷在氧氣存在的條件下直接轉(zhuǎn)化為乙烯和水的化學(xué)過(guò)程[11]。乙烯是重要的石油化工基礎(chǔ)原料,是合成樹(shù)脂以及其他高分子材料的重要前體。自從1982年Keller和Bhasin發(fā)現(xiàn)甲烷氧化偶聯(lián)反應(yīng)以來(lái),就受到了各國(guó)學(xué)者的極大關(guān)注[12]。Keller等[12]對(duì)超過(guò)2 700篇文獻(xiàn)進(jìn)行統(tǒng)計(jì)整理后發(fā)現(xiàn),只有很少的技術(shù)能在工業(yè)級(jí)別的轉(zhuǎn)化率下保持較高的選擇性,即甲烷的轉(zhuǎn)化率超過(guò)25%、同時(shí)C2的選擇性超過(guò)80%[13]。
Arndt等[11,14]發(fā)現(xiàn)Li/MgO催化劑對(duì)甲烷氧化偶聯(lián)反應(yīng)具有很好的催化效果。他們認(rèn)為L(zhǎng)i能夠在載體表面創(chuàng)造表面缺陷,從而利于O-離子的生成,O-離子被認(rèn)為是活化甲烷的關(guān)鍵[15-16]。然而Li/MgO催化劑在反應(yīng)條件下非常不穩(wěn)定,Li的流失和催化劑的燒結(jié)是催化劑失活的主要原因[11]。研究者一度認(rèn)為L(zhǎng)i/MgO這種由堿金屬摻雜的堿土金屬氧化物具有很大的應(yīng)用潛力,但由于它的不穩(wěn)定性,對(duì)它的研究逐漸減少,取而代之的是多組分協(xié)同催化的氧化物體系,如以Mg、La等具有較強(qiáng)堿性的氧化物為基底、以能促進(jìn)C2選擇性的金屬(Cs,Na,Ba等)和促進(jìn)催化劑活性的金屬(Mn,W等)為摻雜劑的催化劑體系[17]。Na-W-Mn/SiO2是一種反應(yīng)活性?xún)?yōu)異的催化劑[18-21],通常情況下,Na能促進(jìn)Mn、W等活性組分向催化劑表面遷移,同時(shí)也能抑制甲烷的過(guò)度氧化。在該體系中,Na-O-W和Na-O-Mn都被認(rèn)為是該反應(yīng)的活性中心。次表層的Mn的含量也與甲烷的轉(zhuǎn)化率和乙烯的選擇性直接相關(guān)[22]。W主要以WO4的形態(tài)存在于催化劑表面,與催化劑的選擇性和活性直接相關(guān)[23]。由于甲烷氧化偶聯(lián)的產(chǎn)物乙烯和乙烷都比甲烷更容易被氧化,因此為了減少產(chǎn)物的損耗,也有研究者采用相對(duì)溫和的氧化劑,例如S來(lái)進(jìn)行甲烷氧化偶聯(lián)反應(yīng)[24-25]。
關(guān)于甲烷氧化偶聯(lián)的反應(yīng)機(jī)理,研究者們也進(jìn)行了大量的研究[26]。Morales等[27]最早通過(guò)EPR光譜發(fā)現(xiàn)了大量的甲基自由基和[LiO]+的存在,提出甲基自由基是該反應(yīng)的中間產(chǎn)物。在此基礎(chǔ)上,研究者們提出了分為兩步的甲烷氧化偶聯(lián)反應(yīng)機(jī)理:甲烷吸附在催化劑表面,脫去一個(gè)H原子生成甲基自由基;當(dāng)催化劑表面的甲基自由基的濃度足夠高后,甲基自由基偶聯(lián)生成乙烷分子,乙烷分子再脫氫生成乙烯[27-29]。
盡管甲烷氧化偶聯(lián)反應(yīng)已經(jīng)經(jīng)過(guò)了長(zhǎng)期的研究,但目前世界范圍內(nèi)仍然沒(méi)有成功的工業(yè)應(yīng)用實(shí)例。2014年,美國(guó)的Siluria技術(shù)公司在得克薩斯州投資建設(shè)了試驗(yàn)工廠,成為世界上首個(gè)將甲烷氧化偶聯(lián)技術(shù)成功工業(yè)化的案例。該公司采用生物模板法制備了獨(dú)特的無(wú)機(jī)納米線結(jié)構(gòu)的催化劑。Siluria公司研發(fā)的反應(yīng)器分為兩部分:一部分用于將甲烷氧化偶聯(lián)生成乙烯和乙烷;另一部分用于將副產(chǎn)物乙烷裂解成乙烯,裂解反應(yīng)所需的熱量來(lái)自氧化偶聯(lián)反應(yīng)放出的熱量[3,30]。
在臨氧條件下,甲烷在熱力學(xué)上更容易被活化,但也存在一些問(wèn)題,例如,一般情況下臨氧甲烷活化反應(yīng)溫度也較高,氧的存在雖然能降低反應(yīng)的活化能,但仍不可避免地會(huì)導(dǎo)致過(guò)度氧化。因此也有許多研究者將研究重心放在了甲烷無(wú)氧轉(zhuǎn)化方向。由于該過(guò)程全程都沒(méi)有引入氧物種,因而避免了過(guò)度氧化的可能。
早在1989年,就有在Pt/Ga-Silicate催化劑上實(shí)現(xiàn)甲烷無(wú)氧芳構(gòu)化反應(yīng)的報(bào)道[31]。隨后我國(guó)的科研工作者也開(kāi)展了該項(xiàng)研究。1993年Wang等[32]首次將非貴金屬的Mo/HZSM-5催化劑應(yīng)用于甲烷無(wú)氧芳構(gòu)化反應(yīng),并得到了較高的收率。研究者們還對(duì)其他金屬,如W[33-34],Re[35],Co-Ga[36],F(xiàn)e[37-38],V,Cr[39],Zn[40-41]等進(jìn)行了較為系統(tǒng)的研究,但在這些體系中,仍以Mo的活性最高。
經(jīng)過(guò)大量的實(shí)驗(yàn)驗(yàn)證,人們發(fā)現(xiàn)分子篩的孔道分布對(duì)產(chǎn)物選擇性有較大的影響。具體表現(xiàn)為,當(dāng)分子篩的孔徑與芳烴的分子動(dòng)力學(xué)直徑(~0.6 nm)較接近時(shí),芳構(gòu)化產(chǎn)物中芳烴的選擇性較高。因此,HZSM-5,HMCM-22[42-43]和HMCM-49[44-45]分子篩比較適宜用來(lái)制備高活性的甲烷無(wú)氧芳構(gòu)化催化劑。其中,HMCM-22和HMCM-49分子篩不但展現(xiàn)了與HZSM-5分子篩相似的催化活性,而且對(duì)苯的選擇性更高,對(duì)積碳的耐受性也更好。因此,HMCM-22和HMCM-49分子篩成為研究最為廣泛的催化劑載體,尤其是HMCM-22分子篩具有兩種獨(dú)特的孔徑結(jié)構(gòu),二維的10元環(huán)正弦孔和三維的12元環(huán)超籠空穴,后者還有10元環(huán)孔口。這種特殊的孔結(jié)構(gòu)尤其是超籠結(jié)構(gòu)能夠很好地抑制萘和積碳等大分子在孔道內(nèi)的沉積,又具有很高的容碳能力,使其表現(xiàn)出優(yōu)越的催化性能[46]。Liu等[47]利用Mo/TNU-9催化劑的10元環(huán)孔道體系得到了一種具有更高選擇性的MA催化劑,更重要的是該催化劑的酸性非常強(qiáng),且穩(wěn)定性也非常好。
目前對(duì)于最常見(jiàn)的以Mo為主要活性組分、ZSM-5分子篩為載體的催化劑,普遍被接受的反應(yīng)機(jī)理是一種雙功能的催化機(jī)理[48-49]。是制備Mo/分子篩催化劑時(shí)最常見(jiàn)的一種前體,在焙燒過(guò)程中,被分解為隨著焙燒溫度的升高M(jìn)o物種逐漸遷移到分子篩孔道內(nèi)[51];隨后,這些MoOx與B酸位發(fā)生反應(yīng),通過(guò)氧橋鍵形成Mo-O-Al物種[52]。Ma等[53-54]認(rèn)為,在反應(yīng)的初級(jí)階段具有一個(gè)誘導(dǎo)期,此時(shí)部分物種被CH4還原后形成活性位,產(chǎn)物中只有CO2和H2O,沒(méi)有CO和芳烴生成。當(dāng)反應(yīng)進(jìn)行到一定程度時(shí),Mo-O-Al物種被碳化,生成碳化物[51,53],這種碳化物被認(rèn)為對(duì)芳構(gòu)化反應(yīng)具有催化作用[55]。與此同時(shí),在碳化物表面生成的CHx二聚成C2Hx,隨后C2Hx在B酸位上進(jìn)一步聚合環(huán)化形成不同種類(lèi)的芳烴[56]。當(dāng)分子篩的酸性較為合適時(shí),可得到較高的甲烷轉(zhuǎn)化率和芳烴收率。而如果想要得到較好的催化反應(yīng)性能則需要找到Mo物種和B酸位的平衡點(diǎn)。顯然,太多的Mo會(huì)減少B酸位的數(shù)量,過(guò)多的Mo甚至?xí)治g分子篩的骨架,導(dǎo)致分子篩骨架的坍塌或芳化構(gòu)過(guò)程被抑制[51]。
甲烷無(wú)氧芳構(gòu)化反應(yīng)常常伴隨著大量積碳的生成,這些覆蓋在酸性位表面或沉積在分子篩孔道內(nèi)的積碳往往是阻礙芳構(gòu)化反應(yīng)的主要原因[53,57-59]。Tempelman等[57]認(rèn)為造成Mo/HZSM-5催化劑失活的主要原因在于分子篩外表面上生成的碳物種。這些層狀的碳結(jié)構(gòu)是由多元芳香環(huán)構(gòu)成的碳?xì)浠衔锝M成的,它們會(huì)阻止反應(yīng)物與分子篩微孔中的B酸位結(jié)合。同時(shí)由于碳化后的Mo物種與分子篩的相互作用有所減弱,因此增加了納米粒子燒結(jié)的幾率,進(jìn)而造成分子篩表面Mo物種分散度下降,從而降低了甲烷的轉(zhuǎn)化活性。Lezcano-González等[60]通過(guò)原位X射線近邊吸收光譜以及X射線衍射結(jié)果發(fā)現(xiàn),在反應(yīng)過(guò)程中Mo物種會(huì)進(jìn)一步轉(zhuǎn)變?yōu)镸oC3,該物種與苯的生成直接相關(guān),但MoC3的團(tuán)聚作用和表面積碳會(huì)直接導(dǎo)致催化劑失活。
大量的研究表明,由于積碳的產(chǎn)生,催化劑的活性在經(jīng)過(guò)數(shù)小時(shí)的反應(yīng)后就會(huì)大幅下降。而且在較高的反應(yīng)溫度下,積碳的產(chǎn)生幾乎是無(wú)法避免的,所以積碳的消除和催化劑的再生也是一個(gè)重要的研究方向。通常情況下,可以通過(guò)氧化[43,61-62]或氫化[62-63]的方法來(lái)消除Mo/分子篩催化劑上的積碳。Ma等[64]通過(guò)程序升溫氧化實(shí)驗(yàn)發(fā)現(xiàn)甲烷無(wú)氧芳構(gòu)化反應(yīng)至少存在三種以上的積碳,分別是與Mo物種形成的碳化物、在Mo物種表面形成的積碳和在酸性位表面形成的芳化物積碳。經(jīng)過(guò)程序升溫氫化后,絕大多數(shù)在Mo物種表面形成的積碳以及芳化物積碳都能被消除,且經(jīng)過(guò)氫氣處理后的催化劑基本能恢復(fù)原有的活性。Lu等[61]分別用O2和H2對(duì)失活的Mo/HZSM5催化劑進(jìn)行再生,他們發(fā)現(xiàn)在900 ℃的氫氣氣氛下雖然也能將催化劑表面的積碳消除,但再生后催化劑的穩(wěn)定性卻不如在氧氣氣氛中550 ℃下再生的催化劑。這或許是由于氫氣氣氛的除碳溫度太高,以至于許多Mo2C物種發(fā)生了燒結(jié),從而損失了部分活性。Ma等[63]還通過(guò)向空氣中添加NO的方法來(lái)降低再生溫度,而且通過(guò)這種方法再生的催化劑具有更好的穩(wěn)定性。
由于催化劑需要頻繁的再生,因此人們常采用周期性切換進(jìn)料的模式來(lái)應(yīng)對(duì)這一問(wèn)題[65-68]。Shu等[66]在以Mo/HZSM5為催化劑進(jìn)行甲烷無(wú)氧芳構(gòu)化反應(yīng)的過(guò)程中采用了每30 min切換反應(yīng)氣(CH4或H2)的方式來(lái)穩(wěn)定催化劑的性能。他們發(fā)現(xiàn)這種方式能有效地維持催化劑的活性。在連續(xù)固定床反應(yīng)器中,該催化劑在2 h內(nèi)就喪失了催化活性,而在切換反應(yīng)氣的周期性反應(yīng)器中,催化劑的選擇性和轉(zhuǎn)化率均能維持在較高的水平。Xu等[68-69]發(fā)現(xiàn)這種周期切換的操作模式不僅能維持催化劑的活性,而且催化劑在多次再生后它的結(jié)構(gòu)也不會(huì)被破壞。
此外,Liu等[70]還將甲烷無(wú)氧芳構(gòu)化反應(yīng)與甲醇甲基化反應(yīng)耦合在一起,提高了反應(yīng)效率。他們采用Mo/HZSM-5催化劑,同時(shí)在反應(yīng)原料中加入微量的甲醇,該反應(yīng)能夠直接得到甲苯,在26%的反應(yīng)轉(zhuǎn)化率下,選擇性高達(dá)91%,且在60 h的評(píng)價(jià)時(shí)間內(nèi)催化劑表現(xiàn)出非常好的穩(wěn)定性。
除了催化劑方面的研究,研究者們還在反應(yīng)器的選擇上進(jìn)行了相應(yīng)的嘗試,以提高反應(yīng)效率。膜反應(yīng)器就是一類(lèi)近來(lái)獲得廣泛關(guān)注的反應(yīng)器[71-72]。利用膜反應(yīng)器的單向選擇穿透特性,Xue等[73]采用LaWMo氧化物陶瓷制備了膜反應(yīng)器,能夠使反應(yīng)生成的氫氣及時(shí)排出,在700 ℃的條件下,膜反應(yīng)器的反應(yīng)轉(zhuǎn)化效果提升了40%~60%。Morejudo等[74]通過(guò)基于BaZrO3的共離子膜反應(yīng)器技術(shù)極大地延長(zhǎng)了反應(yīng)的周期。在整個(gè)過(guò)程中,該反應(yīng)器一方面可以通過(guò)電化學(xué)方法沿著膜反應(yīng)器連續(xù)去除H2,另一方面又可以通過(guò)分散性地注入O2來(lái)抑制催化劑表面的積碳,實(shí)現(xiàn)了甲烷的高效轉(zhuǎn)化。
近年來(lái),Guo等[5]發(fā)現(xiàn)了一種在高溫下直接將甲烷轉(zhuǎn)化為乙烯的方法。將具有高催化活性的單中心低價(jià)鐵原子通過(guò)兩個(gè)碳原子和一個(gè)硅原子鑲嵌在氧化硅或碳化硅晶格中,形成高溫穩(wěn)定的催化活性中心。在反應(yīng)溫度1 090 ℃的條件下,甲烷的單程轉(zhuǎn)化率達(dá)48.1%、乙烯的選擇性為48.4%、所有產(chǎn)物(乙烯、苯和萘)的選擇性大于 99%;且經(jīng)過(guò)60 h的壽命評(píng)價(jià),催化劑仍保持極好的穩(wěn)定性。
通過(guò)原位真空紫外單光子電離質(zhì)譜實(shí)驗(yàn)以及理論計(jì)算模擬,研究者發(fā)現(xiàn)甲烷分子可在配位不飽和的單鐵中心上催化活化脫氫,獲得表面吸附態(tài)的甲基自由基,隨后在氣相中經(jīng)自由基偶聯(lián)反應(yīng)生成乙烯和其他高碳芳烴分子(如苯和萘等)。與天然氣轉(zhuǎn)化的傳統(tǒng)路線相比,該研究徹底摒棄了高能耗的合成氣制備過(guò)程,大大縮短了工藝路線,反應(yīng)過(guò)程本身實(shí)現(xiàn)了CO2零排放,碳原子利用效率達(dá)到100%。
與之前提到的三種反應(yīng)相比,直接將甲烷氧化成甲醇或甲醛反應(yīng)的研究進(jìn)展相對(duì)緩慢。這是因?yàn)樵诟邷胤磻?yīng)狀態(tài)下,甲烷的氧化產(chǎn)物甲醇或甲醛,都比甲烷更容易被氧化。因此在一個(gè)連續(xù)的反應(yīng)過(guò)程中,甲醇和甲醛的收率會(huì)非常低[75]。盡管此前已有不少研究[76-78],但目前該反應(yīng)仍難以具有工業(yè)化的可能。
甲烷直接轉(zhuǎn)化對(duì)于未來(lái)的能源結(jié)構(gòu)以及化工生產(chǎn)方式的變革具有重要意義。但由于甲烷本身的化學(xué)惰性,人們目前仍然無(wú)法以工業(yè)化規(guī)模實(shí)現(xiàn)甲烷的直接轉(zhuǎn)化。在過(guò)去數(shù)年間,得益于新的材料合成方法、更先進(jìn)的催化表征手段和評(píng)價(jià)手段以及高性能計(jì)算的飛速發(fā)展,人們對(duì)甲烷直接轉(zhuǎn)化的反應(yīng)機(jī)理有了更深刻的認(rèn)識(shí)。但鑒于目前許多甲烷催化反應(yīng)過(guò)程仍存在反應(yīng)條件較為苛刻、催化劑壽命較短等問(wèn)題,催化工作者仍面臨艱巨的挑戰(zhàn)。
[1] BP. BP statistical review of world energy[EB/OL].[2016-10-12].http://www. bp. com/en/global/corporate/energyeconomics/statistical-review-of-world-energy/natural-gas/ natural-gas-reserves. html.
[2] Horn R,Schl?gl R. Methane activation by heterogeneous catalysis[J].Catal Lett,2015,145(1):23-39.
[3] 邊文越,李澤霞,冷伏海. 甲烷直接制乙烯國(guó)家發(fā)展態(tài)勢(shì)分析[J].科學(xué)觀察,2015,10(3):1-11.
[4] Tang Pei,Zhu Qingjun,Wu Zhaoxuan,et al. Methane activation:The past and future[J].Energy Environ Sci,2014,7(8):2580-2591.
[5] Guo Xiaoguang,F(xiàn)ang Guangzong,Li Gang,et al. Direct,nonoxidative conversion of methane to ethylene,aromatics,and hydrogen[J].Science,2014,344(6184):616-619.
[6] Torres G H M,de Jong K P. Catalysts for production of lower olefi ns from synthesis gas:A review[J].ACS Catal,2013,3(9):2130-2149.
[7] Elbashir N O,Mirodatos C,Holmen A,et al. Natural gas conversion:Current status and the potentials in the light of the NGCS-10[J].Catal Today,2014,228:1-4.
[8] Jiao F,Li J,Pan X,et al. Selective conversion of syngas to light olefi ns[J].Science,2016,351(6277):1065-1068.
[9] Zhong Liangshu,Yu Fei,An Yunlei,et al. Cobalt carbide nanoprisms for direct production of lower olefi ns from syngas[J].Nature,2016,538(7623):84-87.
[10] Li Jinzhe,Wei Yingxu,Chen Jingrun,et al. Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions[J].J Am Chem Soc,2012,134(2):836-839.
[11] Arndt S,Laugel G,Levchenko S,et al. A critical assessment of Li/MgO-based catalysts for the oxidative coupling of methane[J].Catal Rev,2011,53(4):424-514.
[12] Keller G E,Bhasin M M. Synthesis of ethylene via oxidative coupling of methane[J].J Catal,1982,73(1):9-19.
[13] Xu Yide,Bao Xinhe,Lin Liwu. Direct conversion of methane under nonoxidative conditions[J].J Catal,2003,216(1/2):386-395.
[14] Ito T,Lunsford J H. Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide[J].Nature,1985,314(6013):721-722.
[15] Korf S J,Roos J A,de Bruijn N A,et al. Oxidative coupling of methane over lithium doped magnesium oxide catalysts[J]. Catal Today,1988,2(5):535-545.
[16] Myrach P,Nilius N,Levchenko S V,et al. Temperaturedependent morphology,magnetic and optical properties of Lidoped MgO[J].ChemCatChem,2010,2(7):854-862.
[17] Zavyalova U,Holena M,Schl?gl R,et al. Statistical analysis of past catalytic data on oxidative methane coupling for newinsights into the composition of high-performance catalysts[J]. ChemCatChem,2011,3(12):1935-1947.
[18] Colmenares M G,Simon U,Yildiz M,et al. Oxidative coupling of methane on the Na2WO4-MnxOycatalyst:COK-12 as an inexpensive alternative to SBA-15[J].Catal Commun,2016,85:75-78.
[19] Fleischer V,Steuer R,Parishan S,et al. Investigation of the surface reaction network of the oxidative coupling of methane over Na2WO4/Mn/SiO2catalyst by temperature programmed and dynamic experiments[J].J Catal,2016,341:91-103.
[20] Elkins T W,Hagelin-Weaver H E. Characterization of Mn-Na2WO4/SiO2and Mn-Na2WO4/MgO catalysts for the oxidative coupling of methane[J].Appl Catal,A,2015,497:96-106.
[21] Sadjadi S,Jaso S,Godini H R,et al. Feasibility study of the Mn-Na2WO4/SiO2catalytic system for the oxidative coupling of methane in a fl uidized-bed reactor[J].Catal Sci Technol,2015,5(2):942-952.
[22] Ji Shengfu,Xiao Tiancun,Li Suben,et al. The relationship between the structure and the performance of Na-W-Mn/ SiO2catalysts for the oxidative coupling of methane[J].Appl Catal,A,2002,225(1/2):271-284.
[23] Ji Shengfu,Xiao Tiancun,Li Suben,et al. Surface WO4tetrahedron:The essence of the oxidative coupling of methane over M-W-Mn/SiO2catalysts[J].J Catal,2003,220(1):47-56.
[24] Zhu Q,Wegener S L,Xie C,et al. Sulfur as a selective‘soft’ oxidant for catalytic methane conversion probed by experiment and theory[J].Nat Chem,2013,5(2):104-109.
[25] Peter M,Marks T J. Platinum metal-free catalysts for selective soft oxidative methane→ethylene coupling. Scope and mechanistic observations[J].J Am Chem Soc,2015,137(48):15234-15240.
[26] Schwach P,Hamilton N,Eichelbaum M,et al. Structure sensitivity of the oxidative activation of methane over MgO model catalysts:Ⅱ. Nature of active sites and reaction mechanism[J].J Catal,2015,329:574-587.
[27] Morales E,Lunsford J H. Oxidative dehydrogenation of ethane over a lithium-promoted magnesium oxide catalyst[J].J Catal,1989,118(1):255-265.
[28] Driscoll D J,Lunsford J H. Gas-phase radical formation during the reactions of methane,ethane,ethylene,and propylene over selected oxide catalysts[J].J Phys Chem,1985,89(21):4415-4418.
[29] Lin Chiu-Hsun,Wang Ji-Xiang,Lunsford J H. Oxidative dimerization of methane over sodium-promoted calcium oxide[J].J Catal,1988,111(2):302-316.
[30] Tullo A. Siluria’s oxidative coupling nears reality[J].Chem Eng News,2014,92(27):20-21.
[31] Jacobs P A,Santen R A. Zeolites:Facts,fi gures,future[C]// Proceedings of the 8th International Zeolite Conference,Amsterdam:Elsevier,1989.
[32] Wang Linsheng,Tao Longxiang,Xie Maosong,et al. Dehydrogenation and aromatization of methane under non-oxidizing conditions[J].Catal Lett,1993,21(1):35-41.
[33] Zeng Jinlong,Xiong Zhitao,Zhang Hongbin,et al. Nonoxidative dehydrogenation and aromatization of methane over W/HZSM-5-based catalysts[J].Catal Lett,1998,53(1):119-124.
[34] Huang Liqiang,Zeng Jinlong,Lin Guodong,et al. Study on doubly promoted W/MCM-22-based catalysts for dehydroaromatization of CH4in the absence of O2[J].Acta Chim Sinica,2004,62(18):1706-1712.
[35] Wang L,Ohnishi R,Ichikawa M. Novel rhenium-based catalysts for dehydrocondensation of methane with CO/CO2towards ethylene and benzene[J].Catal Lett,1999,62(1):29-33.
[36] Liu Junfeng,Jin Ling,Liu Yuan,et al. Methane aromatization over cobalt and gallium-impregnated HZSM-5 catalysts[J].Catal Lett,2008,125(3):352-358.
[37] Lai Y,Veser G. The nature of the selective species in Fe-HZSM-5 for non-oxidative methane dehydroaromatization[J]. Catal Sci Technol,2016,6(14):5440-5452.
[38] Tan P. Active phase,catalytic activity,and induction period of Fe/zeolite material in nonoxidative aromatization of methane[J].J Catal,2016,338:21-29.
[39] Weckhuysen B M,Wang D,Rosynek M P,et al. Conversion of methane to benzene over transition metal ion ZSM-5 zeolites[J].J Catal,1998,175(2):338-346.
[40] Lai Y,Veser G. Zn-HZSM-5 catalysts for methane dehydroaromatization[J].Environ Progress Sustain Energy,2016,35(2):334-344.
[41] Abdelsayed V,Smith M W,Shekhawat D. Investigation of the stability of Zn-based HZSM-5 catalysts for methane dehydroaromatization[J].Appl Catal,A,2015,505:365-374.
[42] Shu Y,Ohnishi R,Ichikawa M. Stable and selective dehydrocondensation of methane towards benzene on modifi ed Mo/ HMCM-22 catalyst by the dealumination treatment[J].Catal Lett,2002,81(1):9-17.
[43] Ma Ding,Shu Yuying,Han Xiuwen,et al. Mo/HMCM-22 catalysts for methane dehydroaromatization: A multinuclear MAS NMR study[J].J Phys Chem B,2001,105(9):1786-1793.
[44] Wang D Y,Kan Q B,Xu N,et al. Study on methane aromatization over MoO3/HMCM-49 catalyst[J].Catal Today,2004,93/95:75-80.
[45] Yao S,Sun C,Li J,et al. A 13CO isotopic study on the CO promotion effect in methane dehydroaromatization reaction over a Mo/HMCM-49 catalyst[J].J Nat Gas Chem,2010,19(1):1-5.
[46] Ma Shuqi,Guo Xiaoguang,Zhao Lingxiao,et al. Recent progress in methane dehydroaromatization:From laboratorycuriosities to promising technology[J].J Energy Chem,2013,22(1):1-20.
[47] Liu Heng,Yang Shuang,Wu Shujie,et al. Synthesis of Mo/ TNU-9(TNU-9 Taejon National University No.9) catalyst and its catalytic performance in methane non-oxidative aromatization[J].Energy,2011,36(3):1582-1589.
[48] Ma Ding,Zhang Weiping,Shu Yuying,et al. MAS NMR,ESR and TPD studies of Mo/HZSM-5 catalysts:Evidence for the migration of molybdenum species into the zeolitic channels[J].Catal Lett,2000,66(3):155-160.
[49] Liu S,Wang L,Ohnishi R,et al. Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane to benzene and naphthalene XAFS/TG/DTA/MASS/FTIR characterization and supporting effects[J].J Catal,1999,181(2):175-188.
[50] Xu Yide,Liu Wei,Wong She-Tin,et al. Dehydrogenation and aromatization of methane in the absence of oxygen on Mo/ HZSM-5 catalysts before and after NH4OH extraction[J]. Catal Lett,1996,40(3):207-214.
[51] Borry R W,Kim Y H,Huffsmith A,et al. Structure and density of Mo and acid sites in Mo-exchanged H-ZSM5 catalysts for nonoxidative methane conversion[J].J Phys Chem B,1999,103(28):5787-5796.
[52] Ma Ding,Han Xuwen,Zhou Danhong,et al. Towards guest-zeolite interactions:An NMR spectroscopic approach[J].Chem—Eur J,2002,8(19):4557-4561.
[53] Ma Ding,Shu Yuying,Cheng Mojie,et al. On the induction period of methane aromatization over Mo-based catalysts[J].J Catal,2000,194(1):105-114.
[54] Liu Hongmei,Su Lingling,Wang Hongxia,et al. The chemical nature of carbonaceous deposits and their role in methane dehydro-aromatization on Mo/MCM-22 catalysts[J]. Appl Catal,A,2002,236(1/2):263-280.
[55] Zheng H,Ma D,Bao X,et al. Direct observation of the active center for methane dehydroaromatization using an ultrahigh fi eld95Mo NMR spectroscopy[J].J Am Chem Soc,2008,130(12):3722-3723.
[56] Ma Ding,Shu Yuying,Zhang Weiping,et al. In situ1H MAS NMR spectroscopic observation of proton species on a Mo-modifi ed HZSM-5 zeolite catalyst for the dehydroaromatization of methane[J].Angew Chem,Int Ed,2000,39(16):2928-2931.
[57] Tempelman C H L,Hensen E J M. On the deactivation of Mo/ HZSM-5 in the methane dehydroaromatization reaction[J]. Appl Catal,B,2015,176/177:731-739.
[58] Tempelman C H L,de Rodrigues V O,van Eck E R H,et al. Desilication and silylation of Mo/HZSM-5 for methane dehydroaromatization[J].Microporous Mesoporous Mater,2015,203:259-273.
[59] Fan Fengtao,Sun Keju,F(xiàn)eng Zhaochi,et al. From molecular fragments to crystals:A UV Raman spectroscopic study on the mechanism of Fe-ZSM-5 synthesis[J].Chem—Eur J, 2009,15(13):3268-3276.
[60] Lezcano-González I,Oord R,Rovezzi M,et al. Molybdenum speciation and its impact on catalytic activity during methane dehydroaromatization in zeolite ZSM-5 as revealed by operando X-Ray methods[J].Angew Chem,Int Ed,2016,55(17):5215-5219.
[61] Lu Yuan,Xu Zhusheng,Tian Zhijian,et al. Methane aromatization in the absence of an added oxidant and the bench scale reaction test[J].Catal Lett,1999,62(2):215-220.
[62] Shu Y,Ohnishi R,Ichikawa M. Pressurized dehydrocondensation of methane toward benzene and naphthalene on Mo/ HZSM-5 catalyst:Optimization of reaction parameters and promotion by CO2addition[J].J Catal,2002,206(1):134-142.
[63] Ma H,Kojima R,Ohnishi R,et al. Efficient regeneration of Mo/HZSM-5 catalyst by using air with NO in methane dehydro-aromatization reaction[J].Appl Catal,A,2004,275(1/2):183-187.
[64] Ma Ding,Wang Dezheng,Su Lingling,et al. Carbonaceous deposition on Mo/HMCM-22 catalysts for methane aromatization:A TP technique investigation[J].J Catal,2002,208(2):260-269.
[65] Rodrigues A C C,Monteiro J L F. The use of CH4/H2cycles on dehydroaromatization of methane over MoMCM-22[J]. Catal Commun,2008,9(6):1060-1065.
[66] Shu Y,Ma H,Ohnishi R,et al. Highly stable performance of catalytic methane dehydrocondensation towards benzene on Mo/HZSM-5 by a periodic switching treatment with H2and CO2[J].Chem Commun,2003(1):86-87.
[67] Cui Yanbin,Xu Yuebing,Suzuki Yoshizo,et al. Experimental evidence for three rate-controlling regions of the non-oxidative methane dehydroaromatization over Mo/HZSM-5 catalyst at 1 073 K[J].Catal Sci Technol,2011,1(5):823-829.
[68] Xu Yuebing,Lu Jiangyin,Wang Jide,et al. The catalytic stability of Mo/HZSM-5 in methane dehydroaromatization at severe and periodic CH4-H2switch operating conditions[J]. Chem Eng J,2011,168(1):390-402.
[69] Xu Yuebing,Wang Jide,Suzuki Yoshizo,et al. Effect of transition metal additives on the catalytic stability of Mo/ HZSM-5 in the methane dehydroaromatization under periodic CH4-H2switch operation at 1 073 K[J].Appl Catal,A,2011,409/410:181-193.
[70] Liu Yi,Li Defu,Wang Tianyun,et al. Effi cient conversion of methane to aromatics by coupling methylation reaction[J]. ACS Catal,2016,6(8):5366-5370.
[71] Corredor E C,Chitta P,Deo M. Membrane reactor system model for gas conversion to benzene[J].Fuel,2016,179:202-209.
[72] Natesakhawat S,Means N C,Howard B H,et al. Improved benzene production from methane dehydroaromatization over Mo/HZSM-5 catalysts via hydrogen-permselective palladium membrane reactors[J].Catal Sci Technol,2015,5(11):5023-5036.
[73] Xue Jian,Chen Yan,Wei Yanying,et al. Gas to liquids:Natural gas conversion to aromatic fuels and chemicals in a hydrogen-permeable ceramic hollow fiber membrane reactor[J].ACS Catal,2016,6(4):2448-2451.
[74] Morejudo S H,Zanón R,Escolástico S,et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor[J].Science,2016,353(6299):563-566.
[75] Labinger J A. Selective alkane oxidation:Hot and cold approaches to a hot problem[J].J Mol Catal A:Chem,2004,220(1):27-35.
[76] Indarto A,Yang D R,Palgunadi J,et al. Partial oxidation of methane with Cu-Zn-Al catalyst in a dielectric barrier discharge[J].Chem Eng Process:Process Int,2008,47(5):780-786.
[77] Beznis N V,Weckhuysen B M,Bitter J H. Partial oxidation of methane over Co-ZSM-5:Tuning the oxygenate selectivity by altering the preparation route[J].Catal Lett,2010,136(1):52-56.
[78] Fellah M F,Onal I. Direct methane oxidation to methanol by N2O on Fe- and Co-ZSM-5 clusters with and without water:A density functional theory study[J].J Phys Chem C,2010,114(7):3042-3051.
(編輯 王 萍)
Progresses in the research for direct conversion of methane
Zhang Baoxing
(China Petroleum & Chemical Corporation Technology Department,Beijing 100728,China)
Methane is a main constituent in natural gas,bio-gas and crystalline methane hydrates,whose reserves are pretty vast in the world. However,most of the methane is burned as energy source,due to the lack of the methods to convert methane into some goods with high added value. As a result,it is very important to make full use of this kind of resource. The direct conversion of methane with heterogeneous catalysis was introduced,namely methane oxidative coupling,methane dehydroaromatization and direct nonoxidative conversion to ethylene. The developments in the direct conversion of methane in future were forecasted.
direct conversion of methane;methane oxidative coupling;methane dehydroaromatization;direct nonoxidative conversion of methane to ethylene
1000-8144(2017)04-0503-07
TQ 032.4
A
10.3969/j.issn.1000-8144.2017.04.019
2016-10-20;[修改稿日期]2017-02-26。
張寶幸(1971—),女,河北省河間市人,碩士,高級(jí)工程師,電話 010-59968782,電郵 zhangbx@sinopec.com。