肖玉雄,王彩虹,田義軻,楊紹蘭,李鼎立,張海月
?
利用2b-RAD測(cè)序結(jié)合HRM分析技術(shù)開發(fā)與梨矮生性狀相關(guān)的DNA分子標(biāo)記
肖玉雄,王彩虹,田義軻,楊紹蘭,李鼎立,張海月
(青島農(nóng)業(yè)大學(xué)園藝學(xué)院/青島市園藝植物遺傳改良與育種重點(diǎn)實(shí)驗(yàn)室,山東青島 266109)
【目的】果樹的矮生性狀是一種重要的農(nóng)藝性狀,對(duì)果樹的集約化栽培具有重要意義。來自西洋梨實(shí)生變異品種‘Le Nain Vert’的矮生性狀受控于一個(gè)單顯性基因,目前關(guān)于該基因的序列信息等還不清楚。本研究的目的是開發(fā)與其緊密連鎖的DNA分子標(biāo)記,為鑒定該基因提供依據(jù)。【方法】根據(jù)分離群體分組分析的原理,以‘矮生梨’ב茌梨’和‘2-3’ב綠寶石’2個(gè)F1雜交分離群體為試材,應(yīng)用IIB型限制性內(nèi)切酶的RAD技術(shù)(Restriction association site DNA,2b-RAD)對(duì)2對(duì)矮生型/普通型對(duì)比基因池進(jìn)行基因組測(cè)序分析,在對(duì)比基因池間篩選出單核苷酸多態(tài)性(Single nucleotide polymorphism,SNP)位點(diǎn),從中篩查出位于定位染色體上的SNPs,用高分辨率熔解曲線分析技術(shù)(High-resolution melting analysis,HRM)在群體上進(jìn)一步檢測(cè)驗(yàn)證,以確定其與位點(diǎn)的連鎖關(guān)系?!窘Y(jié)果】對(duì)4個(gè)樣本(即4個(gè)對(duì)比基因池)的2b-RAD標(biāo)簽測(cè)序文庫的測(cè)序結(jié)果共產(chǎn)生67 186 260條reads,平均每個(gè)樣本測(cè)序reads數(shù)為16 796 565。將原始reads進(jìn)行質(zhì)量過濾后的統(tǒng)計(jì)結(jié)果表明,每個(gè)樣本獲得平均unique標(biāo)簽數(shù)目為86 810,平均測(cè)序深度為77×,該測(cè)序深度能夠達(dá)到準(zhǔn)確分型的標(biāo)準(zhǔn)。SOAP軟件定位結(jié)果表明,4個(gè)測(cè)序文庫中含有酶切位點(diǎn)的高質(zhì)量reads占測(cè)序原始reads的70%以上,表明測(cè)序質(zhì)量較好。在來自2個(gè)不同群體的矮生型基因池與普通型基因池間進(jìn)行對(duì)比分析,初步篩選出SNP位點(diǎn)1 317個(gè),其中有8個(gè)位于的定位染色體scaffold00074上。用HRM技術(shù)對(duì)這8個(gè)SNP標(biāo)記在群體上的進(jìn)一步檢測(cè)結(jié)果表明,在‘矮生梨’ב茌梨’群體上有2個(gè)SNP標(biāo)記、在‘2-3’ב綠寶石’群體上有4個(gè)SNP標(biāo)記表現(xiàn)出與位點(diǎn)共分離的特性,根據(jù)其擴(kuò)增子的熔解曲線形狀差異,可有效區(qū)分矮生型和普通型表型。在來自‘矮生梨’ב茌梨’群體的215個(gè)雜種后代和來自‘2-3’ב綠寶石’群體的168個(gè)雜種后代中,未發(fā)現(xiàn)有標(biāo)記與性狀的重組類型。【結(jié)論】2b-RAD測(cè)序技術(shù)與HRM分析技術(shù)相結(jié)合,進(jìn)行果樹重要農(nóng)藝性狀分子標(biāo)記的開發(fā),是一種行之有效的方法?;谶@一策略,本研究鑒定獲得了4個(gè)與西洋梨矮生性狀單顯性基因連鎖的SNP標(biāo)記。
梨;矮生性狀;;SNP標(biāo)記;2b-RAD;HRM
【研究意義】果樹的矮化密植栽培因具有早果、高產(chǎn)、品質(zhì)優(yōu)良、易于管理、能夠有效節(jié)約成本和增加利潤等優(yōu)點(diǎn),已發(fā)展成為國內(nèi)外極為重要的栽培模式。目前,實(shí)現(xiàn)矮密栽培的主要途徑是利用矮化砧木和矮生品種,因此,發(fā)掘和利用優(yōu)良的基因資源,進(jìn)行矮化砧木和矮生品種的培育對(duì)果樹生產(chǎn)具有重要意義?!厩叭搜芯窟M(jìn)展】西洋梨矮生型實(shí)生變異品種‘Le Nain Vert’具有樹體緊湊、矮小的特點(diǎn),非常適合矮密栽培。研究發(fā)現(xiàn),矮生梨在莖、葉的解剖結(jié)構(gòu)上有區(qū)別于普通型梨的顯著特征[1]。由于‘Le Nain Vert’的矮生性狀受控于顯性單基因[2],因此,該基因資源在梨矮生品種的培育方面具有重要應(yīng)用價(jià)值。Wang等[3]將該基因命名為,并通過SSR標(biāo)記將其定位于西洋梨基因組第16連鎖群上。最近,李煒等[4]依據(jù)蘋果與梨基因組間高度的保守性和共線性關(guān)系,以二者的參考基因組序列為基礎(chǔ),又篩選鑒定了一組與連鎖的DNA分子標(biāo)記,將該基因定位到了西洋梨的染色體片段scaffold00074上。利用簡(jiǎn)化基因組測(cè)序技術(shù)進(jìn)行大規(guī)模高通量SNP分型是當(dāng)前國際上動(dòng)植物基因組學(xué)研究熱點(diǎn)之一。美國Oregon大學(xué)發(fā)明的RAD(Restriction Association site DNA)技術(shù)是廣泛應(yīng)用的簡(jiǎn)化基因組測(cè)序技術(shù)[5]。2007年,Miller等[6]發(fā)表了應(yīng)用芯片雜交的RAD技術(shù)。2008年,Baird等[7]將RAD和NGS(Next-generation sequencing)結(jié)合,建立了RAD-seq技術(shù)。2012年,Peterson等[8]對(duì)RAD技術(shù)進(jìn)行改進(jìn),提出了ddRAD(double digest RAD)技術(shù)。針對(duì)RAD技術(shù)流程復(fù)雜的問題,Elshire等[9]曾提出GBS(genotyping- by-sequencing)技術(shù)。隨后,Wang等[10]推出基于llB型限制性內(nèi)切酶的2b-RAD技術(shù),該技術(shù)流程簡(jiǎn)便,重復(fù)性和標(biāo)簽代表性高,基于混合泊松分布模型的de novo SNP分型新算法(iML),可使假陽性率得到較大幅度降低[11]。目前,RAD測(cè)序技術(shù)在許多物種上得到了應(yīng)用,例如大麥(L. )[12]、黑麥草()[13]等,但在果樹上還未見報(bào)道?!颈狙芯壳腥朦c(diǎn)】為了最終達(dá)到分離鑒定的目的,還需要大量的遺傳標(biāo)記進(jìn)一步對(duì)該基因進(jìn)行更為精細(xì)的染色體定位。因此,在以往研究的基礎(chǔ)上,繼續(xù)高效開發(fā)更多與其緊密連鎖的遺傳標(biāo)記是十分必要的。將2b-RAD測(cè)序技術(shù)與HRM分析技術(shù)相結(jié)合,進(jìn)行果樹重要農(nóng)藝性狀SNP標(biāo)記的開發(fā),是一個(gè)值得探索的途徑?!緮M解決的關(guān)鍵問題】隨著西洋梨全基因組序列的公布[14],使大量獲得SNP標(biāo)記成為可能。本研究利用分離群體分組分析的原理[15],采用2b-RAD技術(shù)在矮生型/普通型梨對(duì)比基因池間進(jìn)行比較分析,初步篩查可能與目標(biāo)性狀相關(guān)的SNP位點(diǎn),然后利用高效的高分辨率熔解曲線(HRM)分析技術(shù)進(jìn)行大規(guī)模的群體分析,以確認(rèn)與梨矮生性狀決定基因共分離的SNP標(biāo)記,為進(jìn)一步實(shí)現(xiàn)該基因的精細(xì)定位及分離鑒定提供重要依據(jù)。
試驗(yàn)于2016年4—11月在青島農(nóng)業(yè)大學(xué)園藝學(xué)院植物遺傳改良與育種重點(diǎn)實(shí)驗(yàn)室進(jìn)行。
1.1 基因組DNA 的提取與對(duì)比基因池的構(gòu)建
以‘矮生梨’(L.)ב茌梨’(Rehd.)及‘2-3’(L.×Rehd.)ב綠寶石’(Nakai.)2個(gè)F1雜交分離群體(即群體1和群體2)為試材。‘矮生梨’和‘2-3’為矮生型親本;‘茌梨’和‘綠寶石’為普通型親本。群體1共有215株,其中矮生型和普通型分別有115株和100株。群體2共有168株,其中矮生型和普通型各有89株和79株。2016年4月取梨樹的幼葉,用天根植物基因組DNA提取試劑盒提取并純化基因組DNA,用瓊脂糖凝膠電泳和NanoDrop 2000超微量分光光度計(jì)(Thermo Fisher Scienti?c, USA)對(duì)DNA的質(zhì)量和濃度進(jìn)行檢測(cè),并將其濃度稀釋到10 ng·L-1。
從每個(gè)群體中分別抽取15個(gè)矮生型雜種和15個(gè)普通型雜種,將其DNA等量混合,形成矮生型基因池D1和D2以及普通型基因池S1和S2。
1.2 2b-RAD測(cè)序分析與SNP位點(diǎn)篩選
利用2b-RAD技術(shù)構(gòu)建梨4個(gè)基因池的標(biāo)簽測(cè)序文庫,并在Hiseq2500 v2平臺(tái)進(jìn)行single-end測(cè)序(此項(xiàng)工作由上海歐易生物醫(yī)學(xué)科技有限公司完成)。將原始reads進(jìn)行質(zhì)量過濾,剔除不含有XⅠ酶切識(shí)別位點(diǎn)的序列,剔除低質(zhì)量序列(即大于10個(gè)堿基的質(zhì)量分?jǐn)?shù)小于20的序列),剔除有10個(gè)以上連續(xù)相同堿基的序列。從梨參考基因組序列(https:// www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0)中提取包含XⅠ酶切位點(diǎn)的標(biāo)簽作為參考序列。將每個(gè)樣本的高質(zhì)量reads利用SOAP軟件[16](參數(shù)設(shè)置為:-M4–v2–r0)定位到參考序列上。獲得可用于分型的unique標(biāo)簽數(shù)目及深度。利用最大似然法(maximum likelihood,ML)進(jìn)行SNP位點(diǎn)的分型(分型條件:只留取標(biāo)簽內(nèi)最多有3個(gè)SNP的標(biāo)簽位點(diǎn);分型標(biāo)簽深度設(shè)置為500以下。選取在樣本間能分型的SNP位點(diǎn),采用種群結(jié)構(gòu)分析軟件對(duì)樣本間及組間差異SNP位點(diǎn)篩選數(shù)據(jù)進(jìn)行分析。
1.3 與連鎖的SNP標(biāo)記的鑒定
對(duì)在4個(gè)對(duì)比基因池上產(chǎn)生的SNP標(biāo)記進(jìn)行分析,篩選出矮生型基因池與普通型基因池間的多態(tài)性SNP標(biāo)記,然后查找位于西洋梨染色體片段scaffold00074上的SNP位點(diǎn),在其兩側(cè)合適位置設(shè)計(jì)引物(Primer 4.0 software),用HRM技術(shù)分析這些SNP標(biāo)記在群體上的分離行為,以確定是否為與緊密連鎖的遺傳標(biāo)記。
1.4 高分辨率熔解曲線(HRM)分析
HRM分析在LightCycler?480Ⅱ熒光定量PCR儀(Roche)上進(jìn)行。反應(yīng)試劑來自LightCycler?480 High Resolution Melting Master 試劑盒。反應(yīng)體系為10 μL,內(nèi)含10 ng基因組DNA 1 μL,1×Master Mix 5 μL,2.0 mmol·L-1MgCl21 μL,上、下游引物(0.2 μmol·L-1)各1 μL,ddH2O 1 μL。PCR擴(kuò)增程序?yàn)?5℃預(yù)變性10 min,然后按95℃變性10 min、55℃退火15 s、72℃延伸10 s的程序進(jìn)行45個(gè)循環(huán)。在PCR循環(huán)結(jié)束后,立即對(duì)擴(kuò)增產(chǎn)物進(jìn)行HRM檢測(cè),程序?yàn)椋?5℃ 1 min、40℃ 1 min、65℃1 s;在65℃升溫至95℃的過程中,以25次/℃的頻率收集熒光信息,最后降溫至40℃。
HRM分析用LightCycler?480的Gene Scanning軟件(1.5 version)進(jìn)行。
2.1 2b-RAD測(cè)序結(jié)果
對(duì)4個(gè)樣本(即4個(gè)近等基因池)的2b-RAD標(biāo)簽測(cè)序文庫的測(cè)序結(jié)果共產(chǎn)生67 186 260條reads,平均每個(gè)樣本測(cè)序reads數(shù)為16 796 565。將原始reads進(jìn)行質(zhì)量過濾后的統(tǒng)計(jì)結(jié)果表明,每個(gè)樣本獲得平均unique標(biāo)簽數(shù)目為86 810,平均測(cè)序深度為77×。測(cè)序深度能夠達(dá)到準(zhǔn)確分型的標(biāo)準(zhǔn),可以進(jìn)行下一步SNP標(biāo)記分型分析。SOAP軟件定位結(jié)果表明,4個(gè)測(cè)序文庫中含有酶切位點(diǎn)的高質(zhì)量reads占測(cè)序原始reads的70%以上(表1),表明梨文庫的測(cè)序質(zhì)量較好。
2.2 矮生型/普通型對(duì)比基因池間SNP位點(diǎn)篩選
選取在樣本間能分型的SNP位點(diǎn),分別在來自群體1和群體2的4個(gè)對(duì)比基因池間進(jìn)行比較分析,共篩查出可在矮生型/普通型表型間進(jìn)行分型的SNP標(biāo)記1 317個(gè),進(jìn)一步的標(biāo)簽篩查結(jié)果表明,其中有8個(gè)SNP位于西洋梨染色體片段scaffold00074(即的定位染色體片段,長度441 741 bp)上,其染色體位置及樣品分型結(jié)果見表2。
表1 2b-RAD測(cè)序結(jié)果
D1、D2:分別來自群體1和群體2的矮生型基因池;S1、S2:分別來自群體1和群體2的普通型基因池。下同
D1 and D2 represent the dwarf bulk from population 1 and population 2, respectively. S1 and S2 represent the standard bulk from population 1 and population 2, respectively. The same as below
表2 定位到西洋梨染色體片段scaffold00074上的8個(gè)SNP標(biāo)記及其分型信息
方框?yàn)閴A基差異位點(diǎn)位置The box represents the position of the base difference
2.3 與位點(diǎn)共分離的SNP標(biāo)記鑒定
針對(duì)以上8個(gè)定位于scaffold00074上的SNP位點(diǎn),分別設(shè)計(jì)8對(duì)PCR引物(表3),并分別在群體1和群體2上進(jìn)行HRM分析,最終在群體1上檢測(cè)到SNP1和SNP7兩個(gè)與位點(diǎn)共分離的SNP標(biāo)記,在群體2上檢測(cè)到SNP1、SNP6、SNP7和SNP8 4個(gè)可與位點(diǎn)共分離的SNP標(biāo)記。根據(jù)其擴(kuò)增子的熔解曲線形狀差異,可有效地區(qū)分矮生型和普通型表型(圖1、圖2)。在群體1的215個(gè)雜種后代和群體2的168個(gè)雜種后代中,未發(fā)現(xiàn)有標(biāo)記與性狀的重組類型。
表3 8個(gè)SNP位點(diǎn)群體分型檢測(cè)所用的HRM 引物
圖 1 SNP1和SNP7在‘矮生梨’ב茌梨’群體中的HRM分析結(jié)果
圖 2 SNP1、SNP6、SNP7和SNP8在‘2-3’ב綠寶石’群體中的HRM 分析結(jié)果
單核苷酸多態(tài)性(SNP)是基因組中最常見的遺傳多態(tài)性。SNP標(biāo)記已在果樹的遺傳圖譜構(gòu)建、基因標(biāo)記與定位等研究中發(fā)揮了重要作用[17-20]。與RFLP、AFLP、SSR等傳統(tǒng)基因分型技術(shù)相比,SNP分子具有分布廣泛、代表性強(qiáng)、穩(wěn)定性好、易于分析等優(yōu)勢(shì)。SNP分子標(biāo)記的獲得往往依賴于大規(guī)模、高通量的基因組數(shù)據(jù)分析[21]。對(duì)果樹來說,其復(fù)雜的基因組是造成測(cè)序分析成本高的主要原因。
簡(jiǎn)化基因組測(cè)序技術(shù)2b-RAD是改進(jìn)的RAD技術(shù),使測(cè)序更加簡(jiǎn)易、精確,已在高密度遺傳圖譜的構(gòu)建、群體的遺傳學(xué)研究、群體進(jìn)化分析、標(biāo)記開發(fā)等領(lǐng)域得到了應(yīng)用[22-28]。高分辨率熔解曲線分析是一種高效的遺傳變異檢測(cè)方法,被廣泛的應(yīng)用于突變掃描、基因分型和標(biāo)記開發(fā)等方面。目前,HRM技術(shù)已發(fā)展成為SNP標(biāo)記分型的重要手段[29-31]。李煒等[4]曾依據(jù)蘋果與梨基因組間高度的保守性和共線性關(guān)系,以蘋果基因組序列為參考設(shè)計(jì)了大量引物,通過HRM分析僅篩查到1個(gè)與梨矮生性狀決定基因緊密連鎖的SNP標(biāo)記。為了提高SNP位點(diǎn)的檢測(cè)效率,本研究利用2b-RAD測(cè)序技術(shù)通過對(duì)4個(gè)對(duì)比基因池間共有標(biāo)簽的序列分析,篩查到了大量的可能與目標(biāo)性狀相關(guān)的SNP位點(diǎn),對(duì)于初步篩查到的SNP標(biāo)記,再利用高通量的HRM分析技術(shù)進(jìn)行群體上的大規(guī)模驗(yàn)證,以確定其是否為與目標(biāo)性狀緊密連鎖的遺傳標(biāo)記。這樣,可避免了在群體上繼續(xù)用2b-RAD技術(shù)進(jìn)行驗(yàn)證分析造成的高成本問題。本研究基于這一策略,鑒定獲得了一組與梨矮生性狀決定基因位點(diǎn)連鎖的新標(biāo)記。可見,將2b-RAD測(cè)序技術(shù)與HRM分析技術(shù)相結(jié)合,進(jìn)行果樹重要農(nóng)藝性狀分子標(biāo)記的開發(fā),是一種行之有效的方法。
根據(jù)不同親本構(gòu)建的雜交群體的遺傳背景是有差異的,因此,依據(jù)不同群體開發(fā)的遺傳標(biāo)記是不可能完全相同的。本研究結(jié)果顯示,在群體1上,鑒定出了2個(gè)與連鎖的SNP標(biāo)記;在群體2上,鑒定出了4個(gè)與連鎖的SNP標(biāo)記。另外,對(duì)在不同群體上鑒定到的相同的SNP標(biāo)記來說,其HRM分析熔解曲線形狀也可能會(huì)出現(xiàn)差異。出現(xiàn)這一現(xiàn)象的原因,也與群體的遺傳基礎(chǔ)差別有關(guān)。本研究從2個(gè)不同的雜種群體上共檢測(cè)到了4個(gè)新的與梨緊密連鎖的DNA分子標(biāo)記。這些標(biāo)記,不僅可以作為目標(biāo)基因定位的參考依據(jù),也可成為目標(biāo)性狀標(biāo)記輔助選擇的有力工具。
應(yīng)用2b-RAD技術(shù)對(duì)2對(duì)矮生型/普通型對(duì)比基因池進(jìn)行基因組測(cè)序分析,在對(duì)比基因池間篩選出單核苷酸多態(tài)性(SNP)位點(diǎn)1 317個(gè),其中有8個(gè)SNP位點(diǎn)位于的定位染色體scaffold0007上。用HRM分析技術(shù)對(duì)這8個(gè)SNP位點(diǎn)進(jìn)行群體上的進(jìn)一步檢測(cè),共鑒定出4個(gè)與位點(diǎn)共分離的SNP標(biāo)記,其中SNP1和SNP7為2對(duì)群體共有的SNP標(biāo)記。這一研究結(jié)果對(duì)的精細(xì)定位及其候選基因的篩查具有重要參考。
[1] Chen B Y, Wang C H, Tian Y K, Chu Q, Hu C. Anatomical characteristics of young stems and mature leaves of dwarf pear., 2015, 186: 172-179.
[2] Rivalta L, Dradi M, Rosati C. Thirty years of pear breeding activity at ISF Forli, Italy., 2002, 596(1): 233-238.
[3] Wang C H, Tian Y K, Buck E J, Gardiner S E, Dai H Y, Jia Y. Genetic mapping of PcDw determining pear dwarf trait., 2011, 136(1): 48-53.
[4] 李煒, 田義軻, 王彩虹, 白牡丹, 侯董亮. 通過HRM技術(shù)篩查與梨矮生性狀決定位點(diǎn)緊密連鎖的SNP標(biāo)記. 園藝學(xué)報(bào), 2015, 42(2): 214-220.
Li W, Tian Y K, Wang C H, Bai M D, Hou D L. Screening of SNP markers tightly linked tolocus determining pear dwarf trait using HRM technology., 2015, 42(2): 214-220. (in Chinese)
[5] Davey J W, Blaxter M L. RADSeq: Next-generation population genetics., 2011, 9(5): 416-423.
[6] Miller M R, Dunham J P, Amores A, Cresko W A, Johnson E A. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers., 2007, 17(2): 240-248.
[7] Baird N A, Etter P D, Atwood T S, Currey M C, Shiver A L, Lewis Z A, Selker E U, Cresko W A, Johnson E A. Rapid SNP discovery and genetic mapping using sequenced RAD markers., 2008, 3(10): e3376.
[8] Peterson B K, Weber J N, Kay E H, Fisher H S, Hoekstra H E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species., 2012, 7(5): e37135.
[9] Elshire R J, Glaubitz J C, Sun Q, Poland J A, Kawamoto K, Buckler E S, Mitchell S E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species., 2011, 6(5): e19379.
[10] Wang S, Meyer E, Mckay J K, Matz M V. 2b-RAD: A simple and flexible method for genome-wide genotyping., 2012, 9(8): 808-810.
[11] Dou J, Zhao X, Fu X, Jiao W, Wang N, Zhang L, Hu X, Wang S, Bao Z. Reference-free SNP calling: improved accuracy by preventing incorrect calls from repetitive genomic regions., 2012, 7(1): 1-9.
[12] Chutimanitsakun Y, Nipper R W, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, Johnson E A, Hayes P M. Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley., 2011, 12(1): 4.
[13] Pfender W F, Saha M C, Johnson E A, Slabaugh M B. Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in., 2011, 122(8): 1467-1480.
[14] Chagné D, Crowhurst R N, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Kn?bell M, Saeedl M, Montanari1 S, Kim Y K, Nicolini D, Larger S, Stefani E, Allan A C, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedowl C, Won K, Viola R, Hellens R P, Brewer L, Bus V G , Schaffer R J, Gardiner S E, Velasco R. The draft genome sequence of european pear (L. ‘Bartlett’)., 2014, 9: e92644.
[15] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations., 1991, 88: 9828-9832.
[16] Li R, Yu C, Li Y, Lam T W, Yiu S M, Kristiansen K, Wang J. SOAP2: an improved ultrafast tool for short read alignment., 2009, 25 (15): 1966-1967.
[17] Baumgartner I O, Kellerhals M, Costa F, Dondini L, Pagliarani G, Gregori R, Tartarini S, Leumann L, Laurens F, Patocchi A. Development of SNP-based assays for disease resistance and fruit quality traits in apple (Borkh.) and validation in breeding pilot studies., 2016, 12(3): 1-21.
[18] Zeballos J L, Abidi W, Giménez R, Monforte A J, Moreno M á, Gogorcena Y. Mapping QTLs associated with fruit quality traits in peach [(L.) Batsch] using SNP maps., 2016, 12(3): 1-17.
[19] Wu J, Li L T, Li M, Khan M A, Li X G, Chen H, Yin H, Zhang S L. High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers., 2014, 65(20): 5771-5781.
[20] SUN R, CHANG Y, YANG F, WANG Y, LI H, ZHAO Y, CHEN D, WU T, ZHANG X, HAN Z. A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality., 2015, 16(1): 747.
[21] 李全林, 王義發(fā), 韓晴, 袁政, 沈雪芳. 糯玉米‘滬五彩花糯1號(hào)’品系特異性2b-RAD分子標(biāo)記的開發(fā)及應(yīng)用. 植物生理學(xué)報(bào), 2016, 52(5): 669-677.
Li Q L, Wang Y F, Han Q, Yuan Z, Shen X F. Development and application of molecular markers for event-speci?c identi?cation of waxy corn ‘Huwucaihuanuo 1’ based on 2b-RAD technique., 2016, 52(5): 669-677. (in Chinese)
[22] Jiao W, Fu X, Dou J, Li H, Su H, Mao J, Yu Q, Zhang L, Hu X, Huang X, Wang Y, Wang S, Bao Z. High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing: building up an integrative genomic framework for a bivalve mollusc., 2013, 21(1): 85-101.
[23] Seetharam A S, Stuart G W. Whole genome phylogeny for 21species using predicted 2b-RAD fragments., 2013, 1: e226.
[24] Fletcher R S, Mullen J L, Yoder S, Bauerle W L, Reuning G, Sen S, Meyer E, Juenger T E, McKay J K. Development of a next-generation NIL library infor dissecting complex traits., 2013, 14(1): 655-655.
[25] Guo Y, Yuan H, Fang D, Song L, Liu Y, Liu Y, Wu L, Yu J, Li Z, Xu X. An improved 2b-RAD approach (2b-RAD) offering genotyping tested by a rice (L.) F2 population., 2014, 15 (1): 956.
[26] Li C, Li Y, Bradbury P J, Wu X, Shi Y, Song Y, Zhang D, Rodgers-Melnick E, Buckler E S, Zhang Z. Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize., 2015, 13: 78.
[27] Pecoraro C, Babbucci M, Villamor A, Franch R, Papetti C, Leroy B, Ortega-Garcia S, Muir J, Rooker J, Arocha F, Murua H, Zudaire I, Chassot E, Bodin N, Tinti F, Bargelloni L, Cariani A. Methodological assessment of 2b-RAD genotyping technique for population structure inferences in yellowfin tuna ()., 2015, 25: 43-48.
[28] Pauletto M, Carraro L, Babbucci M, Lucchini R, Bargelloni L, Cardazzo B. Extending RAD tag analysis to microbial ecology: A comparison between multilocus sequence typing and 2b-RAD to investigate listeriamonocytogenes genetic structure., 2016, 16(3): 823-835.
[29] Lu Z, Niu L, Chagné D, Cui G, Pan L, Foster T, Zhang R P, Zeng W F, Wang Z Q. Fine mapping of the temperature-sensitive semi-dwarf (Tssd) locus regulating the internode length in peach ()., 2016, 36(2): 1-11.
[30] Wang C H, Li W, Tian Y K, Hou D L, Bai M D. Development of molecular markers for genetic and physical mapping of thelocus in pear (L.)., 2016, 91(3): 299-307.
[31] 趙俊生, 楊曉燕, 曾祥有, 鐘聲, 方靜, 羅劍斌, 曾運(yùn)友, 向旭. 利用SNP 分子標(biāo)記分析化橘紅種質(zhì)資源. 分子植物育種, 2016, 14(5): 1203-1211.
Zhao J S, Yang X Y, Zeng X Y, Zhong S, Fang J, Luo J B, Zeng Y Y, Xiang X. Analysis on germplasm resources ofusing SNP molecular markers., 2016, 14(5): 1203-1211.
(責(zé)任編輯 趙伶俐)
Development of DNA Molecular Markers for the Dwarf Trait in Pear through the Method of 2b-RAD Sequencing and HRM Analysis
XIAO YuXiong, WANG CaiHong, TIAN YiKe, Yang ShaoLan, Li DingLi, ZHANG HaiYue
(College of Horticulture, Qingdao Agricultural University/Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao 266109, Shandong)
【Objective】As an important agronomic trait, the dwarf character of tree is significant to fruit intensive culture. The dwarf traits of pear originated from variety ‘Le Nain Vert’, a chance seedling of, is determined by a dominant gene, which sequence information is still unknown. Development of DNA molecular markers tightly linked to thelocus could provide important information for identifying of this gene.【Method】Using 2 different F1populations obtained from ‘Aishengli’בChili’ and ‘2-3’בLvbaoshi’, respectively, as plant materials, 2 pairs of bulks for dwarf type/standard type were sequenced through IIB restriction association site DNA (2b-RAD) technology, and then single nucleotide polymorphism (SNP) markers were detected between the dwarf and standard bulks based on the principle of bulked segregant analysis. After that, those SNPs located on themapped chromosome were selected and tested on the whole population to confirm their linkage relationship to thegene by high-resolution melting (HRM) analysis.【Result】A total of 67 186 260 reads were produced from the 2b-RAD sequencing of the 4 samples (2 pairs of bulks). That means the average reads per sample was 16 796 565. Statistical analysis of the filtered raw reads showed that the average unique tags per sample were 86 810, and the average sequencing depth was 77× which was enough for accurate genotyping. For the 4 libraries, mapping through SOAP software indicated that the high quality reads containing the restriction site accounted for more than 70% of the raw reads, which means the high quality of sequencing. Totally 1 317 polymorphic SNP markers were screened between the dwarf bulks and standard bulks derived from the 2 different populations, and 8 of them were mapped on the-localized chromosome scaffold00074. Further detection of the 8 SNPs through HRM analysis showed that 2 and 4 SNP markers co-segregated with thelocus were identified from population ‘Aishengli’בChili’ and population ‘2-3’בLvbaoshi’, respectively. According to the different shapes of the melting curves of amplicons, the dwarf/normal phenotype could be distinguished effectively. The recombinants for each marker and the target trait were not found in both of the two populations, which contained 215 and 168 progenies, respectively. 【Conclusion】The combination of 2b-RAD sequencing and HRM analysis technology is an efficient method for exploiting molecular markers of important agronomic traits in fruit trees. In this study, a total of 4 SNP markers co-segregated with thelocus were identified based on this strategy.
pear; dwarf traits;; SNP marker; 2b-RAD; HRM
2017-01-20;接受日期:2017-04-13
國家自然科學(xué)基金(31372049)、山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系果品創(chuàng)新團(tuán)隊(duì)(SDAIT-06-06)
肖玉雄,E-mail:1427449415@qq.com。通信作者王彩虹,E-mail:chwang@qau.edu.cn