国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

帶線性延遲項(xiàng)的Volterra積分方程研究(英文)

2017-08-28 08:18鄭偉珊
關(guān)鍵詞:中圖線性分類號

鄭偉珊

Abstract This paper is concerned about the Volterra integral equation with linear delay. First we transfer the integral interval [0,T] into interval [-1, 1] through the conversion of variables. Then we use the Gauss quadrature formula to get the approximate solutions. After that the Chebyshev spectral-collocation method is proposed to solve the equation. With the help of Gronwall inequality and some other lemmas, a rigorous error analysis is provided for the proposed method, which shows that the numerical error decay exponentially in the innity norm and the Chebyshev weighted Hilbert space norms. In the end, numerical example is given to confirm the theoretical results.

Key words Chebyshev spectral-collocation method; linear delay; Volterra integral equations; error analysis

中圖分類號 O242.2文獻(xiàn)標(biāo)識碼 A文章編號 1000-2537(2017)04-0083-06

摘 要 本文主要研究帶線性延遲項(xiàng)的Volterra型積分方程收斂情況. 首先通過線性變換, 我們將原先定義在[0,T]區(qū)間上帶線性延遲項(xiàng)的Volterra型積分方程轉(zhuǎn)換成定義在固定區(qū)間[-1,1]上的方程, 然后利用Gauss積分公式求得近似解, 進(jìn)而再利用Chebyshev譜配置方法分析該方程的收斂性, 最終借助格朗沃不等式及相關(guān)引理分析獲得方程在L∞和L2ωc 范數(shù)意義下呈現(xiàn)指數(shù)收斂的結(jié)論. 最后給出數(shù)值例子, 驗(yàn)證理論證明的結(jié)論.

關(guān)鍵詞 Chebyshev譜配置方法; 線性延遲項(xiàng); Volterra型積分方程; 誤差分析

Equations of this type arise as models in many fields, such as the Mechanical problems of physics, the movement of celestial bodies problems of astronomy and the problem of biological population original state changes. They are also applied to network reservoir, storage system, material accumulation, different fields of industrial process etc, and solve a lot problems from mathematical models of population statistics, viscoelastic materials and insurance abstracted. The Volterra integral equation with linear delay is one of the important type of Volterra integral equations with great significance in both theory and applications. There are many methods to solve Volterra integral equations, such as Legendre spectral-collocation method[1], Jacobi spectral-collocation method[2], spectral Galerkin method[3-4], Chebyshev spectral-collocation method[5] and so on. In this paper, inspired by[5] and [6], we use a Chebyshev spectral-collocation method to solve Volterra integral equations with linear delay.

References:

[1] TANG T, XU X, CHENG J. On Spectral methods for Volterra integral equation and the convergence analysis[J]. J Comput Math, 2008,26(6):825-837.

[2] CHEN Y, TANG T. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equation with a weakly singular kernel[J]. Math Comput, 2010,79(269):147-167.

[3] WAN Z, CHEN Y, HUANG Y. Legendre spectral Galerkin method for second-kind Volterra integral equations[J]. Front Math China, 2009,4(1):181-193.

[4] XIE Z, LI X, TANG T. Convergence analysis of spectral galerkin methods for Volterra type integral equations[J]. J Sci Comput, 2012,53(2):414-434.

[5] GU Z, CHEN Y. Chebyshev spectral collocation method for Volterra integral equations[J]. Contem Math, 2013,586:163-170.

[6] LI J, ZHENG W, WU J. Volterra integral equations with vanishing delay[J]. Appl Comput Math, 2015,4(3):152-161.

[7] CANUTO C, HUSSAINI M, QUARTERONI A, et al. Spectral method fundamentals in single domains[M]. New York: Spring-Verlag, 2006.

[8] SHEN J, TANG T. Spectral and high-order methods with applications[M]. Beijing: Science Press, 2006.

[9] MASTROIANNI G, OCCORSIO D. Optional system od nodes for Lagrange interpolation on bounded intervals[J]. J Comput Appl Math, 2001,134(1-2):325-341.

[10] KUFNER A, PERSSON L. Weighted inequality of Hardys Type[M]. New York: World Scientific, 2003.

[11] NEVAI P. Mean convergence of Lagrange interpolation[J]. Trans Amer Math Soc, 1984,282:669-698.

猜你喜歡
中圖線性分類號
關(guān)于非齊次線性微分方程的一個(gè)證明
非齊次線性微分方程的常數(shù)變易法
線性耳飾
The Tragic Color of the Old Man and the Sea
Connection of Learning and Teaching from Junior to Senior
English Language Teaching in Yunann Province: Opportunities & Challenges
A Study of Chinese College Athletes’ English Learning
探究向量的線性、坐標(biāo)運(yùn)算
鹤壁市| 藁城市| 蒙城县| 莱西市| 安吉县| 富川| 金华市| 大姚县| 静安区| 商水县| 东乡族自治县| 凤翔县| 卢龙县| 龙井市| 广丰县| 溆浦县| 惠东县| 肥城市| 翁源县| 凤冈县| 舞阳县| 陆河县| 托克托县| 武强县| 腾冲县| 高青县| 财经| 河源市| 东海县| 波密县| 兰溪市| 龙陵县| 凤阳县| 宣汉县| 黄大仙区| 潍坊市| 墨竹工卡县| 舒兰市| 四子王旗| 桦南县| 南开区|