席巖,李軍,柳貢慧,2,查春青,秦曦,嚴(yán)攀
(1.中國石油大學(xué)(北京)石油工程學(xué)院,北京 102249;2.北京工業(yè)大學(xué),北京 100124;3.中國石油天然氣集團公司西部鉆探工程技術(shù)有限公司,新疆 鄯善 838200)
瞬態(tài)力-熱耦合作用下水泥環(huán)形態(tài)對套管應(yīng)力的影響
席巖1,李軍1,柳貢慧1,2,查春青1,秦曦3,嚴(yán)攀1
(1.中國石油大學(xué)(北京)石油工程學(xué)院,北京 102249;2.北京工業(yè)大學(xué),北京 100124;3.中國石油天然氣集團公司西部鉆探工程技術(shù)有限公司,新疆 鄯善 838200)
基于頁巖氣水平井壓裂工程實際,采用解析法與數(shù)值法結(jié)合的方式,建立了壓裂過程中井筒溫度場計算模型和套管偏心、水泥環(huán)缺失有限元模型,據(jù)此研究瞬態(tài)力-熱耦合作用下的水泥環(huán)形態(tài)對套管應(yīng)力的影響。結(jié)果顯示:1)頁巖氣井壓裂過程中瞬態(tài)力-熱耦合作用顯著提高了套管應(yīng)力;套管應(yīng)力呈先升高后降低的動態(tài)變化,最大應(yīng)力值出現(xiàn)在壓裂初期。2)水泥環(huán)完整或套管偏心時,瞬態(tài)力-熱耦合作用降低了套管應(yīng)力周向分布不均勻差異;水泥環(huán)缺失時,套管應(yīng)力隨著缺失角、偏心距的增大而提高。研究結(jié)果對于精確計算頁巖氣井壓裂過程中的套管應(yīng)力具有重要意義。
頁巖氣井;套管變形;井筒溫度場;瞬態(tài)溫度力-熱耦合;水泥環(huán)形態(tài)
頁巖氣水平井固井水泥環(huán)形態(tài)多變[1-3],壓裂過程中套管易出現(xiàn)應(yīng)力集中;同時由于體積壓裂壓力高、排量大、時間長,力-熱耦合作用對套管應(yīng)力影響明顯[4-8]。國外學(xué)者研究表明,頁巖氣井壓裂過程中井筒溫度變化是套損問題出現(xiàn)的重要原因[9-10]。國內(nèi)學(xué)者就壓裂過程中水泥環(huán)完整時穩(wěn)態(tài)溫度變化對井筒完整性的影響進(jìn)行了分析,但未考慮壓裂過程中瞬態(tài)力-熱耦合作用下水泥環(huán)形態(tài)對套管應(yīng)力大小、分布的影響[11-12]。四川威遠(yuǎn)-長寧頁巖氣套損問題頻發(fā)[13-15],且多個套損點出現(xiàn)在套管變形、水泥環(huán)缺失處,因此,明確瞬態(tài)力-熱耦合作用下水泥環(huán)形態(tài)對套管應(yīng)力的影響,對精確計算套管應(yīng)力、提升井筒完整性具有重要意義。
本文基于頁巖氣井壓裂工程實際以及套后成像測井資料,建立了井筒溫度場模型和套管-水泥環(huán)-地層組合體有限元模型,采用解析法和數(shù)值法結(jié)合的方式,計算瞬態(tài)力-熱耦合作用下套管應(yīng)力變化,并分析了水泥環(huán)形態(tài)對套管應(yīng)力的影響規(guī)律。研究結(jié)果可為頁巖氣水平井壓裂過程中套損問題的分析提供參考。
設(shè)定地層溫度與深度呈線性關(guān)系:
式中:Tz為地層某一點的溫度,℃;Tb為地層恒溫點的溫度,℃;θ為地溫梯度,℃/m;z為地層某一點的深度,m;b為基準(zhǔn)深度,m。
基于能量守恒方程建立井筒溫度場模型。沿井筒軸向?qū)⒕矂澐謏等分,沿井壁到地層無限遠(yuǎn)處劃分為i個區(qū)域。井筒內(nèi)流體的能量守恒方程為
式中:Q為壓裂液排量,m3/min;ρ為密度,kg/m3;C為質(zhì)量熱容,J/(kg·℃);r為套管內(nèi)徑,m;ΔHj為單元體高度,m;U為流體與套管表面對流換熱系數(shù),W/(m2·℃);λ為套管摩阻系數(shù)(與流體雷諾數(shù)有關(guān));v為套管內(nèi)流體流速,m/s;Wj為壓裂液與井壁接觸摩擦產(chǎn)生的熱量,J;T為溫度,°C;Δt為時間差,s;下標(biāo)0代表壓井液。
與流體接觸的套管單元的能量守恒方程為
式中:K為壓裂液導(dǎo)熱系數(shù),W/(m·℃)。
其余固體單元的能量守恒方程為
根據(jù)網(wǎng)格劃分情況,i=0,1≤i<n,n≤i<m,m≤i<k(n,m,k分別代表劃分的網(wǎng)格數(shù))時,ρ,C,K分別代表壓裂液、套管、水泥環(huán)、地層的密度、質(zhì)量熱容和導(dǎo)熱系數(shù)。
根據(jù)雷諾數(shù)計算可得,套管壓裂時井筒內(nèi)壓裂液流態(tài)為紊流。其換熱系數(shù)計算公式為
張紹凡就是我的天敵,這丫頭片子從小就看不起我。雖然我們住在同一條街道,年紀(jì)相仿,從上幼兒園開始就是同學(xué),但她一直都是老師寵愛、同學(xué)擁護(hù)的好班長。而我,卻是大家眼中吊兒郎當(dāng)、不學(xué)無術(shù),還總調(diào)皮搗亂的壞孩子。
紊流狀態(tài)下的斯坦頓數(shù)計算公式為
式中:St為斯坦頓數(shù);Re為雷洛數(shù);Pr為普朗特數(shù);γ為壓裂液表觀黏度,Pa·s。
根據(jù)式(1)—(8),計算可得壓裂過程中壓裂液沿井筒的溫度變化,并且可以計算出不同排量下水平段任意位置流經(jīng)該處的隨時間變化的壓裂液溫度,將其作為條件參數(shù)輸入到有限元模型中,實現(xiàn)解析法和數(shù)值法結(jié)合。
式中:l為井眼水平段某處到趾端的距離,m。
假定套管、水泥環(huán)、地層在水平方向上熱力學(xué)性質(zhì)保持不變,相關(guān)問題轉(zhuǎn)化為平面熱傳導(dǎo)和應(yīng)力、應(yīng)變問題。如圖1所示,選擇距離趾端為l的組合體截面作為研究對象,經(jīng)過該截面的壓裂液溫度為,建立3 m×3 m的基礎(chǔ)有限元模型,采用變密度網(wǎng)格劃分方式以減小計算干擾。在基礎(chǔ)有限元模型上改變水泥環(huán)形態(tài)(見圖2。其中:SH為最大水平地應(yīng)力;SV為垂向地應(yīng)力;△為偏心距;α為缺失角;δ為偏心角)。
在載荷施加和邊界條件設(shè)置方面,采用有限軟件Abaqus中的Predefined功能施加地應(yīng)力,套管內(nèi)壁加入液壓。溫度內(nèi)邊界為動態(tài)邊界條件,作為隨時間變化的動態(tài)函數(shù)輸入有限元模型中;溫度外邊界為地層邊界,設(shè)置為穩(wěn)定熱源。X,Y方向模型邊界位移為0。
圖1 基礎(chǔ)數(shù)值模型
圖2 套管偏心、水泥環(huán)缺失數(shù)值模型
參數(shù)設(shè)置以頁巖氣井W1井工程實際參數(shù)為準(zhǔn),具體見表1。
W1井井深為2909 m,垂深為1745 m,井底溫度為78.5℃,壓裂液初始溫度為20℃,壓裂泵壓為60MPa,排量為16 m3/min,壓裂時間為4 h。套管壁厚為9.17mm,鋼級為TP95。地層最大水平、垂向主應(yīng)力分別為48,35MPa。因套后測井資料顯示水泥環(huán)缺失處為液相物質(zhì),為簡化計算,假設(shè)水泥環(huán)缺失處填充物為水,其熱膨脹系數(shù)ξ(T)為隨溫度變化的變值。
表1 套管、水泥環(huán)、地層幾何及力學(xué)參數(shù)
壓裂過程中,壓裂液溫度與壓裂排量、時間有關(guān)。選擇壓裂排量8,12,20 m3/min作為參考。選取跟端處即水平段距離趾端lmax處為研究對象,計算該處壓裂液溫度瞬態(tài)變化(見圖3)。
圖3 不同排量下跟端壓裂液溫度隨時間變化
由圖3可知:跟端壓裂液初始溫度為儲層溫度,壓裂過程中溫度先快速后緩慢下降;排量不同時,相同時刻排量越大,溫度越低,降幅不斷減小。將溫度-時間瞬態(tài)變化數(shù)據(jù)輸入到有限元軟件中進(jìn)行下一步計算。
瞬態(tài)力-熱耦合作用改變了套管應(yīng)力大?。ㄒ妶D4)。不考慮力-熱耦合作用時,壓裂過程中套管應(yīng)力為恒值;考慮該作用時,套管最大應(yīng)力先迅速升高,然后緩慢下降。這主要是因為:壓裂初期,井筒內(nèi)液體與套管內(nèi)壁直接接觸,套管內(nèi)壁遇冷劇烈收縮,外壁則來不及冷卻而變形,在整體幾何條件約束下,由于變形不協(xié)調(diào)而形成了對內(nèi)壁收縮的抵制,導(dǎo)致套管內(nèi)壁承受巨大拉應(yīng)力,外壁受壓,因此最大應(yīng)力(位于內(nèi)壁)迅速提升;壓裂一段時間后,套管冷卻速度穩(wěn)定,外壁開始冷卻且收縮趨勢增強,內(nèi)部收縮趨勢減弱,內(nèi)拉外壓作用減弱,從而使得套管最大應(yīng)力逐漸降低。套管最大應(yīng)力值出現(xiàn)在t1=0.13 h(485 s)。
圖4 力-熱耦合作用下套管最大應(yīng)力瞬態(tài)變化
力-熱耦合作用改變了套管應(yīng)力分布(見圖5)。選擇t1,t2,t3時刻,對比不同時刻下內(nèi)壁應(yīng)力周向分布。不考慮力-熱耦合作用時,受非均勻地應(yīng)力影響,套管應(yīng)力周向分布具有明顯非均勻性,水平方向上受力最大,垂直方向上受力最小;考慮力-熱耦合作用時,套管內(nèi)壁周向分布應(yīng)力整體大幅提升,但是周向上分布的應(yīng)力非均勻差異變小。
圖5 不同時刻套管內(nèi)壁應(yīng)力大小及分布
頁巖氣井水平段達(dá)到千米以上,導(dǎo)致套管居中難以保證。套管成像測井表明,部分頁巖氣井套損點處偏心明顯??紤]瞬態(tài)力-熱耦合作用時,不同時刻套管應(yīng)力不同。本文選擇應(yīng)力最大值出現(xiàn)時刻進(jìn)行研究。圖6為力-熱耦合作用下偏心時套管應(yīng)力周向分布曲線。由圖可知:不考慮力-熱耦合作用(No),套管偏心時最大應(yīng)力要比無偏心時大,應(yīng)力周向分布差異明顯;考慮力-熱耦合作用(Yes),套管應(yīng)力整體顯著提高,周向不同位置處應(yīng)力差異變小。其規(guī)律是:偏心角為0°時,套管最大應(yīng)力隨著偏心距的增大而提高;偏心距為30mm時,套管最大應(yīng)力隨著偏心角的增大而降低。
圖6 力-熱耦合作用下偏心時套管應(yīng)力周向分布
偏心導(dǎo)致固井過程中水泥漿周向流速分布不均,窄間隙處剖面頂替效率急劇下降,易導(dǎo)致竄槽發(fā)生。套后成像測井表明,套損點處偏心較為嚴(yán)重,伴隨有明顯連續(xù)竄槽,充填物質(zhì)為液相,壓裂過程中易產(chǎn)生應(yīng)力集中。取偏心角為0°作為基礎(chǔ)計算條件,建立偏心、竄槽共存有限元模型進(jìn)行計算。圖7為力-熱耦合作用下水泥環(huán)缺失時套管應(yīng)力周向分布。由圖7可知:不考慮力-熱耦合作用(No)時,套管應(yīng)力在水泥環(huán)缺失位置中部明顯提升;考慮力-熱耦合作用(Yes)時,套管最大應(yīng)力位置出現(xiàn)在缺失位置的兩側(cè),提升幅值更大。其規(guī)律是:偏心距為0時,缺失角增大,套管最大應(yīng)力值不斷提高;缺失角為30°時,偏心距不斷增大,套管最大應(yīng)力值不斷提高。
圖7 力-熱耦合作用下水泥環(huán)缺失時套管應(yīng)力周向分布
綜上所述,在一定井筒力學(xué)條件和壓裂工況下,套管內(nèi)壁最大應(yīng)力出現(xiàn)在壓裂初期0.13 h。完整水泥環(huán)狀態(tài)、考慮力-熱耦合作用時,套管最大應(yīng)力為452.4MPa,相比較不考慮力-熱耦合作用提高91.2%;偏心角為0°、缺失角為90°、考慮力-熱耦合作用時,套管最大應(yīng)力為625.4MPa,相比較不考慮力-熱耦合作用、完整水泥環(huán)形態(tài)時提高164.3%,已經(jīng)接近套管屈服強度655MPa,套管損壞風(fēng)險大幅提高。
1)考慮套管對流換熱系數(shù)隨排量變化以及摩擦生熱,建立了壓裂過程中井筒溫度場模型,計算了壓裂液溫度瞬態(tài)變化。結(jié)果表明,同位置、同時刻排量越大,壓裂液溫度越低。
2)建立了井筒組合體數(shù)值模型,計算了瞬態(tài)力-熱耦合作用下水泥環(huán)形態(tài)對套管應(yīng)力影響。結(jié)果表明:壓裂過程中,套管應(yīng)力先上升后下降,應(yīng)力最大值出現(xiàn)在壓裂開始初期;考慮瞬態(tài)力-熱耦合作用時,套管最大應(yīng)力顯著提升,套損風(fēng)險大幅提高。
3)瞬態(tài)力-熱耦合作用改變了套管應(yīng)力分布。水泥環(huán)完整和套管偏心時,力-熱耦合作用降低了周向分布不均勻差異;水泥環(huán)缺失時,力-熱耦合作用使得套管最大應(yīng)力出現(xiàn)在缺失處兩側(cè),且隨著偏心距和缺失角的不斷增大,應(yīng)力不斷提高。
[1]劉偉,陶謙,丁士東.頁巖氣水平井固井技術(shù)難點分析與對策[J].石油鉆采工藝,2012,34(3):40-43.
[2]李偉,王濤,王秀玲,等.陸相頁巖氣水平井固井技術(shù):以延長石油延安國家級陸相頁巖氣示范區(qū)為例[J].天然氣工業(yè),2014,34(12):106-112.
[3]趙常青,馮斌,劉世彬,等.四川盆地頁巖氣井水平段的固井實踐[J].天然氣工業(yè),2012,32(9):61-65.
[4]WOOLEY G R.Computing downhole temperatures in circulation, injection,andproductionwells[J].Geothermics,1981,10(2):95-102.
[5]高孝巧,楊浩,熊繁升,等.油頁巖原位加熱井下溫度場及熱應(yīng)力研究[J].斷塊油氣田,2014,21(3):373-377.
[6]Jr,RAMER J J.Wellbore heat transmission[J].Journal of Petroleum Technology,1962,14(4):427-435.
[7]王鴻勛,李平.水力壓裂過程中井筒溫度的數(shù)值計算方法[J].石油學(xué)報,1987,8(2):91-99.
[8]尹虎,張韻洋.溫度作用影響套管抗擠強度的定量評價方法:以頁巖水平井大型壓裂施工為例[J].天然氣工業(yè),2016,36(4):73-77.
[9]SHEN Z,LING K.Maintaining horizontal well stability during shale gas development[R].SPE 164037,2013.
[10]LAST N C,MUJICA S,PATTILLO P D,et al.Evaluation,impact,and management of casing deformation caused by tectonic forces in the andean foothills,colombia[J].SPE Drilling&Completion,2006,21(2):116-124.
[11]田中蘭,石林,喬磊.頁巖氣水平井井筒完整性問題及對策[J].天然氣工業(yè),2015,35(9):70-77.
[12]劉奎,王宴濱,高德利,等.頁巖氣水平井壓裂對井筒完整性的影響[J].石油學(xué)報,2016,37(3):406-414.
[13]LIAN Z H,YU H,LIN T J,et al.A study on casing deformation failure during multi-stage hydraulic fracturing for the stimulated reservoir volume of horizontal shale wells[J].Journal of Natural Gas Science and Engineering,2015,23:538-546.
[14]戴強.頁巖氣井完井改造期間生產(chǎn)套管損壞原因初探[J].鉆采工藝,2015,38(3):22-25.
[15]蔣可,李黔,陳遠(yuǎn)林,等.頁巖氣水平井固井質(zhì)量對套管損懷的影響[J].天然氣工業(yè),2015,35(12):77-82.
[16]董文濤,申瑞臣,梁奇敏,等.體積壓裂套管溫度應(yīng)力計算分析[J].斷塊油氣田,2016,23(5):673-675.
(編輯 李宗華)
Impact analysis of cement sheath shape on casing stress under transient mechanical-thermal coupling effect
XI Yan1,LI Jun1,LIU Gonghui1,2,ZHA Chunqing1,QIN Xi3,YAN Pan1
(1.College of Petroleum Engineering,China University of Petroleum,Beijing 102249,China;2.Beijing University of Technology, Beijing 100124,China;3.West Drilling Engineering Co.Ltd.,CNPC,Shanshan 838200,China)
On the basis of fracturing engineering practice of shale gas wells,wellbore temperature field model and casing eccentricity and cement sheath deficiency finite element models were established by analytical and numerical methods,and the influence of transient mechanical-thermal coupling effect on casing stress was analyzed.The results show that:(1)the coupled mechanical-thermal effect on casing stress is significant,casing stress first increases and then decreases,the maximum casing stress appears at the beginning of fracturing.(2)when the cement sheath shape is integrity or casing is eccentric,the coupled mechanicalthermal effect reduces the difference of the stress along circumference,and when there is deficiency in cement sheath,with the increase of the eccentric distance or deficiency angle,the maximum stress of casing increases.The research results provide a reference for the accurate calculation of casing stress during fracturing in shale gas well.
shalegaswell;casingdeformation;wellboretemperaturefield;transientmechanical-thermalcoupling;cementsheathshape
TE256
A
國家自然科學(xué)基金項目“長水平段非均質(zhì)頁巖儲層非均勻分簇射孔優(yōu)化研究”(51674272);中國石油西南油氣田分公司項目“四川盆地高溫高壓含硫井超深井鉆井、完井及試油技術(shù)研究與應(yīng)用”(2016E-0608)
10.6056/dkyqt201705023
2017-02-23;改回日期:2017-07-06。
席巖,男,1985年生,在讀博士研究生,從事巖石力學(xué)、井筒完整性方面的研究。E-mail:315791585@qq.com。
席巖,李軍,柳貢慧,等.瞬態(tài)力-熱耦合作用下水泥環(huán)形態(tài)對套管應(yīng)力的影響[J].斷塊油氣田,2017,24(5):700-704.
XI Yan,LI Jun,LIU Gonghui,et al.Impact analysis of cement sheath shape on casing stress under transient mechanical-thermal coupling effect[J].Fault-Block Oil&Gas Field,2017,24(5):700-704.