張 郡,楊利麗,劉欽毅,孟憲榮,劉 睿,王瑞強,田海清,萬 騰
(吉林大學(xué)第二醫(yī)院,吉林 長春130041)
*通訊作者
P-15肽促進間充質(zhì)干細(xì)胞向軟骨細(xì)胞分化的實驗研究
張 郡,楊利麗,劉欽毅,孟憲榮*,劉 睿,王瑞強,田海清,萬 騰
(吉林大學(xué)第二醫(yī)院,吉林 長春130041)
目的 本研究探討P-15肽能否有效激活、促進軟骨細(xì)胞向增殖分化。方法 在不同的培養(yǎng)基培養(yǎng)鼠間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs),培養(yǎng)細(xì)胞采用阿辛藍染色和堿性磷酸酶染色,并行堿性磷酸酶定量;免疫組織化學(xué)及蛋白免疫印跡檢測軟骨形成特異性標(biāo)記。結(jié)果 ①與對照組相比,P-15肽組呈現(xiàn)大量的堿性磷酸酶陽性細(xì)胞,蛋白聚糖的合成明顯增加;②免疫組織化學(xué)檢測提示P-15肽組collagen X (COLX)、Runt-related transcription factor 2(RUNX2)、matrix metallopeptidase 13(MMP13)明顯高于對照組;③蛋白免疫印跡檢測提示P-15肽組在RUNX2、MMP-13、Vascular endothelial growth factor(VEGF)、COLX幾個因子表達明顯升高(P<0.05)。結(jié)論 P-15肽能有效激活、促進間充質(zhì)干細(xì)胞增殖和向軟骨細(xì)胞分化。
P-15肽;軟骨細(xì)胞;軟骨內(nèi)骨化;增殖;分化
(ChinJLabDiagn,2017,21:1425)
隨著當(dāng)今社會人口老齡化逐年呈上升趨勢,由多種原因?qū)е碌墓钦鄣燃膊∫踩找嬖龆?。在骨折愈合過程當(dāng)中,成骨速度是影響愈合速度及愈合率的關(guān)鍵因素[1-3]。影響成骨率的一個關(guān)鍵因素是相互作用間質(zhì)細(xì)胞的表面細(xì)胞外基質(zhì)[4,5],其中最主要的是I型膠原蛋白[6]。P-15肽為膠原蛋白Iα-1鏈的一段15個氨基酸序列,為人工合成的人類Ⅰ型膠原蛋白細(xì)胞結(jié)合域[7]?,F(xiàn)已證明P-15肽通過α2β1亞基發(fā)揮作用,誘導(dǎo)骨細(xì)胞和成骨細(xì)胞發(fā)生粘附,遷移,增殖和分化[8,9]。P-15肽調(diào)節(jié)細(xì)胞數(shù)目和組織結(jié)構(gòu)可能的機制是增強活性細(xì)胞的貼附和調(diào)節(jié)細(xì)胞的凋亡[10]。當(dāng)前,P15肽作為增強劑吸附于無機骨基質(zhì)促進脊柱融合手術(shù)中的骨化正在進行臨床試驗[11]。本研究旨在檢測外源性P-15肽對間充質(zhì)干細(xì)胞向軟骨細(xì)胞形態(tài)分化、堿性磷酸酶水平以及對軟骨細(xì)胞基因和蛋白表達的影響。
1.1 細(xì)胞培養(yǎng)及染色
該實驗選用鼠間充質(zhì)干細(xì)胞在DMEM培養(yǎng)基(Dulbecco’s Modified Eagle’s Medium)中在37度,5%CO2的孵箱內(nèi)培養(yǎng)。將第6代細(xì)胞分為P-15肽組和空白對照組分別接種于均勻鋪有P-15肽的培養(yǎng)皿和未做任何處理的培養(yǎng)皿中,制備軟骨誘導(dǎo)分化培養(yǎng)基,每2天換液一次,培養(yǎng)12天,細(xì)胞培養(yǎng)的溫度為37度,濕度95%,CO2濃度為5%。提取第6天的細(xì)胞進行染色分析,剩余細(xì)胞培養(yǎng)至12天進行下一步分析。
1.2 細(xì)胞團的培養(yǎng)及染色
將培養(yǎng)出的第6代細(xì)胞利用0.25%的胰酶消化,在無菌的瓊脂糖溶液(42℃,2%W/v PBS)里重懸,最后細(xì)胞密度為20 000個/μl。在瓊脂糖包裹之前用低聚甲醛將細(xì)胞固定作為陰性對照組,瓊脂糖包裹后未做任何處理的作為陽性對照組,實驗組分3組:BSA組、Ⅰ型膠原組、P-15肽組分別加入等重的牛血清蛋白(BSA)、Ⅰ型膠原、P-15肽。每組取10 μl混合液接種于24孔板,37度孵育2 h,在細(xì)胞周圍添加軟骨培養(yǎng)基,每2天換液一次,第12天取出細(xì)胞團用10%PBS沖洗1 h,然后70%乙醇固定、常規(guī)石蠟包埋、切片及堿性磷酸酶染色、定量。
1.3 免疫組織化學(xué)分析
將第6代細(xì)胞分為P-15肽組和空白對照組分別平鋪在含有P-15肽和空白培養(yǎng)皿內(nèi),結(jié)束后用PBS洗滌2次,再用95%乙醇脫水固定5 min,再用PBS洗滌3次后計入封閉液2 h,然后分別加入1∶50濃度的一抗:COLx、MMP-13、RUNx2,4℃環(huán)境中過夜后吸出一抗,PBS洗滌3次,加入帶有熒光標(biāo)記的二抗室溫孵育1 h。
1.4 蛋白免疫印跡分析
培養(yǎng)12天的細(xì)胞用冰PBS洗滌后,2 000 g離心5 min,棄上清,加入細(xì)胞裂解液300 μl,室溫震蕩20分鐘,14 000 g離心15 min,取上清液進行蛋白免疫印跡分析。
1.5 統(tǒng)計方法
2.1 細(xì)胞培養(yǎng)及染色結(jié)果MSCs進行阿辛藍染色和堿性磷酸酶染色,如圖1所示,與對照組相比實驗組呈現(xiàn)大量堿性磷酸酶陽性細(xì)胞,蛋白聚糖的合成較對照組明顯增加。
2.2 細(xì)胞團培養(yǎng)及染色結(jié)果
MSCs在瓊脂糖或混有膠原或P-15肽的瓊脂糖培養(yǎng)基中培養(yǎng)12天然后行堿性磷酸酶染色。結(jié)果如表1所示,實驗組的細(xì)胞堿性磷酸酶染色較對照組明顯升高(P<0.05)。
圖1 MSCs阿辛藍染色和堿性磷酸酶染色
表1 培養(yǎng)12天堿性磷酸酶定量(kDa)
P<0.05
2.3 免疫組織化學(xué)和蛋白免疫印跡
免疫組織化學(xué)結(jié)果如圖2所示P-15肽組COLX、RUNX2、MMP-13熒光強度明顯強于對照組。蛋白免疫印跡結(jié)果如表2所示,P-15肽組間充質(zhì)細(xì)胞在成軟骨培養(yǎng)基培養(yǎng)12天后的COL X,Runx2,VEGF和MMP13水平較對照組明顯升高。
免疫組織化學(xué)和蛋白免疫印跡結(jié)果提示P-15肽能夠增強MSC向軟骨細(xì)胞的分化。
圖2 Runx2,COL X和MMP13免疫組織化學(xué)染色
ColXRunx2VEGFMMp?13對照組810.887±73.425498.717±48.369400.686±18.480573.867±21.286P?15組1131.652±102.34832.472±64.136732.751±119.7841348.441±119.784
P<0.05
骨折愈合的過程也是骨的再生過程,骨折愈合期間軟骨內(nèi)骨化在骨折修復(fù)和成骨過程當(dāng)中發(fā)揮著至關(guān)重要的作用[12,13]。在軟骨內(nèi)骨化成骨的過程中,軟骨細(xì)胞不斷增殖、分化成熟,肥大區(qū)軟骨細(xì)胞退化死亡,軟骨基質(zhì)鈣化并被骨組織取代,從而完成軟骨內(nèi)成骨的過程[14,15]。軟骨細(xì)胞在細(xì)胞外基質(zhì)中的增殖與分化,依賴于細(xì)胞外基質(zhì)的信號轉(zhuǎn)導(dǎo)[4,5]。
在細(xì)胞增殖與分化的過程中,人工合成的P-15肽被首次發(fā)現(xiàn)參與骨折修復(fù)與重塑過程當(dāng)中[16]。有實驗研究發(fā)現(xiàn),相對于對照組P-15肽能明顯增強鉆孔缺陷的皮質(zhì)骨形成[17]。P-15肽調(diào)節(jié)細(xì)胞數(shù)目和組織結(jié)構(gòu)可能的機制是增強活性細(xì)胞的貼附和調(diào)節(jié)細(xì)胞的凋亡[10]。
軟骨細(xì)胞的堿性磷酸酯酶水平是軟骨細(xì)胞鈣化的標(biāo)志性酶,其活性和數(shù)量,可以被認(rèn)為是軟骨鈣化程度高低的標(biāo)志。蛋白聚糖是軟骨細(xì)胞外基質(zhì)的重要組成成分,維持著軟骨的彈性和可塑性,蛋白聚糖的合成與分解代謝平衡能有效維持軟骨外基質(zhì)結(jié)構(gòu)與功能[18]。本研究對P-15肽促進間充質(zhì)干細(xì)胞的成熟以及向軟骨細(xì)胞分化的假說進行驗證,結(jié)果表明P-15肽干預(yù)的鼠間充質(zhì)干細(xì)胞,呈現(xiàn)堿性磷酸酶、蛋白聚糖的合成較對照組明顯增加,同時堿性磷酸酶定量結(jié)果也提示能明顯促進堿性磷酸酶的增加(P<0.05),表明P-15肽可以顯著促進間充質(zhì)干細(xì)胞的增殖,同時向軟骨細(xì)胞系轉(zhuǎn)化和軟骨內(nèi)骨化。
[1]RK Siu,SS Lu,W Li,et al.Nell-1 protein promotes bone formation in a sheep spinal fusion model[J].Tissue Eng,Part A,2011,17 (7-8):1123.
[2]Reid J.J,JohnsonJ.S,and J.C.Wang.Challenges to bone formation in spinal fusion[J].J Biomech,2010,44(2):213.
[3]J Nerubay,B Marganit,JJ Bubis,et al.Stimulation of bone formation by electrical currenton spinal fusion[J].Spine,1986,11(2):167.
[4]Ching-Fang Chang,Ming-Wei Lee,PY Kuo,et al.Three-dimensional collagen fiber remodeling by mesenchymal stem cells requires the integrin-matrix interaction[J].J Biomed Mater ResA,2007,80(2):466.
[5]RT Franceschi,C Ge,G Xiao,etal.Transcriptional regulation of osteoblasts[J].Cells Tissues Organs,2009,189(1-4):144.
[6]Myllyharju,J.and K.I.Kivirikko,Collagens,modifyingenzymes and their mutations inhumans,flies and worms[J].TrendsGenet,2004,20(1):33.
[7]RS Bhatnagar,JJ Qian,A Wedrychowska,etal.Design of biomimetic habitats for tissue engineering with P-15,a synthetic peptide analogue of collagen.[J].Tissue Eng,1999,(5):53.
[8]Qinyi Liu,Worawat Limthongkul,G Sidhu,et al.Covalent attachment of P15 peptide to titanium surfaces enhances cell attachment,spreading,and osteogenic gene expression [J].J Orthop Res,2012,30(10):1623.
[9]Bhatnagar RS,Qian JJ,Gough CA.The role in cell binding of a beta-bendwithin the triple helical region in collagen alpha 1 (I) chain:structural and biological evidence for conformational tautomeric on fiber surface [J].J Biomol Struct Dyn,1997,(14):547
[10]Barboza EP,de Souza RO,Caula AL,et al.Bone regeneration of localized chronic alveolar defects utilizing cell binding peptide associated with anorganic bovine-derived bone mineral:a clinical and histological study[J].J Periodontol,2002,73(10):1153.
[11]Mobbs RJ,MaharajM,Rao PJ, Clinical outcomes and fusionrates following anterior lumbar interbody fusion with bone graftsubstitute i-FACTOR,an anorganic bone matrix/P-15 composite[J].J Neurosurg Spine,2014,21(6):867.
[12]ChaoE,InoueN.Biophysical stimulation of bone fracture repair,regeneration andremodeling [J].Eur Cell Mater,2003,(6):72.
[13]Barnes GL,Kostenuik PJ,Gerstenfeld LC,et al.Growthfactor regulation of fracture repair[J].J Bone Miner Res,1999,(14):1805.
[14]Koch H.Experimentally studien uber Knochenregeneration und knochencallusbildung [Experimental studies on bone regeneration and callus formation[J].Bruns Beitr Klin Chir,1924,(132):364.
[15]Mc Kibbin B.The biology of fracture healing in long bones[J].J Bone Joint Surg,1978,(60):150.
[16]Qian JJ,Bhatnagar RS.Enhanced cell attachment to anorganic bone mineral in the presence of a synthetic peptide related to collagen [J].J Biomed Mater Res,1996,31(4):545.
[17]Scarano A,Iezzi GPetrone G,Orsini G,et al.Cortical bone regeneration with a synthetic cell-binding peptide:a histologic and histomorphometric pilot study[J].Implant Dent,2003,12(4):318
[18]SL Carney,H Muir.The structure and function of cartilage proteoglycans[J].Physiological Reviews,1988,68(3) :858.
P15 peptide enhances Mesenchymal stem cells chondrocyte differentiation and formation:a experimental study in vitro
ZHANGJun,YANGLi-li,LIUQin-yi,etal.
(TheSecondHospitalofJilinUniversity,Changchun130041,China)
Objective The purpose of the experiment is to clarify whether SyntheticpeptideP15 can promotes chondrogenic differentiation and formation in vitro.Methods Mesenchymal stem cells (MSCs) was cultured in differentiation media.Alkalinephosphatase and alcian blue staining was performed.Chondrogenic markers were measured by Western blot and fluorescent immunohistochemistry.Results Compared with the uncoated controlplates the P15 peptide cultured cells showed intense alkalinephosphatase(P<0.05) and alcian blue staining.Immunofluorescent staining indicatedthat there was a significant increase in the levels ofrunt-relatedtranscription factor-2 (RUNX2),matrix metalloproteinase-13(MMP13),and collagen X (COLX) proteins.Increased expression of RUNX2,COLX,MMP13 and vascular endothelial growth factor (VEGF)was also confirmed byWestern blot analysis(P<0.05).Conclusion P15 peptide enhances chondrocyte differentiation and formation in vitro.
P-15peptide;chondrocyte;Cartilage ossification;proliferation ;differentiation
1007-4287(2017)08-1425-03
Q813
A
2016-09-26)