張炯 王佳 王芳 李貴森
·實(shí)驗(yàn)研究·
促紅細(xì)胞生成素對(duì)大鼠腎臟缺血-再灌注損傷的保護(hù)作用研究
張炯 王佳 王芳 李貴森
目的探討促紅細(xì)胞生成素(erythropoietin,EPO)對(duì)大鼠腎臟缺血-再灌注損傷(ischemia-reperfusion injury, IRI)的保護(hù)作用及機(jī)制。方法將30只雄性SD大鼠隨機(jī)均分成假手術(shù)組、模型組和EPO組,每組10只。EPO組在術(shù)前1 h給予腹腔注射促紅細(xì)胞生成素(1 000 U/kg),假手術(shù)組和模型組則給予等體積生理鹽水腹腔注射。EPO組和模型組夾閉左側(cè)腎蒂45 min,去除右腎,再灌注24 h構(gòu)建大鼠腎臟IRI模型;假手術(shù)組操作同上,但不夾閉左側(cè)腎蒂?;謴?fù)腎臟血流灌注24 h后收集大鼠腎臟和血清。采用酶聯(lián)接免疫吸附劑檢測(cè)血肌酐(SCr),尿素氮(BUN)、白細(xì)胞介素6(interleukin-6,IL-6)、干擾素(inteferon gamma,IFN-γ)、腫瘤壞死因子(tumor necrosis factors-α,TNF-α)以及抗炎細(xì)胞因子白介素10(IL-10)和轉(zhuǎn)化細(xì)胞生長(zhǎng)因子β(transforming growth factor-β,TGF-β)的表達(dá);逆轉(zhuǎn)錄聚合酶鏈反應(yīng)檢測(cè)腎臟IL-6、IFN-γ、TNF-α、IL-10和TGF-β的mRNA水平;免疫蛋白印記法檢測(cè)促紅細(xì)胞生成素受體(erythropoietin receptor,EPOR)、磷酸化促紅細(xì)胞生成素受體(p-EPOR)、酪氨酸激酶-2(JAK2)、信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活子3(STAT3)、磷酸化酪氨酸激酶-2(p- JAK2)、磷酸化信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活子3(p-STAT3)表達(dá)水平;過(guò)雪夫染色檢測(cè)腎組織病理形態(tài)。結(jié)果與假手術(shù)組相比,模型組p-EPOR、p-JAK2、p-STAT3、SCr、BUN、IL-6、TNF-α、IFN-γ表達(dá)水平以及腎組織病理改變均明顯增加,而IL-10和TGF-β表達(dá)明顯減少以及EPOR、JAK2和 STAT3表達(dá)無(wú)差異;與模型組相比,EPO組p-EPOR、p-JAK2、p-STAT3、IL-10和TGF-β表達(dá)增加,而SCr、BUN、IL-6、TNF-α、IFN-γ表達(dá)水平以及腎組織病理改變明顯減少,而EPOR、JAK2和STAT3表達(dá)依然無(wú)差異。結(jié)論EPO預(yù)處理可通過(guò)抑制炎癥減輕腎臟IRI,其作用機(jī)制與進(jìn)一步促進(jìn)EPOR/JAK2/STAT3信號(hào)途徑活化相關(guān)。
促紅細(xì)胞生成素;缺血-再灌注損傷;炎癥;腎臟;大鼠
腎臟缺血-再灌注損傷(ischemia-reperfusion injury, IRI)是繼發(fā)于休克,腎移植和心肺體外大循環(huán)手術(shù)等的臨床危重情況,其發(fā)病率高,可嚴(yán)重影響患者腎臟功能及長(zhǎng)期預(yù)后[1-4]。促紅細(xì)胞生成素(erythropoietin,EPO)是主要由腎臟分泌的一種激素樣物質(zhì),因其具有改善腎性貧血的作用而被廣泛應(yīng)用于臨床[5-7]。目前有研究證實(shí)EPO具有減輕IRI的作用[8],但具體作用目前尚不清楚,因此本研究通過(guò)構(gòu)建腎臟IRI模型來(lái)分析、探討EPO對(duì)腎臟IRI的保護(hù)作用和機(jī)制。
一、材料
1.實(shí)驗(yàn)試劑及儀器 促紅細(xì)胞生成素EPO(四環(huán)制藥),水合氯醛(谷歌生物);酪氨酸激酶-2(JAK2)、磷酸化酪氨酸激酶-2(p-JAK2)、磷酸化信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活子3 (CST,USA),信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活子3(STAT3)、促紅細(xì)胞生成素受體(erythropoietin receptor,EPOR)、磷酸化促紅細(xì)胞生成素受體(p-EPOR) (均來(lái)自美國(guó)CST公司),白細(xì)胞介素6(interleukin-6,IL-6)、腫瘤壞死因子(tumor necrosis factors-α,TNF-α)、干擾素(inteferon gamma,IFN-γ)、轉(zhuǎn)化細(xì)胞生長(zhǎng)因子β(transforming growth factor-β,TGF-β)、白細(xì)胞介素10(IL-10)、ELISA試劑盒(均來(lái)自美國(guó)Ebioscience公司);β-actin(abgent公司,美國(guó)),TRIzol (Invitrogen公司,美國(guó)),引物(擎科生物序列見(jiàn)表1)。顯微鏡(Olympus BX51)及成像系統(tǒng)(HITMAS-30)均為四川省人民醫(yī)院腎內(nèi)科病理實(shí)驗(yàn)室提供。
表1 為實(shí)時(shí)定量PCR檢測(cè)的引物序列
2.實(shí)驗(yàn)動(dòng)物 30只健康雄性SD大鼠(北京華福康),體質(zhì)量220~250 g,周齡6~8周。動(dòng)物飼養(yǎng)于四川省人民醫(yī)院實(shí)驗(yàn)動(dòng)物中心SPF級(jí)動(dòng)物房, 溫度為20~25 ℃, 濕度為40%~70%, 光照明暗各12 h, 換氣次數(shù)為10~20次/h。飼料為SPF級(jí)鼠滅菌飼料, 購(gòu)自四川省醫(yī)學(xué)實(shí)驗(yàn)動(dòng)物中心, 符合GB-15921.2-2014 標(biāo)準(zhǔn)。飲水為經(jīng)121 ℃ (1.0 kg·cm-2)、30 min 滅菌自來(lái)水, 由動(dòng)物經(jīng)飲水瓶自由攝取。
二、分組
將SD大鼠按體質(zhì)量隨機(jī)分為假手術(shù)組、模型組和EPO組。EPO組術(shù)前1 h給予EPO(1 000 U/kg)腹腔注射,具體劑量參考相關(guān)文獻(xiàn)[8];假手術(shù)組和模型組則給予等體積腹腔注射生理鹽水。模型組和EPO組制備大鼠腎臟IRI模型,假手術(shù)組操作同上,但不夾閉左側(cè)腎蒂。具體IRI模型制備方法參考文獻(xiàn)[9]:大鼠采用1%戊巴比妥鈉(60 mg/kg)腹腔注射麻醉,仰位固定,用無(wú)創(chuàng)血管夾夾閉大鼠左側(cè)腎蒂,夾閉45 min后松開(kāi)無(wú)創(chuàng)血管夾恢復(fù)灌注,腎臟由暗紅色恢復(fù)紅潤(rùn)表明再灌注成功,同時(shí)去除右腎,然后逐層縫合切口。
三、方法
1.標(biāo)本收集 各組大鼠在腎臟再灌注24 h后, 行腹主動(dòng)脈取血,室溫下3 000 r/min離心10 min后取上清液送醫(yī)院檢驗(yàn)科檢測(cè)尿素氮(BUN)和血肌酐(SCr)。開(kāi)腹取左腎,三分之一左腎置于多聚甲醛做石蠟切片,其余組織凍于-80 ℃冰箱。
2.腎臟病理檢查 左腎下極組織采用10%多聚甲醛固定,常規(guī)脫水浸蠟(Thermo Fisher),石蠟包埋,4 μm切片,脫蠟透明后由腎內(nèi)科實(shí)驗(yàn)室HE試劑進(jìn)行PAS染色,光鏡下觀(guān)察形態(tài)結(jié)構(gòu)并評(píng)分。分級(jí)評(píng)分標(biāo)準(zhǔn):0,<10%;1,10%~25%;2,25%~50%;3,50%~75%;4,75%~100%[9]
3.Western印跡檢測(cè) 取腎臟組織,按照每50 mg組織中加入1 ml RIPA裂解液(以1∶50加入50×cocktail),冰上勻漿,裂解30 min后,4 ℃ 12 000 r/min離心30 min后取上清,BCA法測(cè)定蛋白濃度,然后上樣,電泳,轉(zhuǎn)膜,洗滌,孵育,顯影,檢測(cè)JAK2,STAT3,p-JAK2,p-STAT3,EPOR,p-EPOR表達(dá),具體方法參考相關(guān)文獻(xiàn)[10]。
4.RT-PCR檢測(cè)mRNA表達(dá) 取適量腎臟,于液氮中研磨成粉末狀提取總RNA,紫外分光光度計(jì)測(cè)定RNA含量。采用TaqMan Reverse Transcription Reagents試劑盒,將mRNA反轉(zhuǎn)錄成cDNA。取反轉(zhuǎn)錄產(chǎn)物采用Power SYBR Green PCR Master Mix試劑盒進(jìn)行實(shí)時(shí)定量PCR反應(yīng)。PCR以β-actin為內(nèi)參,具體方法參考相關(guān)文獻(xiàn)[7],引物序列如表1所示,擴(kuò)增條件為:95 ℃(10 min)→95 ℃(10 s)→60 ℃(1 min)×40個(gè)循環(huán),利用圖像分析儀器上進(jìn)行掃描分析,將IL-6,TNF-α,IFN-γ,IL-10和TGF-β基因擴(kuò)增產(chǎn)物的密度與β-actin基因擴(kuò)增產(chǎn)物的密度之比作為基因表達(dá)值。
5.ELISA檢測(cè)細(xì)胞因子分泌 按照ELISA試劑盒說(shuō)明書(shū)操作步驟檢測(cè)血清中IL-6,TNF-α,IFN-γ,IL-10和TGF-β表達(dá)水平
四、統(tǒng)計(jì)學(xué)處理
采用SPSS 12.0統(tǒng)計(jì)軟件進(jìn)行分析,實(shí)驗(yàn)結(jié)果采用均數(shù)±標(biāo)準(zhǔn)差表示,資料采用單因素方差分析,多個(gè)樣本之間的兩兩比較采用t檢驗(yàn),P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
一、EPO預(yù)處理對(duì)SCr和BUN的影響
與假手術(shù)組相比,模型組SCr和BUN表達(dá)明顯增加(P<0.05),而EPO組與模型組相比,SCr和BUN表達(dá)明顯降低(P<0.05),結(jié)果顯示EPO對(duì)腎臟IRI有保護(hù)作用。(表2)
表2 EPO對(duì)肌酐和尿素氮的影響
注:與假手術(shù)組比較,aP<0.01;與模型組比較,bP<0.05
二、EPO對(duì)腎臟病理結(jié)構(gòu)影響
與假手術(shù)組相比,模型組大量腎小管細(xì)胞腫脹,空泡變性,壞死,刷狀緣脫落和炎癥細(xì)胞浸潤(rùn),其損傷評(píng)分(3.0±0.5)分,而假手術(shù)組為(0.5±0.5)分,IRI可導(dǎo)致腎臟明顯病理改變(P<0.05)。EPO組與模型組相比,經(jīng)EPO預(yù)處理后,腎小管細(xì)胞腫脹,空泡變性,壞死,刷狀緣脫落和炎癥細(xì)胞浸潤(rùn)明顯減少,其損傷評(píng)分(1.5±0.5)分。提示,EPO預(yù)處理能明顯減輕IRI導(dǎo)致的腎臟病理結(jié)構(gòu)改變。(圖1)
圖1 PAS檢測(cè)EPO預(yù)處理對(duì)RIRI導(dǎo)致的腎組織病理改變影響(400×)
三、EPO預(yù)處理對(duì)EPOR/JAK2/STAT3信號(hào)通路的影響
與假手術(shù)組相比,模型組(p-EPOR,p-JAK2,p-STAT3)表達(dá)水平明顯增高(P<0.05),而EPOR,JAK2和STAT3表達(dá)水平無(wú)差異(P>0.05)。與模型組相比,EPO組(p-EPOR,p-JAK2,p-STAT3)表達(dá)水平進(jìn)一步升高(P<0.05)。但EPOR,JAK2和STAT3表達(dá)無(wú)明顯差異(P>0.05)。(圖2)
四、EPO對(duì)促炎癥細(xì)胞因子TNF-α,IFN-γ和IL-6的表達(dá)影響
RT-PCR和ELISA檢測(cè)顯示模型組與假手術(shù)組相比,促炎癥細(xì)胞因子TNF-α,IFN-γ和IL-6水平明顯增高(P<0.05),而EPO組與模型組相比,促炎癥細(xì)胞因子TNF-α,IFN-γ和IL-6表達(dá)水平明顯降低(P<0.05)。(圖3)
注:與假手術(shù)組比較,aP<0.01;與模型組比較,bP<0.05圖2 WB檢測(cè)EPO預(yù)處理對(duì)EPOR,p-EPOR,p-JAK2,p-STAT3,JAK2和STAT3蛋白表達(dá)的影響
注:與假手術(shù)組比較,aP<0.01;與模型組比較,bP<0.05圖3 RT-PCR和ELISA檢測(cè)EPO預(yù)處理對(duì)炎癥因子TNF-α,IFN-γ和IL-6表達(dá)的影響
五、EPO對(duì)抗炎癥細(xì)胞因子IL-10和TGF-β的表達(dá)影響
RT-PCR和ELISA檢測(cè)顯示:模型組與假手術(shù)組相比,抗炎癥細(xì)胞因子IL-10和TGF-β表達(dá)水平明顯降低(P<0.05),而EPO組與模型組相比,促炎癥細(xì)胞因子IL-10和TGF-β表達(dá)水平明顯增高(P<0.05)。(圖4)
注:與假手術(shù)組比較,aP<0.01;與模型組比較,bP<0.05圖4 RT-PCR和ELISA分別檢測(cè)EPO預(yù)處理對(duì)抗炎癥細(xì)胞因子IL-10和TGF-β的表達(dá)影響
實(shí)驗(yàn)結(jié)果顯示,腎臟IRI可導(dǎo)致腎小管擴(kuò)張,腎小管上皮細(xì)胞廣泛腫脹,空泡嚴(yán)重變性,壞死,刷狀緣的大量脫落,腎間質(zhì)大量炎癥細(xì)胞浸潤(rùn),從而導(dǎo)致腎臟損傷評(píng)分明顯增加以及SCr、BUN表達(dá)明顯升高。EPO預(yù)處理可明顯減低腎臟IRI導(dǎo)致的腎小管擴(kuò)張,腎小管細(xì)胞腫脹,空泡變性,壞死,刷狀緣的脫落,腎間質(zhì)大量炎癥細(xì)胞浸潤(rùn),從而使腎臟損傷評(píng)分、SCr和BUN明顯降低,說(shuō)明EPO預(yù)處理可明顯減輕IRI。
近年來(lái)的研究表明,腎臟IRI過(guò)程中引發(fā)的缺氧、氧自由基的大量生成可能參與了腎臟炎性介質(zhì)的廣泛表達(dá),而炎癥在IRI的發(fā)病中起重要的作用,炎癥可加速腎臟IRI的進(jìn)程并影響其臨床轉(zhuǎn)歸[11]。腎臟IRI可使機(jī)體單核/巨噬細(xì)胞、中性粒細(xì)胞等處于致敏狀態(tài),激發(fā)機(jī)體產(chǎn)生和釋放各種炎性細(xì)胞因子及炎性介質(zhì),從而進(jìn)一步加重腎臟損傷。如TNF-α,IL-6,IFN-γ是強(qiáng)有力的促炎癥細(xì)胞因子,可加強(qiáng)炎癥反應(yīng)、促進(jìn)腎臟細(xì)胞凋亡,腎組織壞死。與TNF-α,IL-6,IFN-γ等促炎癥細(xì)胞因子不同, IL-10和TGF-β是由多種細(xì)胞產(chǎn)生的炎癥抑制因子,能夠明顯下調(diào)炎癥反應(yīng),降低炎癥因子對(duì)細(xì)胞增殖的刺激作用[12],本研究結(jié)果顯示,腎臟IRI可促進(jìn)TNF-α,IL-6,IFN-γ的表達(dá),減少I(mǎi)L-10和TGF-β的表達(dá),這與既往的研究結(jié)果提示相一致[1]。有實(shí)驗(yàn)發(fā)現(xiàn)EPO在IRI中可以抑制TNF-α,IL-6,IFN-γ等促炎癥細(xì)胞因子釋放以及增加抗炎細(xì)胞因子的表達(dá)[12]。本研究結(jié)果顯示EPO預(yù)處理可明顯降低TNF-α,IL-6,IFN-γ表達(dá)水平以及增加IL-10和TGF-β表達(dá),提示EPO可通過(guò)抑制促進(jìn)抗炎因子的釋放和增加抗炎癥細(xì)胞因子表達(dá),繼而控制持續(xù)擴(kuò)大的炎癥反應(yīng),減輕腎臟IRI。EPO對(duì)腎臟IRI的保護(hù)作用與抗炎作用相關(guān)。
JAK2/STAT3信號(hào)通路在機(jī)體抗炎癥方面發(fā)揮重要作用, 越來(lái)越多的研究表明JAK2/STAT3通路已成為腎臟疾病治療的潛在靶點(diǎn)[13]。JAK2是一種與細(xì)胞自我保護(hù)作用相關(guān)的重要轉(zhuǎn)錄因子,正常生理狀態(tài)下,JAK2處于無(wú)活性狀態(tài), 在缺氧,損傷和氧化應(yīng)激等有害刺激情況下,可被磷酸化修飾途徑激活,進(jìn)而并識(shí)別并結(jié)合DNA 上的STAT3, 促進(jìn)下游炎癥基因的轉(zhuǎn)錄表達(dá)[14-15]。結(jié)果顯示RIRI可通過(guò)磷酸化修飾激活JAK2/STAT3信號(hào)通路,促進(jìn)炎癥信號(hào)通路的激活。而EPO預(yù)處理可進(jìn)一步激活JAK2/STAT3信號(hào)通路,進(jìn)而誘導(dǎo)下游抗炎細(xì)胞因子的表達(dá)上調(diào)以及促炎細(xì)胞因子的表達(dá)降低,因既往有研究顯示阻斷JAK2/STAT3信號(hào)通路可加重腎臟IRI,因此該實(shí)驗(yàn)未進(jìn)一步探討JAK2阻斷劑對(duì)腎臟IRI的影響,這將是我們需要進(jìn)一步研究解決的問(wèn)題。
綜上所述,EPO能保護(hù)腎臟IRI,其保護(hù)機(jī)制可能與激活JAK2/STAT3信號(hào)通路抑制炎癥有關(guān), 本研究結(jié)果為臨床使用EPO防治腎臟IRI提供了實(shí)驗(yàn)依據(jù)。
[1] Kusch A, Hoff U, Bubalo G, et al. Novel signalling mechanisms and targets in renal ischaemia and reperfusion injury[J]. Acta Physiol(Oxf), 2013, 208(1): 25-40.
[2] Yang Y, Song M, Liu Y, et al. Renoprotective approaches and strategies in acute kidney injury[J]. Pharmacol Ther, 2016, 163: 58-73.
[3] de Haan JE, Hoorn EJ, de Geus HRH. Acute kidney injury after liver transplantation: Recent insights and future perspectives[J]. Best Pract Res Clin Gastroenterol, 2017, 31(2): 161-169.
[4] Francis A, Baynosa R. Ischaemia-reperfusion injury and hyperbaric oxygen pathways: a review of cellular mechanisms[J]. Diving Hyperb Med, 2017, 47(2): 110-117.
[5] Yang J, Xiao Z, Li T, et al. Erythropoietin promotes the growth of pituitary adenomas by enhancing angiogenesis[J]. Int J Oncol, 2012, 40(4): 1230-1237.
[6] Bartnicki P, Kowalczyk M, Rysz J. The influence of the pleiotropic action of erythropoietin and its derivatives on nephroprotection[J]. Med Sci Monit, 2013, 19(1): 599-605.
[7] Nairz M, Sonnweber T, Schroll A, et al. The pleiotropic effects of erythropoietin in infection and inflammation[J]. Microbes Infect, 2012, 14(3): 238-246.
[8] Zhang J, Zou YR, Zhong X, et al. Erythropoietin pretreatment ameliorates renal ischaemia-reperfusion injury by activating PI3K/Akt signalling[J]. Nephrology (Carlton), 2015, 20(4): 266-272.
[9] Ardalan MR, Estakhri R, Hajipour B, et al. Erythropoietin ameliorates oxidative stress and tissue injury following renal ischemia/reperfusion in rat kidney and lung[J]. Med Princ Pract. 2013, 22(1): 70-74.
[10] Li Y, Zhu W, Tao J, et al. Fasudil protects the heart against ischemia-reperfusion injury by attenuating endoplasmic reticulum stress and modulating SERCA activity: the differential role for PI3K/Akt and JAK2/STAT3 signaling pathways[J]. PloS One, 2012, 7(10): e48115.
[11] Bamgbola OF. Spectrum of anemia after kidney transplantation: pathophysiology and therapeutic implications[J]. Clin Transplant, 2016, 30(10): 1185-1194.
[12] Doi K, Rabb H. Impact of acute kidney injury on distant organ function: recent findings and potential therapeutic targets[J]. Kidney Int, 2016, 89(3): 555-564.
[13] Palagani V, Bozko P, El Khatib M, et al. Combined inhibition of Notch and JAK/STAT is superior to monotherapies and impairs pancreatic cancer progression[J]. Carcinogenesis, 2014, 35(4): 859-866.
[14] Yu HC, Qin HY, He F, et al. Canonical notch pathway protects hepatocytes from ischemia/reperfusion injury in mice by repressing reactive oxygen species production through JAK2/STAT3 signaling[J]. Hepatology, 2011, 54(3): 979-988.
[15] Zhu H, Zou L, Tian J, et al. SMND-309, a novel derivative of salvianolic acid B, protects rat brains ischemia and reperfusion injury by targeting the JAK2/STAT3 pathway[J]. Eur J Pharmacol, 2013, 714(1-3): 23-31.
Protective effect of erythropoietin preconditioning on kidney ischemia-reperfusion injury
ZHANGJiong,WANGJia,WANGFang,LIGui-sen.
DepartmentofNephrology,SichuanProvincialPeople’sHospital,Chengdu610072,China
Correspondingauthor:LIGuisen,E-mail:guisenli@163.com
ObjectiveTo explore the protective effect of erythropoietin (EPO) on renal ischemia-reperfusion injury (IRI) in rats.MethodsThirty male SD rats were randomly divided into sham operation group (Sham), renal IRI group (IRI) and EPO pretreatment group (EPO), 10 rats in each group. The renal IRI model was constructed by clamping the left renal pedicle for 1 h, removing the right kidney, and reperfusion for 24 h. In EPO group, EPO (1 000 U/kg) was intraperitoneally injected at 1 h before operation, while Sham group and IRI group were intraperitoneally injected with equal volume of normal saline. The left renal pedicle was clamped for 45 min in EPO and IRI groups, but not in Sham group. Renal perfusion was restored for 24 h, and then kidneys and serum were obtained. Enzyme linked immunosorbent assay (ELISA) was used to detect serum creatinine (SCr), blood urea nitrogen (BUN), pro-inflammatory cytokines [interleukin-6 (IL-6); interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α)] and anti-inflammatory cytokine (IL-10 and TGF-β). The reverse transcriptase polymerase chain reaction (RT-PCR) was used to detect renal pro-inflammatory cytokines (IL-6, IFN- γ and TNF-α) and anti-inflammatory cytokines [IL-10 and transforming growth factor beta (TGF-β)] mRNA expression levels. Western blotting was used to detect EPO receptor (EPOR), phosphorylated EPOR (p-EPOR), tyrosine kinase-2 (JAK2), signal transducer and activator of transcription 3 (STAT3), phosphorylated JAK2 (p-JAK2), phosphorylated STAT3 (p-STAT3) protein expression levels. Periodic acid Schiff staining (PAS) was used to examine the pathological changes of renal tissues.ResultsAs compared with Sham group, the expression levels of p-EPOR, p-JAK2, p-STAT3, SCr, BUN, IL-6, TNF-α and IFN-γ were significantly increased, pathological changes of renal tissues obviously alleviated, and expression levels of IL-10 and TGF-β were markedly reduced in IRI group. There was no significant difference in EPOR, JAK2 and STAT3 levels between Sham group and IRI group. As compared with IRI group, the expression levels of p-EPOR, p-JAK2, p-STAT3, IL-10 and TGF-β were significantly increased, the levels of SCr, BUN, IL-6, TNF-α and IFN-γ were significantly reduced, and the pathological changes of renal tissues were significantly alleviated in EPO group, but there was no significant difference in EPOR, JAK2 and STAT3 expression between IRI group and EPO group.ConclusionsEPO preconditioning can alleviate inflammation by inhibiting renal IRI, which may be related with the activation of EPOR/JAK2/STAT3 signaling pathway.
Erythropoietin; Ischemia-reperfusion injury; Inflammation; Kidney; Rat
2016-11-22
2017-08-15)
10.3969/j.issn.1671-2390.2017.09.012
國(guó)家自然科學(xué)基金(No.81401362, 81100575)
610072 成都,四川省人民醫(yī)院腎內(nèi)科(張炯,王芳,李貴森),全科(王佳)
李貴森,E-mail:guisenli@163.com