国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

白藜三醇通過(guò)下調(diào)microRNA-21減輕快速電刺激所致心房肌細(xì)胞電重構(gòu)*

2017-09-03 03:24沈冰冰朱啟仁王志榮張卓琦
中國(guó)病理生理雜志 2017年8期
關(guān)鍵詞:肌細(xì)胞離子通道心房

張 松, 沈冰冰, 李 飛, 朱啟仁, 王志榮, 張卓琦△

(1徐州醫(yī)科大學(xué)附屬醫(yī)院心內(nèi)科, 江蘇 徐州 221002; 2邳州市人民醫(yī)院, 江蘇 邳州 221300)

白藜三醇通過(guò)下調(diào)microRNA-21減輕快速電刺激所致心房肌細(xì)胞電重構(gòu)*

張 松1, 沈冰冰1, 李 飛2, 朱啟仁1, 王志榮1, 張卓琦1△

(1徐州醫(yī)科大學(xué)附屬醫(yī)院心內(nèi)科, 江蘇 徐州 221002;2邳州市人民醫(yī)院, 江蘇 邳州 221300)

目的: 研究白藜三醇(resveratrol,RSV)對(duì)快速電刺激(rapid electrical stimulation,RES)導(dǎo)致乳鼠心房肌細(xì)胞電重構(gòu)時(shí)微小RNA-21(microRNA-21,miR-21)表達(dá)的影響,探討RSV通過(guò)miR-21參與電重構(gòu)的可能機(jī)制。方法: 采用胰酶、Ⅰ型膠原酶雙酶法及差速貼壁法分離培養(yǎng)乳鼠心房肌細(xì)胞。通過(guò)RES建立乳鼠心房肌細(xì)胞房顫模型,心房肌細(xì)胞隨機(jī)分為4組:空白對(duì)照(control)組、RSV組、RES組和RSV+RES組。為了證實(shí)RSV是否通過(guò)調(diào)控miR-21的表達(dá)參與電重構(gòu),除了上述4組,另增加過(guò)表達(dá)和沉默miR-21組:RES+陰性對(duì)照組(RES+NC組)、RES+miR-21 mimics組、RES+miR-21 mimics+RSV組、RES+miR-21 inhibitor組和RES+miR-21 inhibitor+RSV組。CCK-8法檢測(cè)心房肌細(xì)胞活性以確定RSV最佳作用濃度及時(shí)間,qPCR法檢測(cè)各組細(xì)胞內(nèi)miR-21及L型鈣離子通道CACNA1C、CACNB2 mRNA的表達(dá)水平,Western blot檢測(cè)L型鈣離子通道Cav1.2和Cavβ2的蛋白表達(dá)水平。結(jié)果: 與control組相比,RES組miR-21表達(dá)明顯上調(diào)(P<0.05),加入RSV預(yù)處理后miR-21表達(dá)下調(diào)(P<0.05)。與RES+miR-21 mimics組相比,RES+miR-21 mimics+RSV組miR-21表達(dá)下調(diào)(P<0.05),而CACNA1C和CACNB2 mRNA及Cav1.2和Cavβ2蛋白表達(dá)量增加(P<0.05)。與RES組比,RES+miR-21 inhibitor和RES+miR-21 inhibitor+RSV組的miR-21表達(dá)下調(diào)(P<0.05),CACNA1C和CACNB2 mRNA及Cav1.2和Cavβ2蛋白表達(dá)量增加,但RES+miR-21 inhibitor組與RSV+RES組比,miR-21表達(dá)、CACNA1C和CACNB2 mRNA及Cav1.2和Cavβ2蛋白表達(dá)量的差異無(wú)統(tǒng)計(jì)學(xué)顯著性。結(jié)論: 在快速電刺激乳鼠心房肌細(xì)胞模擬房顫模型中,RSV干預(yù)可能通過(guò)下調(diào)miR-21表達(dá)而調(diào)控其下游靶基因這一途徑來(lái)減輕心房肌細(xì)胞電重構(gòu)。

白藜三醇; 微小RNA-21; 快速電刺激; 電重構(gòu); 乳鼠心房肌細(xì)胞

心房顫動(dòng)(atrial fibrillation,AF)是臨床上最常見的慢性持續(xù)性心律失常,具有較高的發(fā)病率、致死率、致殘率,其發(fā)生和維持的機(jī)制非常復(fù)雜[1]。目前研究認(rèn)為AF的發(fā)生機(jī)制包括電重構(gòu)、結(jié)構(gòu)重構(gòu)、細(xì)胞內(nèi)鈣離子活動(dòng)異常、氧化應(yīng)激和炎癥反應(yīng)等[2-3]。其中,心房重構(gòu)是房顫發(fā)生與維持的重要機(jī)制。隨著近年來(lái)對(duì)AF發(fā)生機(jī)制研究的深入,已有越來(lái)越多的研究表明微小RNA(microRNA,miRNA,miR)參與心房重構(gòu)的調(diào)控。其中,miR-21的表達(dá)量在房顫發(fā)生中明顯上調(diào),通過(guò)調(diào)控鈣離子通道蛋白參與心房重構(gòu)[4]。

白藜三醇(resveratrol,RSV)是主要存在于葡萄、虎杖等植物中的一種非黃酮類多酚化合物。大量研究表明,RSV具有抗炎、抗氧化、抗血小板聚集及心律失常[5]等眾多心血管保護(hù)作用[6]。同時(shí),研究表明RSV可通過(guò)下調(diào)miR-21減輕缺氧/復(fù)氧損傷,從而保護(hù)心肌細(xì)胞[7]。為研究RSV對(duì)快速電刺激(rapid electrical stimulation,RES)導(dǎo)致乳鼠心房肌細(xì)胞電重構(gòu)時(shí)miR-21表達(dá)的影響,探討RSV通過(guò)miR-21參與電重構(gòu)的可能機(jī)制,本研究采用體外培養(yǎng)的乳鼠心房肌細(xì)胞,電刺激法建立心房細(xì)胞AF模型。通過(guò)觀察心房肌細(xì)胞miR-21及靶基因mRNA、蛋白水平變化,探討RSV通過(guò)miR-21參與電重構(gòu)的可能機(jī)制,為進(jìn)一步臨床應(yīng)用RSV治療房顫提供理論依據(jù)。

材 料 和 方 法

1 實(shí)驗(yàn)動(dòng)物

新生SD大鼠(1~3日齡)來(lái)源于徐州醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心。

2 藥物、試劑和儀器

RSV和Ⅰ型膠原酶均購(gòu)于Sigma;胎牛血清(fetal bovine serum,F(xiàn)BS)購(gòu)于Gibco; CCK-8試劑盒購(gòu)于Dojindo;miR-21、CACNA1C和CACNB2 引物由上海捷瑞生物工程有限公司設(shè)計(jì)及合成;miR-21過(guò)表達(dá)/沉默序列(表1)由蘇州吉瑪基因股份有限公司合成;抗Cav1.2和Cavβ2蛋白兔源多克隆 I 抗購(gòu)于Alomone Labs;辣根過(guò)氧化物酶標(biāo)記山羊抗兔IgG II 抗購(gòu)于北京中山金橋生物技術(shù)有限公司。C-Pace細(xì)胞培養(yǎng)刺激儀購(gòu)于Bioprobes;倒置顯微鏡和體視顯微鏡購(gòu)于Olympus。

3 主要方法

3.1 乳鼠心房肌細(xì)胞分離及培養(yǎng) 取新生SD大鼠心臟,參考文獻(xiàn)[8]進(jìn)行培養(yǎng),采用雙酶法及差速貼壁法獲得乳鼠原代心房肌細(xì)胞。

3.2 CCK-8法檢測(cè)心房肌細(xì)胞活力以確定白藜三醇最佳作用濃度及時(shí)間 將原代心房肌細(xì)胞按每孔1×105個(gè)細(xì)胞接種于96孔板,RSV分5、10、15、20和25 μmol/L 5個(gè)濃度組,CCK-8試劑盒檢測(cè)經(jīng)不同濃度梯度RSV預(yù)處理不同時(shí)間的心房肌細(xì)胞活性。檢測(cè)步驟:避光條件下每孔加入CCK-8和新鮮DMEM混合液(比例為1∶10)110 μL,將培養(yǎng)板繼續(xù)置于37 ℃、5% CO2條件下培養(yǎng),2 h后酶標(biāo)儀測(cè)定在450 nm處的吸光度[9],計(jì)算細(xì)胞存活率。

3.3 乳鼠心房肌細(xì)胞房顫模型制備及分組 原代心房肌細(xì)胞培養(yǎng)于6孔板中,培養(yǎng)至第3天后予以RSV預(yù)處理,RSV的劑量是15 μmol/L。將與6孔板配套的帶有刺激電極的蓋板覆蓋于6孔板上,使電極到達(dá)培養(yǎng)基液面以下。蓋板通過(guò)導(dǎo)線連接于細(xì)胞刺激器,置于培養(yǎng)箱中繼續(xù)培養(yǎng)。參考文獻(xiàn)[10-12]方法,將細(xì)胞刺激器設(shè)置為脈沖5 ms,頻率4 Hz,電壓15 V,持續(xù)電刺激24 h以建立心房細(xì)胞房顫模型。心房肌細(xì)胞隨機(jī)分為4組:對(duì)照(control)組、RSV組、RES組和RES+RSV組。為了證實(shí)白藜三醇是否通過(guò)調(diào)控miR-21的表達(dá)參與電重構(gòu),除了上述4組,另增加過(guò)表達(dá)或沉默miR-21組:RES+NC組、RES+miR-21 mimics組、RES+miR-21 mimics+RSV組、RES+miR-21 inhibitor組和RES+miR-21 inhibitor+RSV組。

3.4 過(guò)表達(dá)或沉默miR-21 按上述方法培養(yǎng)的乳鼠心房肌細(xì)胞,48 h后細(xì)胞貼壁完全,狀態(tài)良好,可進(jìn)行轉(zhuǎn)染。轉(zhuǎn)染操作按Lipofectamine 2000試劑說(shuō)明,將miR-21 mimics/inhibitor轉(zhuǎn)染至細(xì)胞。

3.5 RT-qPCR法檢測(cè)心房肌細(xì)胞miR-21及L型鈣離子通道CACNA1C、CACNB2 mRNA的表達(dá)水平 各組處理結(jié)束后,Trizol試劑一步法提取心房肌細(xì)胞總RNA。采用兩步法進(jìn)行RT-qPCR反應(yīng)。miR-21莖環(huán)引物、上下游引物,以及各靶基因及內(nèi)參照U6、GAPDH上下游引物均由上海捷瑞公司設(shè)計(jì)與合成,具體序列見表1。結(jié)果采用2-ΔΔCt法進(jìn)行相對(duì)定量分析。

表1 引物及miR-21 mimics/inhibitor序列

3.6 Western blot檢測(cè)心房肌細(xì)胞 Cav1.2和Cavβ2蛋白的表達(dá)水平 將以上9組細(xì)胞經(jīng)預(yù)冷的PBS漂洗2遍后,用含有蛋白酶抑制劑的細(xì)胞裂解液在冰上裂解30 min;12 000×g離心15 min,收集上清液;經(jīng)BCA法測(cè)濃度后,蛋白高溫變性,加樣,5%的濃縮膠和8%的分離膠進(jìn)行跑膠,按濕轉(zhuǎn)方法轉(zhuǎn)膜, I 抗(Cav1.2以1∶1 000稀釋,Cavβ2以1∶1 000稀釋)4 ℃孵育過(guò)夜,TBST洗膜5 min×3次, II 抗孵育1.5 h,洗膜3次,ECL法顯色。用ImageJ圖像分析軟件進(jìn)行半定量分析。蛋白質(zhì)的相對(duì)含量以目的蛋白與GAPDH條帶光密度值的比值表示。

4 統(tǒng)計(jì)學(xué)處理

用GraphPad Prism 5.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料均以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)來(lái)表示。各組間差異的比較采用單因素方差分析(one-way ANOVA),組間兩兩比較采用q檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。

結(jié) 果

1 CCK-8篩選RSV最佳預(yù)處理時(shí)間及濃度

CCK-8實(shí)驗(yàn)結(jié)果顯示,與不同濃度RSV預(yù)處理6 h和12 h相比,不同濃度RSV預(yù)處理24 h和48 h使乳鼠心房肌細(xì)胞活力減低(P<0.05)。因此白藜三醇最佳預(yù)處理時(shí)間設(shè)定為12 h,見圖1。

Figure 1.The cell viability after 6 h, 12 h, 24 h and 48 h pretreatment with different concentrations of RSV. Mean±SD.n=5.

圖1 不同濃度的RSV預(yù)處理6、12、24和48 h后細(xì)胞活力的變化

與對(duì)照組相比,白藜三醇25 μmol/L組乳鼠心房肌細(xì)胞活性明顯減低(P<0.01),其它的4個(gè)濃度組與對(duì)照組相比差異無(wú)統(tǒng)計(jì)學(xué)顯著性;與白藜三醇15 μmol/L組相比,白藜三醇20和25 μmol/L組乳鼠心房肌細(xì)胞活力減低(P<0.05)。因此白藜三醇作用于乳鼠心房肌細(xì)胞的最佳濃度設(shè)定為15 μmol/L,見圖2。

Figure 2.The cell viability after 12 h pretreatment with different concentrations of RSV. Mean±SD.n=5.*P<0.05vs0 μmol/L group;#P<0.05,##P<0.01vs15 μmol/L group.

圖2 不同濃度RSV預(yù)處理12 h后細(xì)胞活力的變化

2 RT-qPCR檢測(cè)原代心房肌細(xì)胞miR-21及L型鈣離子通道CACNA1C、CACNB2 mRNA的表達(dá)

與control組比, RES組miR-21表達(dá)上調(diào)(P<0.05),RSV預(yù)處理后可明顯下調(diào)miR-21的表達(dá)(P<0.05);沉默miR-21后,RES+miR-21 inhibitor組miR-21表達(dá)下調(diào)(P<0.05),且與RES+RSV組沒有明顯差異;過(guò)表達(dá)miR-21后,RES+miR-21 mimics組miR-21表達(dá)明顯上調(diào),加入RSV預(yù)處理后同樣可下調(diào)miR-21的表達(dá)(P<0.05),見圖3。

Figure 3.The effects of RSV on the expression of miR-21 in primary atrial myocytes were detected by RT-qPCR. U6 was used as an internal control. Mean±SD.n=3.**P<0.01vscontrol;##P<0.01vsRES;&P<0.05vsRES+RSV;△△P<0.01vsRES+miR-21 mi-mics;▲P<0.05vsRES+RSV+miR-21 mimics.

圖3 RT-qPCR檢測(cè)RSV對(duì)原代心房肌細(xì)胞miR-21表達(dá)的影響

與control組比,RES組的CACNA1C表達(dá)量減少(P<0.05),加入RSV干預(yù)后,CACNA1C的表達(dá)量增加(P<0.05);沉默miR-21后,RES+miR-21 inhibitor組CACNA1C的表達(dá)量增加(P<0.05),且與RES+RSV組相比差異無(wú)統(tǒng)計(jì)學(xué)顯著性;過(guò)表達(dá)miR-21后,RES+miR-21 mimics組的CACNA1C表達(dá)量減少,加入RSV預(yù)處理CACNA1C的表達(dá)量增加(P<0.05);CACNA1C的表達(dá)量與miR-21表達(dá)水平呈負(fù)相關(guān),見圖4。

RT-qPCR檢測(cè)不同分組L型鈣離子通道基因CACNB2的mRNA的表達(dá),CACNB2的mRNA表達(dá)趨勢(shì)與CACNA1C的mRNA表達(dá)趨勢(shì)類似,見圖5。

3 Western blot檢測(cè)原代心房肌細(xì)胞 Cav1.2和Cavβ2蛋白的表達(dá)

各組Cav1.2和Cavβ2蛋白表達(dá)與CACNA1C和CACNB2 mRNA表達(dá)的趨勢(shì)一致,見圖6。

討 論

房顫的發(fā)生和發(fā)展過(guò)程中伴隨著心房電重構(gòu),電重構(gòu)的過(guò)程又能導(dǎo)致房顫惡化,即房顫導(dǎo)致房顫[13]。

Figure 4.The effects of RSV on the mRNA expression of CACNA1C were detected by RT-qPCR. GAPDH was used as an internal control. Mean±SD.n=3.**P<0.01vscontrol;##P<0.01vsRES;&&P<0.01vsRES+RSV;△△P<0.01vsRES+miR-21 mimics;▲P<0.05vsRES+RSV+miR-21 mimics.

圖4 RT-qPCR檢測(cè)RSV對(duì)CACNA1C mRNA表達(dá)的影響

Figure 5.The effects of RSV on the mRNA expression of CACNB2 were detected by RT-qPCR. GAPDH was used as an internal control. Mean±SD.n=3.**P<0.01vscontrol;#P<0.05,##P<0.01vsRES;&&P<0.01vsRES+RSV;△△P<0.01vsRES+miR-21 mimics;▲P<0.05vsRES+RSV+miR-21 mimics.

圖5 RT-qPCR檢測(cè)RSV對(duì)CACNB2 mRNA表達(dá)的影響

心房電重構(gòu)主要表現(xiàn)為心房有效不應(yīng)期和動(dòng)作電位時(shí)程呈進(jìn)行性縮短,傳導(dǎo)速度減慢,不應(yīng)期離散度增加,以及頻率適應(yīng)性減退等[14-15],而這些主要是通過(guò)離子通道的改變實(shí)現(xiàn)的,鉀離子通道電流、鈣離子通道電流等均參與動(dòng)作電位的形成。房顫的治療原則包括:控制心室率、抗凝治療、緩解癥狀、治療基礎(chǔ)心臟病和誘發(fā)因素、恢復(fù)并維持竇性心律。目前臨床上治療房顫的藥物療效并不十分理想,而導(dǎo)管消融術(shù)很難將多個(gè)分布的局灶全部發(fā)現(xiàn),且復(fù)發(fā)率高,兩者均有明顯的局限性[16-17],因此探尋新的治療方法尤為重要。電重構(gòu)發(fā)生在房顫的早期階段,在此階段針對(duì)房顫發(fā)生機(jī)制的上游治療正越來(lái)越得到重視。

Figure 6.The effects of RSV on the protein expression of Cav1.2 and Cavβ2were detected by Western blot. GAPDH was used as an internal control. Mean±SD.n=3.**P<0.01vscontrol;#P<0.05,##P<0.01vsRES;&&P<0.01vsRES+RSV;△△P<0.01vsRES+miR-21 mimics;▲▲P<0.01vsRES+RSV+miR-21 mimics.

圖6 Western blot檢測(cè)RSV對(duì)Cav1.2和Cavβ2蛋白表達(dá)的影響

miRNA是一類長(zhǎng)約22個(gè)核苷酸的單鏈、內(nèi)源性、非編碼的小分子RNA。近年來(lái)隨著對(duì)房顫發(fā)生機(jī)制研究的深入,越來(lái)越多研究表明miRNA參與心房重構(gòu)的調(diào)控。Luo等[18]通過(guò)研究證實(shí)miRNA參與心臟電重構(gòu),他們結(jié)合實(shí)驗(yàn)方法設(shè)計(jì)了生物信息學(xué)分析,來(lái)證實(shí)miRNA具有調(diào)節(jié)編碼人類心臟離子通道蛋白基因的潛能。房顫的發(fā)生涉及多個(gè)離子通道蛋白的改變,而 miRNA參與調(diào)控多個(gè)心臟電重構(gòu)相關(guān)蛋白的表達(dá)[19],因此miRNA表達(dá)失衡引起離子通道蛋白功能失調(diào)可能是房顫發(fā)生的電生理基礎(chǔ),也可能成為抗心律失常藥物的作用靶點(diǎn)[20]。同時(shí)也有研究認(rèn)為,miRNA可能通過(guò)調(diào)控離子通道蛋白的表達(dá),從而表現(xiàn)出促房顫或抗房顫的作用[21]。

RSV一種非黃酮類多酚化合物。本實(shí)驗(yàn)室前期研究已證實(shí)RSV可以通過(guò)減輕心房纖維化[22]、抑制心房重構(gòu)[23]、減少氧化應(yīng)激損傷[24]等發(fā)揮抗心律失常作用。同時(shí)有研究表明,RSV可調(diào)控miRNA的表達(dá)發(fā)揮其保護(hù)作用[25]。在本研究中,我們通過(guò)體外培養(yǎng)的乳鼠心房肌細(xì)胞,電刺激法建立心房細(xì)胞AF模型,課題組前期已證實(shí)miR-21在此模型中明顯上調(diào)[26]。本實(shí)驗(yàn)發(fā)現(xiàn)RSV預(yù)處理可以下調(diào)miR-21的表達(dá),并且編碼L型鈣離子通道的基因CACNA1C、CACNB2 的mRNA及Cav1.2、Cavβ2的蛋白表達(dá)量均增加,與miR-21表達(dá)呈負(fù)相關(guān),這些結(jié)果表明CACNA1C和CACNB2 可能是miR-21的靶基因,這與Barana等[4]使用螢光素酶報(bào)告分析結(jié)果一致。為進(jìn)一步探討白藜三醇是否通過(guò)調(diào)控miR-21的表達(dá)參與電重構(gòu),另增加過(guò)表達(dá)或沉默miR-21組,結(jié)果顯示:過(guò)表達(dá)miR-21后,與RES+miR-21 mimics組相比,加入RSV干預(yù)可下調(diào)miR-21表達(dá),且CACNA1C、CACNB2的mRNA及Cav1.2、Cavβ2的蛋白表達(dá)量增加。沉默miR-21后,RES+miR-21inhibitor及RES+miR-21inhibitor+RSV組miR-21表達(dá)均下調(diào),同時(shí)CACNA1C、CACNB2 mRNA及Cav1.2、Cavβ2蛋白表達(dá)量增加,且與RES+RSV組相比無(wú)明顯差異。本研究結(jié)果顯示,RSV可能通過(guò)下調(diào)miR-21表達(dá)而調(diào)控其下游靶基因CACNA1C、CACNB2 及其編碼的Cav1.2、Cavβ2蛋白水平來(lái)減輕快速電刺激所致心房肌細(xì)胞電重構(gòu),為房顫的上游治療提供了新的方向,為臨床應(yīng)用白藜三醇治療房顫提供理論依據(jù)和實(shí)驗(yàn)數(shù)據(jù)。

[1] Gramley F, Lorenzen J, Jedamzik B, et al. Atrial fibrillation is associated with cardiac hypoxia[J]. Cardiovasc Pathol, 2010, 19(2):102-111.

[2] Schroen B, Heymans S. Small but smart: microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing[J]. Car-diovasc Res, 2012, 93(4):605-613.

[3] Luo X, Yang B, Nattel S. MicroRNAs and atrial fibrillation: mechanisms and translational potential[J]. Nat Rev Cardiol, 2015, 12(2):80-90.

[4] Barana A, Matamoros M, Dolz-Gaiton P, et al. Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current[J]. Circ Arrhythm Electrophysiol, 2014, 7(5):861-868.

[5] 卞洲艷, 唐其柱, 易方方, 等. 白藜蘆醇對(duì)大鼠心肌梗死后室性心律失常及長(zhǎng)期存活率的影響[J]. 中華心律失常學(xué)雜志, 2009, 13(1):66-69.

[6] Kaneko H, Anzai T, Morisawa M, et al. Resveratrol prevents the development of abdominal aortic aneurysm through attenuation of inflammation, oxidative stress, and neovascularization[J]. Atherosclerosis, 2011, 217(2):350-357.

[7] Mukhopadhyay P, Mukherjee S, Ahsan K, et al. Restoration of altered microRNA expression in the ischemic heart with resveratrol[J]. PLoS One, 2010, 5(12):e15705.

[8] Qin Y, Zhang Z, Chen J, et al. Ca2+disorder caused by rapid electrical field stimulation can be modulated by CaMKIIδ expression in primary rat atrial myocytes[J]. Biochem Biophys Res Commun, 2011, 409(2):287-292.

[9] 張曉萍, 彭景燕, 熊君宇, 等. 羅哌卡因預(yù)處理對(duì)其誘導(dǎo)ND7/23細(xì)胞毒性的影響[J]. 中華麻醉學(xué)雜志, 2011, 31(4):463-464.

[10]Yang Z, Shen W, Rottman JN, et al. Rapid stimulation causes electrical remodeling in cultured atrial myocytes[J]. J Mol Cell Cardiol, 2005, 38(2):299-308.

[11]Inoue N, Ohkusa T, Nao T, et al. Rapid electrical stimulation of contraction modulates gap junction protein in neonatal rat cultured cardiomyocytes: involvement of mitogen-activated protein kinases and effects of angiotensin II-receptor antagonist[J]. J Am Coll Cardiol, 2004, 44(4):914-922.

[12]Brundel BJ, Henning RH, Ke L, et al. Heat shock protein upregulation protects against pacing-induced myolysis in HL-1 atrial myocytes and in human atrial fibrillation[J]. J Mol Cell Cardiol, 2006, 41(3):555-562.

[13]Harada M, Luo X, Qi XY, et al. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation[J]. Circulation,2012, 126(17):2051-2064.

[14]Wijffels MC, Kirchhof CJ, Dorland R, et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats[J]. Circulation,1995, 92(7):1954-1968.

[15]Morillo CA, Klein GJ, Jones DL, et al. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation[J]. Circulation, 1995, 91(5):1588-1595.

[16]Sovari AA, Dudley SC. Antioxidant therapy for atrial fibrillation: lost in translation?[J]. Heart, 2012, 98(22):1615-1616.

[17]Murray KT, Mace LC,Yang Z. Nonantiarrhythmic drug therapy for atrial fibrillation[J]. Heart Rhythm, 2007, 4(3 Suppl):S88-S90.

[18]Luo X, Zhang H, Xiao J, et al. Regulation of human cardiac ion channel genes by microRNAs: theoretical perspective and pathophysiological implications[J]. Cell Physiol Biochem, 2010, 25(6):571-586.

[19]Luo X, Pan Z, Shan H, et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation[J]. J Clin Invest, 2013, 123(5):1939-1951.

[20]Gomes da Silva AM, Silbiger VN. miRNAs as biomarkers of atrial fibrillation[J]. Biomarkers, 2014, 19(8):631-636.

[21]Lu Y, Zhang Y, Wang N, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation[J]. Circulation, 2010, 122(23):2378-2387.

[22]杜海歌, 張超群, 徐 晤, 等. 白藜三醇通過(guò)HIF途徑對(duì)快速心房起搏豬心房結(jié)構(gòu)重構(gòu)的抑制作用[J]. 徐州醫(yī)學(xué)院學(xué)報(bào), 2012, 32(3):149-153.

[23]周曉峰, 王志榮, 張卓琦, 等. 白藜蘆醇對(duì)快速起搏右心房誘發(fā)的持續(xù)性心房顫動(dòng)豬心房結(jié)構(gòu)重構(gòu)的影響[J]. 中國(guó)心血管雜志, 2013, 18(6):455-458.

[24]葛力萁, 李承宗, 程明月, 等. 探討白藜三醇抑制快速電刺激乳鼠心肌細(xì)胞氧化應(yīng)激損傷及其機(jī)制[J]. 中國(guó)循環(huán)雜志, 2015, 30(7):684-688.

[25]Lancon A, Kaminski J, Tili E, et al. Control of micro-RNA expression as a new way for resveratrol to deliver its beneficial effects[J]. J Agric Food Chem, 2012, 60(36):8783-8789.

[26]李艷茹, 張 瓊, 張 松, 等. 心房顫動(dòng)電重構(gòu)機(jī)制中相關(guān)microRNA的表達(dá)差異[J]. 徐州醫(yī)學(xué)院學(xué)報(bào), 2016, 36(5):291-295.

(責(zé)任編輯: 盧 萍, 羅 森)

Resveratrol reduces electrical remodeling in atrial fibrillation by down-regulating microRNA-21 in neonatal rat atrial myocytes

ZHANG Song1, SHEN Bing-bing1, LI Fei2, ZHU Qi-ren1, WANG Zhi-rong1, ZHANG Zhuo-qi1

(1DepartmentofCardiology,TheAffiliatedHospitalofXuzhouMedicalCollege,Xuzhou221002,China;2PizhouPeople’sHospital,Pizhou221300,China.E-mail:zhuoqizhang@sina.com)

AIM: To detect the effects of resveratrol (RSV) on the expression of microRNA-21 (miR-21) in primarily cultured neonatal rat atrial myocytes with electric remodeling induced by rapid electrical stimulation (RES). Furthermore, to find out the possible mechanism of miR-21 regulating electrical remodeling. METHODS: The neonatal rat atrial myocytes were isolated by double-enzyme (trypsin and collagenase I) digestion and differential adhesion method. The atrial fibrillation (AF) model was induced by RES. Atrial myocytes were randomly divided into 4 groups: control group, RSV group, RES group, and RSV+RES group. To further detect whether RSV regulated electric remodeling by miR-21, except the 4 groups, we add miR-21 over-expression group and miR-21 inhibitor group: RES+negative control (NC) group, RES+miR-21 mimics group, RES+miR-21 mimics+RSV group, RES+miR-21 inhibitor group, and RES+miR-21 inhibitor+RSV group. The optimal concentration and pretreatment time of resveratrol were determined by CCK-8 assay. The expression of miR-21 and the mRNA expression of L-type calcium channels CACNA1C and CACNB2 in atrial myocytes were detected by qPCR. The protein expression of L-type calcium channels Cav1.2 and Cavβ2in the atrial myocytes was analyzed by Western blot. RESULTS: The expression of miR-21 in RES group was significantly increased compared with control group, while preconditioning with RSV decreased the expression of miR-21. Compared with RES+miR-21 mimics group, the expression of miR-21 in RES+miR-21 mimics+RSV group was significantly decreased. Meanwhile, the mRNA expression of CACNA1C and CACNB2, and the protein levels of Cav1.2 and Cavβ2were increased (P<0.05). Compared with RES group, the expression of miR-21 in RES+miR-21 inhibitor group and RES+miR-21 inhibitor+RSV group was decreased, while the mRNA expression of CACNA1C and CACNB2, and the protein levels of Cav1.2 and Cavβ2were increased. However, no difference of the expression of miR-21, the mRNA expression of CACNA1C and CACNB2, and the protein levels of Cav1.2 and Cavβ2among RSV+RES, RES+miR-21 inhibitor and RES+miR-21 inhibitor+RSV groups was observed (P<0.05).CONCLUSION: In AF model induced by RES, RSV may reduce electric remodeling by inhibiting the expression of miR-21 and regulating the downstream target genes.

Resveratrol; MicroRNA-21; Rapid electrical stimulation; Electric remodeling; Neonatal rat atrial myocytes

1000- 4718(2017)08- 1353- 06

2017- 03- 07

2017- 03- 17

國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 30800219);徐州市醫(yī)學(xué)青年后備人才項(xiàng)目

R541.7; R965

A

10.3969/j.issn.1000- 4718.2017.08.002

雜志網(wǎng)址: http://www.cjpp.net

△通訊作者 Tel: 13775886473; E-mail: zhuoqizhang@sina.com

猜你喜歡
肌細(xì)胞離子通道心房
電壓門控離子通道參與紫杉醇所致周圍神經(jīng)病變的研究進(jìn)展
心房顫動(dòng)與心房代謝重構(gòu)的研究進(jìn)展
蝎毒肽作為Kv1.3離子通道阻滯劑研究進(jìn)展
心房破冰師
Kv1.5鉀離子通道抑制劑抗心房纖顫研究進(jìn)展*
二維斑點(diǎn)追蹤縱向應(yīng)變?cè)u(píng)價(jià)蒽環(huán)類藥物對(duì)乳癌病人左心房功能影響
瘦素對(duì)人腦血管平滑肌細(xì)胞活性及ROS表達(dá)的影響
黃芪多糖對(duì)糖尿病心肌病大鼠心肌細(xì)胞凋亡的影響
L型鈣離子通道的生物學(xué)特性及其在聽覺功能中的作用*
左心房