張運(yùn)峰,張淑紅,武秋穎,范永山
?
對玉米大斑病菌附著胞發(fā)育過程中糖原和脂肪積累的影響
張運(yùn)峰,張淑紅,武秋穎,范永山
(唐山師范學(xué)院生命科學(xué)系,河北唐山063000)
【目的】通過研究與附著胞發(fā)育的關(guān)系,明確附著胞發(fā)育過程中對糖原和脂肪合成的調(diào)控作用,為闡明玉米大斑病菌()附著胞發(fā)育的分子機(jī)制打下基礎(chǔ)?!痉椒ā恳圆A桨鍨槭杷|(zhì)表面,通過“插片分離菌絲”法使菌絲附著于載玻平板表面,然后將附著有菌絲的玻璃平板置于保濕培養(yǎng)皿中22℃、14 h光照和10 h黑暗交替培養(yǎng),誘導(dǎo)野生型菌株(WT)和基因敲除突變體()的菌絲形成附著胞,每隔12 h顯微觀測附著胞的形態(tài)和發(fā)育過程;分別將附著有未經(jīng)誘導(dǎo)的WT和菌絲的玻璃平板和經(jīng)過48 h附著胞誘導(dǎo)的玻璃平板浸沒在I2/KI染色液中靜置染色48 h,顯微觀察附著胞發(fā)育過程中糖原的變化;分別將附著有未經(jīng)誘導(dǎo)的WT和菌絲的玻璃平板和經(jīng)過48 h附著胞誘導(dǎo)的玻璃平板置于-70℃的超低溫冰箱中冷凍處理30 min,然后將玻璃平板置于Oil-red O染色液中靜置染色24 h,顯微觀察附著胞發(fā)育過程中脂肪的代謝變化;利用real-time PCR技術(shù)檢測附著胞發(fā)育過程中糖原和脂肪合成關(guān)鍵酶基因的表達(dá)情況。【結(jié)果】玉米大斑病菌WT菌株和菌株利用菌絲尖端在玻璃平板的疏水表面均能夠產(chǎn)生附著胞,但菌株的附著胞發(fā)育與WT菌株顯著不同,WT菌株48 h內(nèi)為單胞附著胞,誘導(dǎo)48 h后少數(shù)附著胞形成了多細(xì)胞附著胞,而菌株在誘導(dǎo)24 h后即出現(xiàn)了扭曲附著胞的異形附著胞形態(tài),48 h后還出現(xiàn)了雙杈、多杈和O型等多種異常的附著胞類型;WT菌株和菌株的菌絲和附著胞進(jìn)行糖原和脂肪的染色后,發(fā)現(xiàn)WT菌株的菌絲和附著胞都有均勻分布的糖原和脂肪,而菌株的附著胞內(nèi)幾乎沒有糖原和脂肪的積累,與WT菌絲的結(jié)果不同,在菌株的菌絲內(nèi)糖原沉積減少,脂肪主要分布于菌隔部位;附著胞誘導(dǎo)48 h后,WT菌株糖原合酶(glycogen synthase,GS)和二酰甘油?;D(zhuǎn)移酶(diacylglycerol O-acyltransferase,DGAT)基因的表達(dá)量比誘導(dǎo)前分別增加了6.6%和40.3%,而⊿菌株GS基因的表達(dá)量則下降了9.0%,DGAT基因的表達(dá)量僅上升了24.5%?!窘Y(jié)論】的功能缺失使玉米大斑病菌的附著胞發(fā)育形態(tài)異常,糖原積累下降,脂肪分布不均,糖原和脂肪合成的關(guān)鍵酶基因表達(dá)量均顯著下降,表明糖原和脂肪代謝與玉米大斑病菌的附著胞發(fā)育密切相關(guān)。
玉米大斑病菌;;附著胞發(fā)育;糖原;脂肪
【研究意義】附著胞是玉米大斑病菌()侵入寄主葉肉細(xì)胞的重要侵染機(jī)構(gòu),附著胞的發(fā)育決定了玉米大斑病菌的發(fā)病進(jìn)程和危害程度[1];糖原和脂肪代謝產(chǎn)生的甘油是植物病原真菌附著胞產(chǎn)生和維持膨壓的關(guān)鍵化學(xué)物質(zhì)[2-3];是玉米大斑病菌滲透脅迫調(diào)節(jié)的關(guān)鍵Hog1-MAPK基因[4];開展與附著胞發(fā)育的關(guān)系及在附著胞發(fā)育過程中對糖原和脂肪代謝的調(diào)控作用研究,將有利于闡明玉米大斑病菌調(diào)控附著胞發(fā)育的分子機(jī)制?!厩叭搜芯窟M(jìn)展】由玉米大斑病菌引起的玉米大斑病是世界各地玉米產(chǎn)區(qū)重要真菌病害,在流行年份常會造成50%以上的玉米減產(chǎn)[5]。在自然界中,玉米大斑病菌依靠分生孢子作為初侵染和再侵染的接種體,通過氣流傳播到達(dá)玉米葉片表面,經(jīng)過下面5個(gè)階段完成侵染過程:①分生孢子萌發(fā)產(chǎn)生芽管;②芽管發(fā)育成為菌絲并在頂端分化形成附著胞;③在黑色素和甘油等物質(zhì)形成的膨壓作用下,附著胞彎曲膨大形成鉤狀膨大物,產(chǎn)生侵染栓穿透角質(zhì)層和表皮細(xì)胞壁;④在寄主細(xì)胞內(nèi)形成次生菌絲,侵染鄰近的表皮細(xì)胞并進(jìn)入葉肉細(xì)胞;⑤感病品種在適宜條件下5—7 d 后即出現(xiàn)癥狀,并從病斑中釋放新的分生孢子,重新侵染寄主[6]。因此,附著胞的正常發(fā)育是玉米大斑病菌成功侵入玉米葉片的必要條件。范永山等[7]研究發(fā)現(xiàn)MAPK途徑對玉米大斑病菌的附著胞發(fā)育有重要的調(diào)控作用,利用MEK(MAPK kinase)特異性抑制劑U0126處理可使玉米大斑病菌的附著胞產(chǎn)生數(shù)目顯著下降;谷守芹[8]克隆了調(diào)控玉米大斑病菌滲透脅迫的Hog1-MAPK同源基因(GenBank登錄號:AY849317.2);Li等利用酵母互補(bǔ)試驗(yàn)證明具有調(diào)控鹽脅迫的能力,并利用基因敲除突變體()證明不僅影響菌絲和分生孢子發(fā)育,而且對HT毒素活性和致病性也有重要調(diào)控作用[4,9]。附著胞的形成除了受到信號轉(zhuǎn)導(dǎo)途徑調(diào)控,糖原和脂肪的代謝也與附著胞的發(fā)育和功能直接相關(guān),附著胞中的糖原和脂肪會降解成為甘油,甘油在附著胞內(nèi)積累而形成的膨壓是侵入釘侵入寄主的主要動力[10-12]。王梅娟等[3]研究發(fā)現(xiàn),甘油是玉米大斑病菌主要的一種滲透脅迫調(diào)節(jié)物質(zhì)。【本研究切入點(diǎn)】是玉米大斑病菌主要的滲透脅迫調(diào)節(jié)MAPK基因,但對玉米大斑病菌附著胞發(fā)育的調(diào)控作用尚未明確?!緮M解決的關(guān)鍵問題】通過比較野生型菌株(WT)與基因敲除突變體()在附著胞發(fā)育、糖原和脂肪積累,以及糖原和脂肪合成關(guān)鍵酶基因表達(dá)等3個(gè)方面的差異,分析對附著胞發(fā)育過程中糖原和脂肪合成代謝的調(diào)控作用。
試驗(yàn)于2016年在唐山師范學(xué)院分子植物病理學(xué)實(shí)驗(yàn)室完成。
1.1 菌株
玉米大斑病菌基因敲除突變體()及其野生型菌株(WT)由河北農(nóng)業(yè)大學(xué)真菌毒素與植物分子病理學(xué)實(shí)驗(yàn)室饋贈。
1.2 試劑
糖原染料(I2/KI):碘化鉀60 mg,碘10 mg,蒸餾水1 mL,室溫保存;脂肪染料(Oil-Red O):取0.6 mL的Oil-Red O飽和液(Oil Red O:0.5 g;80%異丙醇:100 mL。可長期保存),加入0.4 mL的無菌ddH2O,靜置10 min,0.22 μm濾膜過濾除菌,現(xiàn)配現(xiàn)用。
MiniBEST Universal RNA Extraction Kit,PrimeScriptTMRT reagent Kit,One Step SYBR? PrimeScriptTMRT-PCR Kit等購于寶生物工程(大連)有限公司。
1.3 試驗(yàn)方法
1.3.1 玉米大斑病菌的附著胞誘導(dǎo) 由于玉米大斑病菌不能形成分生孢子[8],因此,本試驗(yàn)利用菌絲來誘導(dǎo)附著胞的產(chǎn)生。參考范永山等的方法進(jìn)行改進(jìn)建立了“插片分離菌絲”法,并使用分離的菌絲進(jìn)行附著胞的誘導(dǎo)[13-14]。首先在PDA培養(yǎng)基上25℃黑暗培養(yǎng)至菌落直徑約30 mm,將經(jīng)過高壓蒸汽滅菌的蓋玻片(Size: 22 mm×22 mm)沿菌落生長方向20°—30°夾角斜插于菌落邊緣處,當(dāng)菌絲生長至蓋玻片中部時(shí),取出蓋玻片置于保濕培養(yǎng)皿中22℃、14 h光照和10 h黑暗交替培養(yǎng)12、24、36和48 h,顯微觀察附著胞的形態(tài)和產(chǎn)生情況。
1.3.2 玉米大斑病菌菌絲和附著胞的糖原染色 將誘導(dǎo)附著胞48 h時(shí)的蓋玻片,小心地置于糖原染色液中,靜止染色1 h,顯微鏡觀察菌絲和附著胞的糖原積累及分布情況。
1.3.3 玉米大斑病菌菌絲和附著胞的脂肪染色 將誘導(dǎo)附著胞48 h時(shí)的蓋玻片,于-70℃冰箱中冷凍30 min后,小心地置于經(jīng)0.22 μm濾膜過濾后的Oil-Red O染色液中,靜止染色24 h,顯微鏡下強(qiáng)光觀察菌絲和附著胞中脂肪的積累及分布情況。
1.3.4 Real-time PCR檢測糖原和脂肪合成關(guān)鍵酶基因的表達(dá) 根據(jù)玉米大斑菌基因組數(shù)據(jù)庫(JGI,http://genome.jgi.doe.gov/Settul)糖原合酶(glycogen synthase,GS)基因、二酰甘油酰基轉(zhuǎn)移酶(diacylglycerol O-acyltransferase,DGAT)基因和18S rRNA基因(18S rDNA,內(nèi)參基因)的cDNA序列,利用Primer Premier 5.0軟件設(shè)計(jì)引物(表1),用于real-time PCR。
參照鞏校東等[15]的方法進(jìn)行GS和DGAT基因的表達(dá)分析:以18 S rDNA片段為內(nèi)參,確定PCR反應(yīng)的循環(huán)數(shù)及cDNA的模板量;15 μL擴(kuò)增體系中含有2×One Step SYBR RT-PCR Buffer Ⅲ 7.5 μL,TaKaRa Ex Taq HS(5 U·μL-1)0.3 μL,PrimeScript RT Enzyme Mix Ⅱ0.3 μL,正向引物和反向引物(10 μmol·L-1)各0.5 μL,Total RNA 2 μL;real-time PCR反應(yīng)程序:42℃ 5 min,95℃ 10 s,95℃ 5 s、60℃ 30 s、40個(gè)循環(huán)。采用Illumina Eco實(shí)時(shí)定量PCR系統(tǒng)進(jìn)行擴(kuò)增,以比較Ct值法分析GS和DGAT基因在附著胞誘導(dǎo)前及誘導(dǎo)后48 h時(shí)的表達(dá)變化。
表1 Real-time PCR所擴(kuò)增的基因及引物
2.1對玉米大斑病菌附著胞發(fā)育的影響
插片分離玉米大斑病菌菌絲,在玻璃平板上誘導(dǎo)附著胞。結(jié)果發(fā)現(xiàn),野生型菌株(WT)和基因敲除突變體菌株()均可形成附著胞。WT和菌株12 h即可觀察到附著胞產(chǎn)生。通過觀察單個(gè)視野(10×10倍)范圍內(nèi)平均附著胞數(shù)目,發(fā)現(xiàn)24 h后WT和菌株的附著胞數(shù)目均迅速增加,48 h時(shí),調(diào)查單個(gè)視野內(nèi)附著胞數(shù)目,發(fā)現(xiàn)兩者菌絲形成附著胞的能力沒有顯著差異。但是,WT菌株的附著胞24—36 h以單個(gè)菌絲頂端膨大形成的單細(xì)胞附著胞為主(圖1-a),48 h時(shí)則以單個(gè)菌絲形成的、由多個(gè)膨大細(xì)胞形成的多細(xì)胞附著胞為主(圖1-b)。而菌株則很少出現(xiàn)單個(gè)菌絲形成的單細(xì)胞附著胞和多細(xì)胞附著胞,在12 h時(shí)以單個(gè)菌絲形成的雙杈附著胞為主(圖1-c),24 h開始出現(xiàn)附著胞扭曲現(xiàn)象(圖1-d),36 h出現(xiàn)單個(gè)菌絲形成的多杈附著胞(圖1-e),而到48 h時(shí),會出現(xiàn)O型附著胞(圖1-f)。在WT菌株中沒有發(fā)現(xiàn)雙杈、扭曲、多杈和O型等異常發(fā)育形態(tài)附著胞,表明缺失改變了附著胞的形態(tài)建成和發(fā)育方式。
a:單胞附著胞single-cell appressorium;b:多細(xì)胞附著胞multiple-cell appressorium;c:雙杈附著胞two-branch appressorium;d:扭曲附著胞twist appressorium;e:多杈附著胞multiple-branch appressorium;f:O型附著胞O-shape appressorium
2.2對玉米大斑病菌菌絲和附著胞糖原積累的影響
利用I2/KI染色劑觀測玉米大斑病菌菌絲和附著胞內(nèi)糖原的沉積情況。結(jié)果發(fā)現(xiàn)WT菌株在菌絲和附著胞都有較深的糖原沉積,而菌株的菌絲內(nèi)糖原沉積較少,在附著胞內(nèi)幾乎沒有發(fā)現(xiàn)糖原的沉積(圖2)。結(jié)果表明基因缺失干擾了菌絲內(nèi)糖原的合成,阻斷了附著胞發(fā)育過程中糖原的積累。
圖2 STK1對玉米大斑病菌菌絲和附著胞糖原積累的影響
2.3對玉米大斑病菌菌絲和附著胞脂肪積累的影響
利用Oil-red O染色劑進(jìn)行染色,發(fā)現(xiàn)WT菌株的菌絲和附著胞內(nèi)均有較多的脂肪沉積,并且脂滴分布均勻;而菌株的沒有發(fā)育成附著胞的菌絲內(nèi)脂肪沉積顯著減少,發(fā)育成附著胞的菌絲內(nèi)的脂滴體積增大但數(shù)量減少,且分布極其不均勻,主要沉積在菌隔附近,在附著胞內(nèi)沒有脂肪沉積(圖3)。結(jié)果表明的缺失干擾了脂肪的分布,阻斷了脂肪在附著胞內(nèi)的累積。
圖3 STK1對玉米大斑病菌菌絲和附著胞脂肪積累的影響
2.4對玉米大斑病菌糖原和脂肪合成關(guān)鍵酶基因表達(dá)的影響
利用real-time PCR技術(shù)檢測了WT和菌株在附著胞誘導(dǎo)前及誘導(dǎo)48 h時(shí),GS和DGAT基因的相對表達(dá)量差異。結(jié)果發(fā)現(xiàn)WT菌株和菌株在附著胞誘導(dǎo)前GS基因表達(dá)量差異不顯著;與附著胞誘導(dǎo)前(CK)相比,誘導(dǎo)48 h時(shí),WT菌株GS基因的相對表達(dá)量顯著增加,增加率為6.6%,而菌株的GS基因相對表達(dá)量顯著下降,下降率為9.0%(圖4)。
CK1:WT附著胞誘導(dǎo)前before appressorium induction of WT;CK2:ΔSTK1附著胞誘導(dǎo)前before appressorium induction ofΔSTK1;WT和ΔSTK1:WT和ΔSTK1菌株附著胞誘導(dǎo)48 h 48 h appressorium induction of WT and ΔSTK1
WT和菌株在附著胞誘導(dǎo)前DGAT基因表達(dá)量差異不顯著;與附著胞誘導(dǎo)前(CK)相比,誘導(dǎo)48 h時(shí),WT和菌株DGAT基因的相對表達(dá)量均顯著增加,但增加的程度不同:WT菌株DGAT基因的相對表達(dá)量增加了40.3%,而菌株的表達(dá)量僅增加了24.5%(圖4)。
3.1 調(diào)控植物病原真菌附著胞發(fā)育和功能的MAPK基因
附著胞是植物病原真菌感受到來自植物病原真菌內(nèi)部、寄主葉片和外界環(huán)境的刺激信號后,啟動一系列信號傳導(dǎo)途徑進(jìn)行調(diào)控形成的。目前主要發(fā)現(xiàn)3條信號通路調(diào)控植物病原真菌附著胞的分化和發(fā)育:Ca2+信號通路、cAMP信號通路和MAPK信號通路[16],其中MAPK信號通路由于可直接將細(xì)胞外信號傳導(dǎo)到細(xì)胞核內(nèi)而備受關(guān)注。在植物病原真菌中至少發(fā)現(xiàn)了Fus3/Kss1、Slt2和Hog1等3條MAPK途徑,分別與菌絲侵染、細(xì)胞壁合成和滲透脅迫調(diào)控有關(guān)[17]。研究發(fā)現(xiàn),調(diào)控稻瘟病菌()附著胞發(fā)育和功能的MAPK基因主要來自于Fus3/Kss1信號通路和Slt2信號通路,而不是Hog1信號通路。例如,稻瘟病菌(Fus3-homolog)基因敲除突變體不能形成成熟的附著胞[18],(Slt2-homolog)基因敲除突變體可以形成附著胞但不能侵入寄主的表皮細(xì)胞[19],而OSM1(Hog1-homolog)基因雖然具有滲透脅迫調(diào)節(jié)功能,但與附著胞發(fā)育及膨壓形成無關(guān)[20]。研究證實(shí),植物致病真菌、的Hogl同源基因CpMK1、SRMI也不是附著胞發(fā)育和功能的必要條件[21-22]。但是,筆者課題組的前期研究發(fā)現(xiàn),玉米大斑病菌的Hog1- homolog基因敲除后,不產(chǎn)生分生孢子,HT-毒素的活性下降,不能侵入沒有傷口的玉米葉片[9],說明該基因是病菌致病性的必需基因之一。在此基礎(chǔ)上,本研究發(fā)現(xiàn)基因敲除后,雖然利用菌絲也能形成附著胞,但形成的附著胞發(fā)育呈現(xiàn)多型化和畸形化,產(chǎn)生了扭曲和O形附著胞及二杈、三杈等多分支附著胞,而在野生型菌株中僅會形成單細(xì)胞附著胞和多細(xì)胞附著胞這兩種正常附著胞[13,23]外,沒有發(fā)現(xiàn)突變體菌株形成的異常附著胞。Kong 等[24]研究表明,利用菌絲尖端產(chǎn)生的附著胞的膨壓顯著低于利用分生孢子芽管產(chǎn)生的附著胞。這也可以用于解釋基因敲除后由于不能產(chǎn)生分生孢子而只能利用菌絲尖端形成的附著胞,由于膨壓較小而不能直接侵入玉米葉片。另外,基因敲除突變體利用菌絲形成的附著胞發(fā)育出現(xiàn)多型化和畸型化,也可能是該突變體失去致病毒力的原因之一。該研究結(jié)果與植物病原真菌和的Hog1-homolog基因、的研究結(jié)果是一致的,這兩個(gè)基因敲除后也會失去對寄主的致病毒力,不能侵染沒有損傷的健康植物組織[25-26]。
3.2 脂肪代謝和糖原代謝與附著胞功能的關(guān)系
附著胞是植物病原真菌致病過程中形成的一種半球狀侵染結(jié)構(gòu),它的主要功能是積累突破寄主葉片表皮所需的機(jī)械膨壓,侵入寄主細(xì)胞內(nèi)部,形成次生侵染菌絲[12]。附著胞膨壓的產(chǎn)生依賴四周沉積的黑色素及附著胞內(nèi)的滲透脅迫調(diào)節(jié)物質(zhì)。沒有黑色素植物病原真菌就不能形成正常的附著胞,不能直接侵入寄主細(xì)胞內(nèi)部[27]。本研究表明,玉米大斑病菌基因敲除突變體利用菌絲形成的附著胞有一定的黑色素沉積,因此,附著胞的功能喪失主要與附著胞內(nèi)滲透脅迫調(diào)節(jié)物質(zhì)的積累有關(guān)。前期研究中發(fā)現(xiàn)調(diào)節(jié)玉米大斑病菌滲透脅迫的物質(zhì)主要是甘油、海藻糖和甘露醇[3,28]。但是,曹志艷等[2]研究表明,玉米大斑病菌附著胞細(xì)胞壁孔徑(2.1—2.7 nm)遠(yuǎn)大于稻瘟病菌附著胞細(xì)胞壁孔徑(<1.0 nm),不能有效阻擋甘油分子的外滲,但附著胞膨壓仍可達(dá)5.4 MPa,因此推測玉米大斑病菌附著胞膨壓的產(chǎn)生除了甘油以外,還可能有其他較大的溶質(zhì)分子。Wang等研究表明,稻瘟病菌附著胞膨壓的形成依賴附著胞內(nèi)甘油等滲透調(diào)節(jié)物質(zhì)的積累,但甘油主要來自于孢子萌發(fā)時(shí)糖原和脂類物質(zhì)的降解[29-30]。因此,糖原和脂肪代謝與附著胞發(fā)育和功能密切相關(guān)。本研究表明,玉米大斑病菌基因敲除后,在附著胞內(nèi)都沒有明顯的糖原和脂肪積累,在菌絲內(nèi)糖原沉積減少,脂類物質(zhì)沉積不均勻,主要分布在菌絲的隔膜部位。另外,本試驗(yàn)還發(fā)現(xiàn),附著胞誘導(dǎo)48 h后,野生型菌株的糖原合酶(GS)和二酰甘油?;D(zhuǎn)移酶(DGAT)基因表達(dá)量分別增加了6.6%和40.3%,而基因敲除突變體GS基因的表達(dá)量卻下降了9.0%,DGAT基因的表達(dá)量僅上升了24.5%,表明可通過調(diào)控GS和DGAT基因表達(dá),調(diào)節(jié)糖原和脂肪在菌絲及附著胞內(nèi)的積累,從而調(diào)控玉米大斑病菌的致病性。
S缺失導(dǎo)致玉米大斑病菌的附著胞出現(xiàn)雙杈附著胞、扭曲附著胞、多杈附著胞和O型附著胞等多種異常類型;基因敲除后附著胞內(nèi)幾乎沒有發(fā)現(xiàn)糖原和脂肪的積累,菌絲內(nèi)糖原沉積明顯減少,脂肪主要分布在菌隔部位,參與糖原和脂肪代謝的關(guān)鍵基因糖原合酶(GS)和二酰甘油?;D(zhuǎn)移酶(DGAT)基因的相對表達(dá)量均顯著下降。表明可通過調(diào)節(jié)在附著胞發(fā)育過程中糖原和脂肪的合成和積累調(diào)控玉米大斑病菌的致病性。
[1] Gu S Q, Li P, Wu M, Hao Z M, Gong X d, Zhang X y, Tian L, Zhang P, Wang Y, Cao Z Y, Fan Y S, Han J M, Dong J g.is required for the pathogenicity ofby regulating appressorium development and penetration., 2014, 169(11): 817-823.
[2] 曹志艷, 賈慧, 朱顯明, 董金皋. DHN黑色素與玉米大斑病菌附著胞膨壓形成的關(guān)系. 中國農(nóng)業(yè)科學(xué), 2011, 44(5): 925-932.
CAO Z Y, JIA H, ZHU X M, DONG J G. Relationship between DHN melanin and formation of appressorium turgor pressure of., 2011, 44(5): 925-932. (in Chinese)
[3] 王梅娟, 李坡, 吳敏, 范永山, 谷守芹, 董金皋. 高滲脅迫對玉米大斑病菌生長發(fā)育及表達(dá)的影響. 中國農(nóng)業(yè)科學(xué), 2012, 45(19): 3965-3970.
WANG M J, LI P, WU M, FAN Y S, GU S Q, DONG J G. Effect of hyperosmotic stress on the growth, development andexpression of., 2012, 45(19): 3965 -3970. (in Chinese)
[4] LI P, GONG X D, JIA H, FAN Y S, ZHANG Y, CAO Z Y, HAO Z M, HAN J M, GU S Q, DONG J G. MAP kinase geneis required for hyphal, conidial, and appressorial development, toxin biosynthesis, pathogenicity, and hypertonic stress response in the plant pathogenic fungus., 2016, 15(12): 2786-2794.
[5] DONG J G, FAN Y S, GUI X M, AN X L, MA J F, DONG Z P. Geographic distribution and genetic analysis of physiological races ofin northern China., 2008, 3(1): 389-398.
[6] 董金皋. 農(nóng)業(yè)植物病理學(xué). 2版. 北京: 中國農(nóng)業(yè)出版社, 2007: 91-97.
Dong J G.. Beijing: China Agriculture Press, 2007: 91-97. (in Chinese)
[7] 范永山, 谷守芹, 董金皋, 董秉芳. 特異性MEK抑制劑U0126對玉米大斑病菌孢子萌發(fā)、附著胞產(chǎn)生和致病性的影響. 中國農(nóng)業(yè)科學(xué), 2006, 39(1): 66-73.
FAN Y S, GU S Q, DONG J G, DONG B F. Effects of the MEK-specific inhibitor U0126 on the conidial germination, appressorium production and pathogenicity of., 2006, 39(1): 66-73. (in Chinese)
[8] 谷守芹. 調(diào)控玉米大斑病菌生長發(fā)育和致病性的基因的克隆與功能分析[D]. 保定: 河北農(nóng)業(yè)大學(xué), 2007.
GU S Q. Cloning and functional analysis ofgenes regulating the growth, development and pathogenicity of[D]. Baoding: Hebei Agricultural University, 2007. (in Chinese)
[9] LI P, GU S Q, SHEN S, DONG J G, WU M, WANG M J, YANG Y, ZHANG C Z, FAN Y S, HAN J M., a MAP kinase gene from, confers preferable tolerance to sodium salt stress., 2012, 6(40): 6830-6837.
[10] 彭陳, 陳洪亮, 張玉瓊, 郭士偉. 稻瘟菌附著胞形成和發(fā)育的研究進(jìn)展. 微生物學(xué)通報(bào), 2011, 38(8): 1270-1277.
PENG C, CHEN H L, ZHANG Y Q, GUO S W. A review on appressorium initiation and development in., 2011, 38(8): 1270-1277. (in Chinese)
[11] GUPTA A, CHATTOO B B. A novel geneis required for appressorium formation in., 2007, 44(11): 1157-1169.
[12] 林福呈. 稻瘟病菌附著胞形成的細(xì)胞生物學(xué). 植物病理學(xué)報(bào), 2001, 31(2): 97-101.
LIN F C. Cell biology of appressorium formation of., 2001, 31(2): 97-101. (in Chinese)
[13] 范永山, 曹志艷, 谷守芹, 董金皋. 不同誘導(dǎo)因素對玉米大斑病菌附著胞產(chǎn)生的影響. 中國農(nóng)業(yè)科學(xué), 2004, 37(5): 769-772.
FAN Y S, CAO Z Y, GU S Q, DONG J G. Effect of different induction factors on appressorium of., 2004, 37(5): 769-772. (in Chinese)
[14] 宋文靜, 董金皋. 玉米大斑病菌孢子萌發(fā)和附著胞形成的影響因素研究. 植物病理學(xué)報(bào), 2008, 38(5): 536-539.
SONG W J, DONG J G. Factors of influence on conidium germination and appressorium formation of., 2008, 38(5): 536-539. (in Chinese)
[15] 鞏校東, 王玥, 張盼, 范永山, 谷守芹, 韓建民, 董金皋. 玉米大斑病菌MAPK基因的基因組定位、蛋白質(zhì)結(jié)構(gòu)預(yù)測及表達(dá)分析. 中國農(nóng)業(yè)科學(xué), 2015, 48(13): 2549-2558.
GONG X D, WANG Y, ZHANG P, FAN Y S, GU S Q, HAN J M, DONG J G. Analysis of the genomic location, protein structure prediction and expression of MAPK gene., 2015, 48(13): 2549-2558. (in Chinese)
[16] 葉幸, 孫群, 劉柱. 稻瘟菌侵染過程相關(guān)信號通路研究進(jìn)展. 中國農(nóng)業(yè)科技導(dǎo)報(bào), 2015, 17(1): 87-94.
YE X, SUN Q, LIU Z. Progress oninfection process related to signaling pathways., 2015, 17(1): 87-94. (in Chinese)
[17] Xu J R. MAP kinases in fungal pathogens., 2000, 31(3): 137-152.
[18] JIN Q C, LI C Y, LI Y Z, Shang J J, LI D B, CHEN B S, DONG H T. Complexity of roles and regulation of the-MAPK pathway in mycelium development, conidiation and appressorium formation in., 2013, 13(5/6): 133-141.
[19] XU J R, Staiger C J, HAMER J E. Inactivation of the mitogen- activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses., 1998, 95(21): 12713-12718.
[20] DIXON K P, XU J R, SMIRNOFF N, TALBOT N J. Independent signaling pathways regulates cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by., 1999, 11(10): 2045-2058.
[21] PARK S M, CHOI L S, KIM M J, CHA B J, YANG M S, KIM D H. Characterization of Hog1 homologue, CpMK1, fromand evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress., 2004, 51(5): 1267-1277.
[22] MORIWAKI A, KUBO E, ARASE S, KIHARA J. Disruption of, a mitogen-activated protein kinase gene, affects sensitive to osmotic and ultraviolet stressors in the phytopathogenic fungus., 2006, 257(2): 253-261.
[23] 吳純?nèi)? 劉后利. 油菜菌核病致病機(jī)理的研究Ⅳ. 病菌侵入途徑和附著胞結(jié)構(gòu)的觀察. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 1990, 9(1): 56-58, 108.
WU C R, LIU H L. Studies on the penetrating pathway and appressoria types of, 1990, 9(1): 56-58, 108. (in Chinese)
[24] KONG L A, LI G T, LIU Y, LIU M G, ZHANG S J, YANG J, ZHOU X Y, PENG Y L, XU J R. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in., 2013, 56: 33-41.
[25] SEGMULLER N L, ELLENDORF U, TUDZYNSKI B, TUDZYNSKI P. BcSAKl, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in., 2007, 6(2): 211-221.
[26] MEHRABI R, ZWIERS L H, DE WAARD M A, KEMA G. MgHogl regulates dimorphism and pathogenicity in the fungal wheat pathogen.s, 2006, 19(11): 1262-1269.
[27] CHANG H X, MILLER L A, HARTMAN G L. Melanin-independent accumulation of turgor pressure in appressoria of., 2014, 104(9): 977-984.
[28] 馬蘭, 薛韶娜, 唐聰, 楊曉榮, 鞏校東, 韓建民, 谷守芹, 董金皋. 玉米大斑病菌滲透脅迫物質(zhì)的確定//中國植物保護(hù)學(xué)會學(xué)術(shù)年會論文集. 中國植物保護(hù)學(xué)會, 2014.
MA L, XUE S N, TANG C, YANG X R, GONG X D, HAN J M, GU S Q, DONG J G. Determination of osmotic stress substances in//. China Society of Plant Protection, 2014. (in Chinese)
[29] WANG Z Y, JENKINSON J M, HOLCOMBE L J, SOANES D M, Veneault-Fourrey C, Bhambra G K, Talbot N J. The molecular biology of appressorium turgor generation by the rice blast fungus., 2005, 33(2): 384-388.
[30] WANG Z Y, SOANE D M, KERSHAW M J, TALBOT N J. Functional analysis of lipid metabolism inreveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection., 2007, 20(5): 475-491.
(責(zé)任編輯 岳梅)
Effects ofon glycogen and lipid accumulation during the appressorium development of
ZHANG YunFeng, ZHANG ShuHong, WU QiuYing, FAN YongShan
(Department of Life Sciences, Tangshan Normal University, Tangshan 063000, Hebei)
【Objective】The objective of this paper is to study the relationship betweenand appressorium development, clarify the regulation ofon the glycogen and lipid accumulation, and to make a foundation for elucidation of the molecular mechanism of appressorium development of.【Method】The appressoria were induced with hypha tips of wild type (WT) isolate andknock-out mutant () on the hydrophobic surface of glass slide by the method of “hypha separation with slide insertion” and incubation in a petri-dish moist chamber at 22℃ and under alternative changes of 14 h lightness and 10 h darkness, to observe the course of appressrium development under the microscope at intervals of 12 h. The glycogen in mycelia and appressoria of WT andon the slides were stained 48 h with I2/KI before and after 48 h of appressorium induction, and the changes of glycogen metabolism during appressorium development were microscopically observed. The lipid in mycelia and appressoria of WT andon the slides were placed in a -70℃ ultra-low temperature freezer refrigeration for 30 min before stained for 24 h with Oil Red O, and the changes of lipid metabolism during appressorium development were microscopically observed. The expression of key genes in glycogen and lipid synthesis during appressorium development was detected by real-time PCR. 【Result】The appressoria from hypha tips could be induced on the hydrophobic surface of glass slide for both WT isolate and ⊿mutant. However, the appressoria ofwere differentiated into several different abnormal types, which were obviously different from WT isolate. The appressorium of WT was single cell within 48 h of appressorium induction and only a few multicellular appressoria were found after 48 h of induction. Nevertheless, the twisted appressoria were found after only 24 h of appressorium induction of, and some other abnormal appressorium forms, such as double-bifurcation, multi-bifurcation and “O” type, were found after 48 h of induction. After the glycogen and lipid staining in hypha and appressoria of WT and, it was found that the accumulation of glycogen and lipid was equally distributed in the mycelia and appressoria of WT isolate, but there was almost no accumulation of glycogen and lipid in the appressoria of. The glycogen accumulation was significantly reduced in the mycelium ofand the lipid was mainly distributed in the septum parts of hyphal cells, which were significantly different from WT. The gene expression of glycogen synthase (GS) and diacylglycerol acyltransferase (DGAT) increased by 6.6% and 40.3%, respectively, after the appressoria of WT isolate were induced after 48 hours. However, the GS gene expression decreased by 9.0% and the DGAT gene expression increased by only 24.5% in themutant.【Conclusion】The loss offunction resulted in abnormal appressorium development, decreases of glycogen accumulation, uneven distribution of lipid, and a significant reduction in the expression of key genes of glycogen and lipid synthesis, indicating the accumulation of glycogen and lipid is closely related to the appressorium development of.
;; appressorium development; glycogen; lipid
2017-01-17;接受日期:2017-03-06
國家自然科學(xué)基金(31271997)、河北省自然科學(xué)基金(C2014105067)、河北省高等學(xué)校科學(xué)技術(shù)研究計(jì)劃(QN2017415)、河北省歸國留學(xué)人才計(jì)劃啟動項(xiàng)目(C2015005009)、唐山師范學(xué)院科學(xué)研究基金(2014E04、2013A03、2016C05)
張運(yùn)峰,E-mail:yunfengzhang1982@126.com。通信作者范永山,E-mail:fanyongshan@126.com