劉曉鴿,吳煥煥,張蕊,孫浩然
利用擴散加權成像評估MitoQ對大鼠腎臟缺血再灌注損傷的保護作用
劉曉鴿,吳煥煥,張蕊,孫浩然*
目的探討擴散加權成像(diffusion weighted imaging,DWI) 表觀擴散系數(shù)(apparent diffusion coefficient,ADC)評估線粒體靶向抗氧化劑MitoQ對大鼠腎臟缺血再灌注損傷(ischemia-reperfusion injury,IRI)保護作用的可行性。材料與方法暫時夾閉大鼠左側腎動脈45 min以建立IRI模型。10只雄性SD大鼠隨機分為MitoQ組(5只,IRI+MitoQ) 和對照組(5只,IRI+生理鹽水)。在術前(第0天)和術后不同時間(第2、5、7和14天)對大鼠進行DWI掃描,并測量雙側腎外髓外帶(the outer stripe of the outer medulla,OSOM)的ADC值。最后一次MRI檢查結束后對腎臟組織病理學損傷程度進行評分。采用最小顯著差法比較不同時間點組間及組內(nèi)ADC值的差異。借助Kruskal-Wallis H檢驗和Mann-Whitney U檢驗比較不同腎臟組織病理學評分之間的差異。結果術前兩組大鼠雙腎ADC值無明顯差異。術后兩組大鼠右腎ADC值無明顯差異,在術后各時間點,每組大鼠左腎OSOM的ADC值均低于右腎(P<0.01),對照組左腎ADC值于各時間點均低于MitoQ組。第2天MitoQ組和對照組左腎分別為(3.66±0.29)×10-4mm2/s、(3.09±0.39)×10-4mm2/s,P<0.05;第5天MitoQ組和對照組左腎分別為(3.75±0.32)×10-4mm2/s、(2.95±0.79)×10-4mm2/s,P<0.05;第7天MitoQ組和對照組左腎分別為(3.77±0.42)×10-4mm2/s、(2.98±0.49)×10-4mm2/s,P<0.05;第14天MitoQ組和對照組左腎分別為(3.93±0.23)×10-4mm2/s、(3.05±0.20)×10-4mm2/s,P<0.05。腎臟組織病理學分析表明腎損傷最嚴重的區(qū)域發(fā)生在對照組IRI腎臟OSOM,其組織病理學損傷評分高于MitoQ組IRI腎臟(P<0.01)。結論腎臟擴散加權成像可無創(chuàng)評價MitoQ減輕大鼠腎臟缺血再灌注損傷的作用。
腎臟;缺血再灌注損傷;彌散磁共振成像
在諸如患慢性腎病、雙腎腫瘤、孤立腎等患者中,小的腎臟腫瘤是實行腎部分切除術的絕對指征[1-2]。手術通常要求夾閉單側腎動脈,以防止術中出血并提供無血的手術空間,實現(xiàn)精確切除腫瘤并縫合集合系統(tǒng)[3]。然而,術中腎臟暫時缺血及術后再灌注所帶來的腎臟缺血再灌注損傷(ischemia-reperfusion injury,IRI) 則不可避免,這是術后腎功能下降的主要原因[4-5]。研究證實腎臟IRI主要損傷部位發(fā)生在腎臟外髓外帶(the outer stripe of the outer medulla,OSOM) 的近曲小管,Ysebaert等[6]對大鼠IRI模型的研究分析表明,OSOM中80%的近曲小管細胞嚴重受損。Kalogeris等[7]提出藥物干預有助于激活細胞生存機制,降低腎臟IRI,如何研制出可以降低IRI的預處理藥物已成為當今學者研究的熱點問題[8]。Murphy等研發(fā)出線粒體靶向抗氧化劑MitoQ,作為泛醌的衍生物,MitoQ與三苯基膦和親脂性陽離子相偶聯(lián),這可以保證其通過線粒體脂質(zhì)雙分子層,并且在電化學梯度下可聚集在線粒體內(nèi)[9]。磁共振擴散加權成像(diffusion weighted imaging,DWI)可反映組織細胞水分子的擴散運動[10],故可以應用于急性或慢性腎功能衰竭患者的腎功能評估,且腎功能損害可導致表觀擴散系數(shù)(apparent diffusion coefficient,ADC)降低[11]。因此,本研究設想DWI能無創(chuàng)地評估MitoQ對腎臟的保護作用。為監(jiān)測MitoQ預處理對IRI的保護作用,本研究在大鼠模型中進行為期兩周的腎臟DWI動態(tài)監(jiān)測,并測量腎臟OSOM的ADC變化。
本研究得到本院動物保護和使用委員會的批準,并嚴格遵守實驗室動物保護和使用準則。平均體重為250 g的10只雄性SD大鼠(北京大學醫(yī)學部育種中心)隨機分為兩組:MitoQ組(5只,IRI+MitoQ),大鼠在熱缺血開始前15 min以20 μL/s的速度通過鼠尾靜脈注射MitoQ (澳新生物制藥公司捐贈)(每只大鼠2.8 mg/kg的劑量溶于700 μL 0.9% 的生理鹽水中),然后夾閉左腎動脈45 min,最后取下血管夾實現(xiàn)再灌注;對照組(5只,IRI +生理鹽水),與MitoQ組過程相似,以700 μL 0.9%的生理鹽水代替MitoQ注射液。
所有大鼠在術前前夜均禁食,但飲水自由。手術時將大鼠置于一個恒溫板上,以維持體溫在(37±1)℃。術中采用汽化七氟烷面罩吸入(1.0%~2.5%)的方法使大鼠麻醉。對大鼠腹部進行備皮、消毒操作。在腹部做一個旁正中切口,分離出左腎動脈,并用微血管夾夾閉,以實現(xiàn)可逆性阻斷腎動脈血供。觀察到大鼠腎臟表面由亮紅色變?yōu)榧t棕色,即實現(xiàn)了腎動脈的完全性夾閉。 熱缺血時間45 min的選擇基于我們之前實驗的經(jīng)驗積累:既保證腎功能的下降,又盡可能降低動物的死亡率。熱缺血時間結束后取下血管夾,觀察到腎臟恢復至亮紅色,即實現(xiàn)了再灌注,隨后關閉切口。
MRI掃描在IRI術前(第0天)和術后(第2、5、7和14天)進行,儀器為3.0 T 磁共振機(MR750,通用電氣醫(yī)療集團,美國),使用6 cm孔徑4通道小動物線圈(萬通,深圳,中國)。大鼠在MRI檢查前2 h禁食,掃描過程中采用汽化七氟烷面罩吸入(1.0%~2.5%)的方法使大鼠麻醉。每只大鼠處于仰臥位,掃描時對其腹部進行適當按壓,以便把它們的呼吸運動限制到最小程度。橫軸面多層面單次激發(fā)回波平面成像DWI參數(shù):TR 2075 ms,TE 111.9 ms,層厚2 mm,層間距0.5 mm,F(xiàn)OV 6 cm×6 cm,矩陣 192×96,帶寬±100 kHz。b值為10、 1200 mm2/s。
表1 兩組大鼠術前(第0天)和術后不同時間雙腎外髓外帶(OSOM) ADC值 (×10-4 mm2/s,x±s)Tab.1 The ADC values of the OSOM on bilateral kidneys prior to (day 0) and after IRI in two groups (×10-4 mm2/s, x±s)
表2 兩組大鼠術后第14天雙腎組織病理學損傷評分(M±Q)Tab.2 Histopathological damage scores of the bilateral kidneys on day 14 among the two groups (M±Q)
將DWI 數(shù)據(jù)傳至工作站(ADW 4.5,GE醫(yī)療集團,美國),利用Functools分析軟件生成ADC圖,在低b值(10 mm2/s)的DWI圖像上勾畫腎門水平的腎臟外髓外帶感興趣區(qū)(region of interest,ROI) (注意勾畫ROI時應避開皮質(zhì)和外髓內(nèi)帶等結構),在ADC圖上測定ROI內(nèi)的平均ADC值(圖1)。
最后一次MRI檢查結束后處死所有大鼠,取下雙腎進行組織學分析。腎臟標本用5%緩沖福爾馬林固定后石蠟包埋,并切成5 mm層厚。所有標本進行蘇木精-伊紅(HE)染色,并由1名經(jīng)驗豐富的病理學家對顯微鏡下組織學變化進行分析。腎損傷主要包括:腎小管:腎小管擴張,上皮細胞空泡形成,上皮細胞脫落;腎間質(zhì):腎間質(zhì)水腫,炎癥細胞聚集。借助半定量評分法對損傷區(qū)域的腎組織進行0~4分的評分:0分,腎臟無損傷;1分,腎損傷<25%;2分,腎損傷<50%;3分,腎損傷<75%;4分,腎損傷>75%[12]。
采用SPSS 12.0.1軟件進行統(tǒng)計學處理:Kolmogorov Smirnov檢驗評估數(shù)據(jù)是否符合正態(tài)分布;Levene's檢驗評估數(shù)據(jù)的方差齊性。正態(tài)分布數(shù)據(jù)用x±s表示;非正態(tài)分布數(shù)據(jù)用M±Q表示。不同時間點各組間及組內(nèi)ADC值比較采用最小顯著差法(Least-significant difference,LSD);腎臟組織病理學評分之間比較借助Kruskal-Wallis H檢驗和Mann-Whitney U檢驗。P<0.05視為有統(tǒng)計學意義。
術前兩組所有大鼠雙腎OSOM的ADC值接近。術后兩組大鼠右腎OSOM的ADC值無顯著變化。兩組大鼠左腎OSOM的ADC值在術后第2天明顯下降,以對照組下降顯著,之后兩組左腎OSOM的ADC值與第2天相比變化不大(圖2)。在術后各個時間點兩組大鼠左腎OSOM的ADC值均低于兩組大鼠右腎OSOM,對照組大鼠左腎OSOM的ADC值更低于MitoQ組大鼠左腎OSOM(表1)。
腎臟IRI的組織病理學表現(xiàn)為:腎小管擴張、上皮細胞空泡形成及脫落;腎間質(zhì)水腫及炎癥細胞浸潤,在對照組大鼠左腎OSOM上表現(xiàn)最明顯,這些現(xiàn)象在MitoQ組大鼠左腎OSOM上則明顯緩解,兩組大鼠右腎組織學變化較小(圖3)。兩組大鼠左腎OSOM的組織病理學評分均高于兩組右腎OSOM,MitoQ組左腎OSOM的病理學評分低于對照組左腎OSOM (表2)。
本研究借助腎臟DWI/ADC值監(jiān)測大鼠IRI后的腎臟功能變化,結果顯示對照組左腎ADC值于各時間點均低于MitoQ組,提示線粒體靶向抗氧化劑MitoQ對腎臟IRI具有保護作用。盡管腎臟缺血再灌注損傷的發(fā)病率及死亡率較高,但目前對于腎缺血再灌注損傷無相對有效的治療方法[8],因此尋求腎臟保護藥物對IRI的臨床治療至關重要,本研究結果可以從方法學和治療學兩方面提供潛在的途徑。
IRI指器官的供血中斷,隨后恢復正常供血與供氧,通過啟動炎癥級聯(lián)反應,從而加劇組織的損傷,腎臟IRI往往導致急性和慢性腎功能不全[13]。IRI引起的細胞程序化死亡可能與細胞凋亡、壞死和自身免疫和過量的活性氧(reactive oxygen species,ROS)有關,上述過程與IRI中線粒體氧化損傷存在因果關系[14-15]。目前,IRI無有效治療方法,但對于術中夾閉血管造成的熱缺血,許多學者嘗試預防性使用藥物以拮抗再灌注損傷。由于線粒體氧化損傷在腎臟IRI處于重要地位,因此降低IRI過程中線粒體氧化損傷可能是一種可行的治療措施。Murphy等研發(fā)出線粒體靶向抗氧化劑MitoQ,MitoQ可使線粒體內(nèi)大量的脂質(zhì)過氧自由基和ROS含量下降,因此能降低線粒體氧化損傷[9]。Murphy等借助PCR和ELISA方法證明MitoQ可降低小鼠腎臟缺血再灌注過程中組織細胞內(nèi)線粒體氧化損傷[15]。
圖1 在DWI圖像中勾畫腎臟外髓外帶(OSOM)感興趣區(qū)并測量ADC值。A:術后左腎DWI圖像(b=10 mm2/s),由外向內(nèi)依次為皮質(zhì)(cortex,CO)、外髓外帶(the outer stripe of the outer medulla, OSOM)和外髓內(nèi)帶(the inner stripe of the outer medulla,ISOM)。B:在DWI圖像上勾畫OSOM的感興趣區(qū)。C:與B圖相應的ADC圖 圖2 術前(第0天)和術后不同時間(第2、 5、 7、 14天)兩組大鼠雙腎外髓外帶(OSOM) ADC值變化的折線圖。線條1、2、3、4分別代表MitoQ組右腎OSOM、對照組右腎OSOM、MitoQ組左腎OSOM、對照組左腎OSOM。術前兩組所有大鼠雙腎OSOM的ADC值接近在同一水平,術后兩組大鼠右腎OSOM的ADC值無顯著變化。兩組大鼠左腎OSOM的ADC值在術后第2天明顯下降,以對照組下降明顯,之后變化不大 圖3 術后第14天兩組大鼠雙腎組織HE染色切片( ×400)。A:MitoQ組左腎;B:MitoQ組右腎;C:對照組左腎;D:對照組右腎。腎小管擴張、上皮細胞空泡形成、脫落;腎間質(zhì)水腫和炎癥細胞浸潤在對照組大鼠左腎OSOM表現(xiàn)最明顯,而這些現(xiàn)象在MitoQ組大鼠左腎OSOM不太明顯。兩組大鼠右腎組織學基本無變化Fig. 1 Example of the region of interest (ROI) setting on axial DWI and the measurement of the ADC value. A: DWI of the left kidney after IRI (b=10 mm2/s):cortex (CO), the outer stripe of the outer medulla (OSOM) and the inner stripe of the outer medulla (ISOM) from the outside in. B: The ROI setting of OSOM on DWI. C: The ADC image corresponding to DWI. Fig. 2 Graphs of ADC values of OSOM on bilateral kidneys in two groups before (day 0) and after IRI(day 2, 5, 7 and 14). Line 1, the right OSOM in MitoQ group. Line 2, the right OSOM in control group. Line 3, the left OSOM in MitoQ group. Line 4, the left OSOM in control group. The ADC values in two groups on day 0 were about the same level. The ADC values of the right OSOM in two groups changed little after IRI. The ADC values of the left OSOM dropped dramatically from day 2 in both of the groups, and it was more obvious in control group, since then they had little changes. Fig. 3 Histological sections of renal tissue with HE staining ( ×400) of the bilateral kidneys on day 14 after IRI in two groups. A: The left kidney in MitoQ group. B: The right kidney in MitoQ group. C: The left kidney in control group. D: The right kidney in control group. Tubular dilatation,tubular epithelial cell vacuolization, desquamation, as well as interstitial tissue edema and inflammatory cell infiltration were the most predominant in the OSOM of the left kidneys in control group, which were less obvious in the OSOM of the left kidneys in MitoQ group. The pathological changes in the right kidneys in both groups were little.
目前腎活檢是診斷腎臟疾病的金標準,但腎活檢具有侵襲性且受取樣部位的影響,因此建立一種非侵襲性技術來發(fā)現(xiàn)并監(jiān)測腎臟疾病的進展非常重要[16]。然而,腎功能連續(xù)監(jiān)測存在方法學上的挑戰(zhàn),目前各種技術均存在缺陷。許多學者用生化的方法,如肌酐,監(jiān)測腎功能,然而肌酐只能反映整體腎功能[17-18]。為了監(jiān)測單側腎功能,許多學者采取切除大鼠對側腎臟或夾閉雙側腎臟的辦法,然而這與臨床實際情況存在差異。此外,長期連續(xù)多次抽取血液樣品也會干擾小動物體內(nèi)環(huán)境。腎動態(tài)顯像可量化單側腎GFR[19],然而,由于大鼠的腎臟和動脈均較小,該方法無法在小動物身上實施。
DWI是目前唯一可以無創(chuàng)地反映活體組織中水分子擴散運動情況的成像技術,能夠反映活體組織的微觀結構變化[20],其量化指標ADC可反映水分子運動速度,有學者還指出ADC值可在一定程度上反映腎臟濾過功能[11]。DWI對于腎臟病變的評估價值在腎臟慢性疾病、急性泌尿系梗阻、移植腎功能評估、上尿路感染中廣泛文獻報道[21-23]。腎臟IRI可導致腎小管上皮細胞水腫變性、腎小管內(nèi)管型和壞死脫落細胞形成[24],這些病生理變化限制腎小管內(nèi)水分子的運動,影響腎臟濾過功能,并使ADC值降低。楊荷霞等[25]研究表明腎小管損傷最終表現(xiàn)腎臟單位體積內(nèi)血流量降低,功能學表現(xiàn)為腎臟濾過受損;b值越低,微灌注提供的信息越多,與腎臟濾過的相關性也越好。所以本次實驗采用低b值對IRI腎臟不同時間的ADC值進行測量并分析,從側面探究IRI后腎臟濾過功能的變化。
本次研究病理分析結果表明IRI損傷主要發(fā)生在腎臟OSOM,這與之前學者的研究一致[6]。ADC結果分析表明,對照組大鼠IRI腎臟OSOM的ADC值低于MitoQ組大鼠IRI腎臟,張友元等[11]研究表明腎ADC值與評估GFR呈正相關,提示MitoQ可能在降低IRI中起到一定作用,而本次研究的病理學也證實了這一點。本研究還發(fā)現(xiàn)MitoQ組右腎和對照組右側腎ADC值、病理學評分無差異,提示MitoQ對大鼠健腎影響不大,這可能與下列因素有關:細胞氧化還原平衡維持細胞防御機制和ROS產(chǎn)物之間的正常平衡,而MitoQ只能降低左腎IRI所致過量的ROS 所帶來的氧化損傷,而對右側相對正常腎臟作用不大。
近年來有學者對腎臟不同狀況下的ADC進行研究[11,26]。張友元等[11]借助ADC探討其腎功能的關系,發(fā)現(xiàn)ADC能在一定程度上反映腎小球濾過功能,并指出正?;颊逜DC值為(1.90±0.16)×10-3mm2/s,本次研究結果與該結果存在差異,可能與下列因素有關:本研究對象為大鼠,且在掃描過程中無呼吸門控裝置,這可能產(chǎn)生運動偽影,可能對結果有一定影響。Wu等[26]借助ADC評估順鉑誘導下大鼠腎臟纖維化模型,建模前大鼠ADC值與本研究一致。本次研究各組大鼠健康腎臟ADC值在術后各個時間點較穩(wěn)定,故可以縱向研究IRI大鼠在不同時間點的ADC值及其變化規(guī)律。
本次研究存在不足。首先,本研究作為可行性探索,實驗樣本量小,未來需要擴大樣本量,并進行MitoQ的劑量效能分析。再次,因為考慮到連續(xù)多次抽血會干擾大鼠生理狀態(tài),因此未進行血生化檢查。
綜上所述,本研究對腎臟缺血再灌注損傷大鼠不同時間點的ADC值進行分析,研究結果提示線粒體靶向抗氧化劑MitoQ可減輕大鼠腎臟缺血再灌注損傷。
[References]
[1] Smith ZL. Current Status of Minimally Invasive Surgery for Renal Cell Carcinoma. Curr Urol Rep, 2016, 17(6): 43.
[2] Schneider MJ, Dietrich O, Ingrisch M, et al. Intravoxel incoherent motion Magnetic Resonance Imaging in partially nephrectomized kidneys. Invest Radiol, 2016, 51(5): 323-330.
[3] Thompson RH, Lane BR, Lohse CM, et al. Every minute counts when the renal hilum isclamped during partial nephrectomy. Eur Urol, 2010, 58(3): 340-345.
[4] Kaouk JH, Malko? E. Is robotic partial nephrectomy convenient for solitary kidney? Turk J Urol, 2016, 42(3): 127-129.
[5] Hu L, Chen J, Yang X, et al. Assessing intrarenal nonperfusion and vascular leakage in acute kidney injury with multinuclear (1) H/(19)F MRI and perfluorocarbon nanoparticles. Magn Reson Med, 2014,71(6): 2186-2196.
[6] Ysebaert DK, De Greef KE, Vercauteren SR, et al. Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury.Nephrol Dial Transplant, 2000, 15(10): 1562-1574.
[7] Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol, 2014, 2: 702-714.
[8] Guan W, Wang Z, Liu Y, et al. Protective effects of tirofiban on ischemia/reperfusion-induced renal injury in vivo and in vitro. Eur J Pharmacol, 2015, 761: 144-152.
[9] Oyewole AO, Birch-Machin MA. Mitochondria-targeted antioxidants.FASEB J, 2015, 29(12): 4766-4771.
[10] Zhong H, Dai HY, Li LH, et al. Study of MRI enhancement and diffusion weighted imaging in the recurrence of nasopharyngeal carcinoma after radiotherapy. Chin J Magn Reson Imaging, 2016,7(6): 433-437.鐘華, 代海洋, 李麗紅, 等. MRI增強及DWI對鼻咽癌放療后復發(fā)的診斷價值研究. 磁共振成像, 2016, 7(6): 433-437.
[11] Zhang YY, Zha YF, Li L, et al. Correlation between estimated glomerular fltration rate (eGFR) and apparent diffusion coeffcient(ADC) values of the kidneys. Chin J Magn Reson Imaging, 2016,7(8): 567-571.張友元, 查云飛, 李亮, 等. 腎臟MR表觀擴散系數(shù)與估算腎小球濾過率的關系. 磁共振成像, 2016, 7(8): 567-571.
[12] Jia RP, Xie JJ, Luo FY, et al. Ischemic preconditioning improves rat kidney allograft function after ischemia/reperfusion injury: the role of tumor necrosis factor-alpha. Transplant Proc, 2008, 40(10):3316-3320.
[13] Abreu Lde A, Kawano PR, Yamamoto H, et al. Comparative study between trimetazidine and ice slush hypothermia in protection against renal ischemia/reperfusion injury in a porcine model. Int Braz J Urol, 2011, 37(5): 649-656.
[14] Eltzschig HK, Eckle T. Ischemia and reperfusion--from mechanism to translation. Nat Med, 2011, 17(11): 1391-1401.
[15] Dare AJ, Bolton EA, Pettigrew GJ, et al. Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol, 2015, 5: 163-168.
[16] Nielsen PM, Szocska Hansen ES, N?rlinger TS, et al. Renal ischemia and reperfusion assessment with three-dimensional hyperpolarized 13 C, 15 N2-urea. Magn Reson Med, 2016, 76(5): 1524-1530.
[17] Zhang JL, Rusinek H, Chandarana H, et al. Functional MRI of the kidneys. J Magn Reson Imaging, 2013, 37(2): 282-293.
[18] Sari-Sarraf F, Pomposiello S, Laurent D. Acute impairment of rat renal function by L-NAME as measured using dynamic MRI.MAGMA, 2008, 21(4): 291-297.
[19] Chen B, Zhang Y, Song X, et al. Quantitative estimation of renal function with dynamic contrast-enhanced MRI using a modified twocompartment model. PLoS One, 2014, 9(8): e105087.
[20] Thoeny HC, De Keyzer F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology, 2011, 259(1): 25-38.
[21] Togao O, Doi S, Kuro-o M, et al. Assessment of renal fibrosis with diffusion weighted MR imaging: study with murine model of unilateralureteral obstruction. Radiology, 2010, 255(3): 772-780.
[22] Thoeny HC, De Keyzer F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology, 2011, 259(1): 25-38.
[23] Thoeny HC, Grenier N. Science to practice: can diffusion-weighted MR imaging findings be used as biomarkers to monitor the progression of renal fibrosis? Radiology, 2010, 255(3): 667-668.
[24] Tao JY, Mi H, Mo ZN, et al. Protective effect of curcumin preconditioning and ischemic postconditioning against renal ischemia-reperfusion injury in rats. Chin J Tissue Engin Res, 2012,16(53): 10015-10020.陶佳意, 米華, 莫曾南, 等. 姜黃素預處理及缺血后處理對大鼠腎臟缺血再灌注損傷的保護作用. 中國組織工程研究, 2012, 16(53):10015-10020.
[25] Yang HX, Jiang ZX, Yu SN, et al. Assessment of glomerular filtration rate using diffusion weighted imaging: a comparative study of IVIM and mono-exponential models. Chin J Magn Reson Imaging, 2016,7(9): 679-682.楊荷霞, 蔣振興, 俞勝男, 等. 腎臟DWI的IVIM及單指數(shù)模型預測腎小球濾過率的比較研究. 磁共振成像, 2016, 7(9): 679-682.
[26] Wu HH, Jia HR, Zhang Y, et al. Monitoring the progression of renal fibrosis by T2-weighted signal intensity and diffusion weighted magnetic resonance imaging in cisplatin induced rat models. Chin Med J (Engl), 2015, 128(5): 626-631.
MitoQ protects rodent kidneys from ischemia-reperfusion injury: observations with DWI
LIU Xiao-ge, WU Huan-huan, ZHANG Rui, SUN Hao-ran*
Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
Objective:To investigate the effect of the mitochondria targeted antioxidant MitoQ in protecting from renal ischemia-reperfusion injury (IRI) in rats by longitudinal observation on apparent diffusion coefficient (ADC) values of the kidney measured with diffusion-weighted imaging (DWI).Materials and Methods:Renal IRI was induced by temporarily clamping the left renal artery for 45 minutes and then reperfusion was realized. Ten male Sprague–Dawley rats were randomly divided into two groups: MitoQ group (n=5, IRI+MitoQ) and control group (n=5, IRI+saline).DWI was performed just before the operation (day 0) and on day 2, 5, 7 and 14 after the operation. ADC value of the outer stripe of the outer medulla (OSOM) was measured on bilateral kidneys. Renal histopathology damage score was evaluated after the final MRI examination. Inter- and intra- group differences were assessed using theLeast Significant Difference(LSD).Kruskal-Wallis Htest andMann-Whitney Utest were used for histopathology damage score analysis.Results:The ADC values of the kidneys in two groups on day 0 had no statistical significance. The ADC values of the left OSOM dropped dramatically after IRI in both of the groups, and it was more obvious in control group. The ADC values of the OSOM on IRI kidneys were lower than their counterparts (P<0.01), and the ADC values of the OSOM in control group were even lower than that in MitoQ group Day 2, the left OSOM on MitoQ group and control group: (3.66±0.29)×10-4mm2/s. (3.09±0.39)×10-4mm2/s, P<0.05. Day 5, the left OSOM on MitoQ group and control group: (3.75±0.32)×10-4mm2/s, (2.95±0.79)×10-4mm2/s, P<0.05. Day 7, the left OSOM on MitoQ group and control group: (3.77±0.42)×10-4mm2/s, (2.98±0.49)×10-4mm2/s, P<0.05, Day 14, the left OSOM on MitoQ group and control group: (3.93±0.23)×10-4mm2/s, (3.05±0.20)×10-4mm2/s, P<0.05. Renal histopathology analysis showed that renal damage was the most predominant on the OSOM of IRI kidneys in control group, whose histopathology damage scores were significantly higher than those in MitoQ group (P<0.01). Conclusions: DWI could be a noninvasive method to evaluate the effect of MitoQ on reducing renal IRI in rats.
Kidney; Ischemia-reperfusion injury; Diffusion magnetic resonance imaging
國家自然科學基金(編號:81171316)
天津醫(yī)科大學總醫(yī)院放射科,天津300052
孫浩然,E-mail:sunhaoran2006@hotmail.com
2017-03-07
接受日期:2017-06-07
R445.2;R681.53
A
10.12015/issn.1674-8034.2017.07.009
劉曉鴿, 吳煥煥, 張蕊, 等. 利用擴散加權成像評估MitoQ對大鼠腎臟缺血再灌注損傷的保護作用. 磁共振成像,2017, 8(7): 526-531.*Correspondence to: Sun HR, E-mail: sunhaoran2006@hotmail.com
Received 7 Mar 2017, Accepted 7 June 2017
ACKNOWLEDGMENTSThis work was part of National Natural Science Foundation of China (No. 81171316).