楊惠雯 張 帆 黃利華 韓 睿 歐陽文 向 紅 廖 琴△
(1中南大學(xué)湘雅三醫(yī)院麻醉科,長沙410013;2中南大學(xué)湘雅三醫(yī)院實驗中心,長沙410013)
有機陰離子轉(zhuǎn)運多肽OATP1A2介導(dǎo)芬太尼的轉(zhuǎn)運*
楊惠雯1張 帆1黃利華2韓 睿1歐陽文1向 紅2廖 琴1△
(1中南大學(xué)湘雅三醫(yī)院麻醉科,長沙410013;2中南大學(xué)湘雅三醫(yī)院實驗中心,長沙410013)
目的:建立穩(wěn)定表達(dá)有機陰離子轉(zhuǎn)運多肽1A2 (organic anion-transporting polypeptide 1A2,OATP1A2)的HEK293細(xì)胞株,體外研究OATP1A2是否轉(zhuǎn)運芬太尼(Fentanyl)。方法:用脂質(zhì)體轉(zhuǎn)染法將pIRES2-ZsGreen1-OATP1A2質(zhì)粒轉(zhuǎn)染至HEK293細(xì)胞中,G418 (600 mg/ml)篩選單克隆陽性細(xì)胞,采用Western blot、RT-PCR證實HEK293-OATP1A2構(gòu)建成功;用不同濃度的探針?biāo)幬锓撬鞣悄嵌?Fexofenadine, FEX)驗證HEK293-OATP1A2的轉(zhuǎn)運功能;運用不同濃度的芬太尼孵育細(xì)胞,另取兩組用相同濃度的芬太尼孵育的細(xì)胞,分別加或不加抑制劑柚皮素(Naringenin, 100 μg/mL)進(jìn)行HEK293-OATP1A2轉(zhuǎn)運實驗。結(jié)果:FEX濃度為1、10、100 nM時HEK293-OATP1A2實驗組與HEK293-VC對照組,F(xiàn)EX的吸收值均有顯著的統(tǒng)計學(xué)差異(P< 0.05),且FEX濃度為100 nM時,實驗組對FEX的吸收值是對照組的2.8倍;加入抑制劑柚皮素組FEX吸收值較不加抑制劑時減少了66.8±0.6%。芬太尼轉(zhuǎn)運結(jié)果顯示,芬太尼濃度為1、10、100、1000 nM時實驗組與對照組比較,芬太尼的吸收值均有顯著的統(tǒng)計學(xué)差異(P< 0.05),且芬太尼濃度為1000 nM時,實驗組對芬太尼的吸收值是對照組的2.2倍;加入抑制劑組芬太尼的吸收值較未加抑制劑組減少了86.5±0.5% (P< 0.05)。結(jié)論:成功建立了穩(wěn)定表達(dá)OATP1A2的 HEK293 細(xì)胞株,體外研究發(fā)現(xiàn)OATP1A2能介導(dǎo)芬太尼的轉(zhuǎn)運。
有機陰離子轉(zhuǎn)運體多肽1A2;芬太尼;底物;轉(zhuǎn)運功能;過表達(dá)
芬太尼(fentanyl)是臨床麻醉和各類急、慢性疼痛治療中常用的阿片類藥物。臨床研究發(fā)現(xiàn),芬太尼的鎮(zhèn)痛效應(yīng)和不良反應(yīng)有顯著的個體差異。遺傳變異是造成鎮(zhèn)痛藥物標(biāo)準(zhǔn)劑量下個體藥效和不良反應(yīng)差異的主要原因[1]。中樞神經(jīng)系統(tǒng)內(nèi)阿片類藥物的有效濃度是決定阿片類藥物鎮(zhèn)痛效應(yīng)和副作用的關(guān)鍵,但阿片類藥物需要穿過血腦屏障,與中樞神經(jīng)系統(tǒng)的阿片受體結(jié)合才能發(fā)揮效應(yīng)[2]。研究顯示血腦屏障上有多種轉(zhuǎn)運體,特別是血腦屏障上的ATP結(jié)合盒外排轉(zhuǎn)運蛋白(ATP-binding cassette ef fl ux transporters, ABC)和攝入型溶質(zhì)轉(zhuǎn)運蛋白[solute carrier (SLC) in fl ux transporters]能有效調(diào)節(jié)腦內(nèi)的藥物濃度,對藥物在中樞神經(jīng)系統(tǒng)的分布和清除起決定性作用[3]。其中ABC轉(zhuǎn)運體主要負(fù)責(zé)藥物從腦組織向血的轉(zhuǎn)運,SLC轉(zhuǎn)運體主要負(fù)責(zé)藥物從血向腦組織的轉(zhuǎn)運[4]。
有機陰離子轉(zhuǎn)運體(organic anion transporters,OATPs, 人類;Oatps, 嚙齒動物)屬于攝入型溶質(zhì)轉(zhuǎn)運蛋白家族主要成員,其編碼基因統(tǒng)稱為SLCO/Slco[4,5]。動物實驗發(fā)現(xiàn),Oatp競爭性抑制劑普伐他?。≒ravastatin)對芬太尼腦/血漿分配系數(shù)的影響遠(yuǎn)大于P糖蛋白(P-glycoprotein, P-gp)競爭性抑制劑維拉帕米對其的影響[6]。該研究提示血腦屏障Oatp的表達(dá)可能在芬太尼的跨血腦屏障轉(zhuǎn)運中扮演了重要的角色。然而,人類血腦屏障OATP能否轉(zhuǎn)運芬太尼至今尚未見報道。
目前,人類OATP家族已鑒定出OATP1A2、1B1、1B3、1C1、2A1、2B1、3A1、4A1、4C1、5A1和6A1共11個亞型,血腦屏障上主要表達(dá)的亞型是OATP1A2[4,5]。有學(xué)者發(fā)現(xiàn)OATP1A2轉(zhuǎn)運內(nèi)源性阿片肽δ阿片受體激動劑腦啡肽([D-penicillamine2,5]encephalin, DPDPE)、δ-啡肽 II (deltorphin II)[7]。我們推測芬太尼可能主要通過分布在血腦屏障的OATP1A2轉(zhuǎn)運。為此,我們構(gòu)建OATP1A2的過表達(dá)質(zhì)粒(pIRES2-ZsGreen1-OATP1A2)并轉(zhuǎn)染HEK293細(xì)胞,用不同濃度的芬太尼孵育這些細(xì)胞,并用高效液相色譜-串聯(lián)質(zhì)譜法(HPLC-MS/MS)測定細(xì)胞內(nèi)芬太尼的濃度,發(fā)現(xiàn)OATP1A2過表達(dá)顯著增加了細(xì)胞內(nèi)芬太尼的濃度,通過體外實驗初步證明OATP1A2能直接轉(zhuǎn)運芬太尼。本研究為進(jìn)一步探索OATP1A2的基因多態(tài)性在芬太尼鎮(zhèn)痛效應(yīng)及副作用個體差異中的作用,提供了前期的研究基礎(chǔ)。
重組質(zhì)粒pIRES2-ZsGreen1-OATP1A2及對照質(zhì)粒pIRES2-ZsGreen1由長沙贏潤生物技術(shù)有限公司構(gòu)建,OATP1A2從cDNA文庫中擴增,引物為F: ctagctagcgccaccatgggagaaactgagaaaag, R: ccgctcgagttacaatttagttttcaatt。人胚胎腎臟細(xì)胞293 (Human Embryonic Kidney 293 cells, HEK293)購自中南大學(xué)湘雅醫(yī)學(xué)院細(xì)胞庫。細(xì)胞培養(yǎng)箱(Thermo371型,賽默飛世爾科技公司,美國),熒光顯微鏡(Olympus CX23,奧林巴斯公司,日本),實時熒光定量PCR儀(7900型,Applied Biosystems公司,美國)。液相色譜系統(tǒng):超高效液相色譜儀帶自動進(jìn)樣器和柱溫箱(Applied Biosystems公司,美國);MS/MS系統(tǒng):質(zhì)譜儀(API4000型,Applied Biosystems公司,美國),帶電噴霧離子化源(ESI)。精密天平(AB-265S型,梅特勒公司,日本);WH-2微量漩渦混合器(滬西分析儀器公司,上海)。
枸櫞酸芬太尼標(biāo)準(zhǔn)品(100 mg,中國藥品生物制品檢定所)由中南大學(xué)藥理研究所贈送;內(nèi)標(biāo)D5-芬太尼對照品(100 μg/ml,Sigma公司);鹽酸非索非那定(100 mg,中國藥品生物制品檢定所);柚皮素(20 μg,大連美侖公司)、甲醇、乙腈、甲酸(500 ml,湖南匯虹試劑有限公司)均為色譜純。胎牛血清(FBS)、DMEM (Dulbecco's modi fi ed Eagle's medium)高糖培養(yǎng)基以及轉(zhuǎn)染用低血清培養(yǎng)基OPTI-MEM均購自美國Gibco公司;Lipofectamine? 2000(1.5 ml,美國 Invitrogen公司);PBS緩沖液、青鏈霉素雙抗和胰酶消化液購自Hyclone公司;抗體OATP1A2購自Abcam公司;小鼠抗β-actin抗體、山羊抗兔IgG/HRP二抗購自中杉金橋公司。氨芐青霉素和G418購自Sigma公司。提取總RNA的試劑盒購自O(shè)mega公司,反轉(zhuǎn)錄試劑盒購自賽默飛公司。BCA Protein Assay Kit和RIPA裂解液(強)購自碧云天公司。
(1)HEK293細(xì)胞培養(yǎng)
用含有10% FBS、1%雙抗(100 U/ml青霉素和100 μg/ml鏈霉素)DMEM高糖培養(yǎng)基以溫度37℃,5%CO2和95% 濕度孵育細(xì)胞。加入0.25%胰酶消化液按照1:3傳代。
(2)G418篩選濃度確定
按照趙欣等的方法[8],在轉(zhuǎn)染前對HEK293細(xì)胞進(jìn)行劑量-反應(yīng)分析,以確定G418殺死細(xì)胞的最低濃度。①在12孔板的每孔中加入100 μl細(xì)胞懸浮液(5×106cells/l),每孔中再加入900 μl含10%胎牛血清的DMEM培養(yǎng)基;②12孔依次加入0~11 μl 100 mg/ml的G418溶液(終濃度為0~1 100 μg/ml完全培養(yǎng)基,以 100 μg/ml梯度增加 ),將培養(yǎng)板在5% CO2、37℃培養(yǎng)箱溫育。每3 d用含相應(yīng)G418的新鮮培養(yǎng)基更換培養(yǎng)基;③10 d后以殺死所有細(xì)胞的G418最低濃度600 μg/ml為篩選濃度。
(3)HEK293細(xì)胞的轉(zhuǎn)染
① 轉(zhuǎn)染前細(xì)胞準(zhǔn)備:轉(zhuǎn)染前1 d,采用0.25%胰酶消化,將處于對數(shù)生長期的細(xì)胞制備成單細(xì)胞懸液,以約1×104細(xì)胞接種12孔培養(yǎng)板1孔,加含10%胎牛血清的DMEM培養(yǎng)基1 ml,在37℃、5%CO2飽和濕度培養(yǎng)箱中,待細(xì)胞生長至鋪滿培養(yǎng)板70%~80%。
② 脂質(zhì)體/DNA復(fù)合物制備:根據(jù)Invitrogen Lipofectamine? 2000說明書配制A液為1.6 μg純化的pIRES2-ZsGreen1-OATP1A2 (或者pIRES2-ZsGreen1)質(zhì)粒稀釋于低血清OPTI-MEM培養(yǎng)基100 μl,B 液 為 Lipofectin2000 4 μl稀 釋 于 OPTIMEM培養(yǎng)基100 μl,輕輕混合A、B液形成脂質(zhì)體/DNA復(fù)合物,室溫放置20 min。
③ 轉(zhuǎn)染:用2 ml無血清DMEM培養(yǎng)基漂洗3次,然后將AB液緩緩加入12孔培養(yǎng)板中,搖勻,37℃、5% CO2細(xì)胞培養(yǎng)箱中放置4 h,加入10%胎牛血清的DMEM培養(yǎng)基1 ml,置入培養(yǎng)箱中培養(yǎng)。
(4)HEK293抗性細(xì)胞的篩選:轉(zhuǎn)染后第2 d,用0.25%胰酶100 μl消化細(xì)胞,1孔細(xì)胞傳至2個90 mm培養(yǎng)皿中。第3 d再加入G418進(jìn)行持續(xù)加壓篩選,用含10%胎牛血清的DMEM培養(yǎng)基每3 d更換一次。未轉(zhuǎn)染質(zhì)粒的HEK293細(xì)胞為對照組,繼續(xù)培養(yǎng)約2周,待對照細(xì)胞全部死亡時,得到G418抗性細(xì)胞的穩(wěn)定克隆。在基因轉(zhuǎn)染組形成細(xì)胞集落后用克隆柱隨機轉(zhuǎn)移24個細(xì)胞集落,分別轉(zhuǎn)種到2塊12孔板。熒光顯微鏡下觀察熒光蛋白表達(dá)情況,初步判斷穩(wěn)定表達(dá)OATP細(xì)胞的存活率。將穩(wěn)定表達(dá)的組分一部分凍存保種,一部分傳代,繼續(xù)下一步實驗。
(5)PCR方法驗證質(zhì)粒的OATP1A2序列和鑒定OATP1A2 mRNA的表達(dá)
用長沙贏潤生物技術(shù)公司提供的上述克隆引物對重組質(zhì)粒進(jìn)行PCR擴增來驗證質(zhì)粒的OATP1A2序列。收集穩(wěn)定轉(zhuǎn)染的HEK293-OATP1A2、對照組HEK293-VC(空白質(zhì)粒轉(zhuǎn)染組)以及con-HEK293組(未做任何處理的細(xì)胞組),用E.Z.N.A. Total RNA Kit I(R6934-01 50 preps,OMEGA)提取細(xì)胞總RNA,取2 μg,以逆轉(zhuǎn)錄反應(yīng)合成的cDNA為模板,用OATP1A2引物(見表1)進(jìn)行PCR擴增,以β-actin為內(nèi)參。25 μl反應(yīng)體系包括0.5μl cDNA,7.5 μl SYBR Green PCR master mix 和上、下游引物各75 nM;PCR擴增程序為:95℃預(yù)變性5 min,94℃變性1 min,55℃退火1 min,循環(huán)35次;最后72℃延伸10 min。OATP1A2的Ct值(Cycles threshold)首先用相應(yīng)的內(nèi)參標(biāo)準(zhǔn)化(?Ct=CtOATP1A2-Ctβ-Actin),2-Δt計算相應(yīng)標(biāo)本的相對表達(dá)量。對照組(con-HEK293或者HEK293-VC) 基因OATP1A2的表達(dá)與實驗組(HEK293-OATP1A2)差異用下列公式計算 2-ΔΔCt(ΔΔCt =ΔCtEXP– ΔCtCONTROL)。
(6) Western blot鑒定OATP1A2蛋白的表達(dá)
收集穩(wěn)定轉(zhuǎn)染的HEK293-OATP1A2、HEK293-VC以及con-HEK293細(xì)胞,提取蛋白,采用BCA法進(jìn)行蛋白質(zhì)含量測定。取等量變性后的蛋白樣品進(jìn)行凝膠電泳,電泳結(jié)束后用轉(zhuǎn)膜裝置進(jìn)行轉(zhuǎn)膜,將膜于注射液中注射2 h。TBST洗三次,每次10 min,加一抗后,4℃孵育過夜。第2天,37℃孵育二抗1 h,加入ECL化學(xué)發(fā)光液后,用化學(xué)發(fā)光成像系統(tǒng)(Quant350,GE公司)分析。
(7) 轉(zhuǎn)運吸收實驗
按照Cvetkovic M和Glaeser H等的方法[9-11],用OATP1A2的已知底物非索非那定(Fexofenadine,F(xiàn)EX) (Km=6)[12],對穩(wěn)定表達(dá)OATP1A2的細(xì)胞系進(jìn)行底物轉(zhuǎn)運的吸收實驗。將過表達(dá)組(HEK293-OATP1A2)和對照組(HEK-VC)細(xì)胞分別以5×105個/孔接種至兩組12孔板,每個濃度重復(fù)3次(FEX:1、10、100 nM;培養(yǎng)至 1×106個細(xì)胞,在 500 μl的培養(yǎng)介質(zhì)中沖洗(磷酸鹽緩沖液+ 2%FCS);然后用含有FEX 1、10、100 nM的100 μl的培養(yǎng)基在旋轉(zhuǎn)振蕩器中以37℃、450 rpm的轉(zhuǎn)速進(jìn)行最適時長的吸收時間15 min(選擇呈線性關(guān)系的時間段內(nèi)最大的值作為所有吸收實驗的時間,使之保持在線性范圍內(nèi))。先收集細(xì)胞外液,即直接吸收培養(yǎng)基,每個濃度一式三份收集于EP管保存;再用1 ml的冰冷PBS沖洗細(xì)胞三次,加入500 μl甲醇后收集細(xì)胞至EP管,用超聲細(xì)胞碎裂儀搗碎細(xì)胞,最后將混合液離心3 000 rpm、4℃,10 min,取上清液,-20℃冷凍儲存待分析。在含有100 nM FEX(或者100 nM芬太尼)的吸收溶液中加入OATP1A2特異性抑制劑柚皮素100 μg/ml,按照上述方法再進(jìn)行一組吸收實驗,作為加抑制劑情況下底物轉(zhuǎn)運的吸收實驗。芬太尼按照同樣的方法進(jìn)行實驗。每組重復(fù)三次,整個實驗過程重復(fù)兩次。
(8)HPLC-MS/MS法測定藥物濃度
芬太尼和FEX的濃度測定參考田瑩瑩和Mandery K等報道的方法[13,14]。樣品去蛋白處理后,加入雙倍體積含有內(nèi)標(biāo)的甲醇溶液。色譜分離采用菲羅門分析柱(synergiTM Polar-RP 80A 150 mm ×2.0 mm, 4 μm),流動相為甲醇:乙酸銨(含0.2%甲酸)=(9:1, V/V),柱溫40℃,流速200 μl/min。進(jìn)樣量為2 μl,每個樣品運行5 min。質(zhì)譜條件為電噴霧電離源(ESI),檢測方式為正離子方式、多離子反應(yīng)監(jiān)測(MRM),用于定量分析的離子為芬太尼m/z 337.1→ 188.2,F(xiàn)EX m/z 502.5→ 466.3,D5-芬太尼m/z 342.2→188.2。芬太尼和FEX的內(nèi)標(biāo)均為D5-芬太尼。芬太尼和FEX的標(biāo)準(zhǔn)曲線范圍均(5~1 000) ng/ml。每一濃度水平的QC樣品的日內(nèi)精密度(RSD) < 15%,日間精密度(RSD) < 15%,準(zhǔn)確度在85%~115%之間。分析軟件為Analyst 1.5.1 software (AB, Singapore)。
表1 用于實時熒光定量PCR的引物序列Table 1 Nucleotide sequences of primers used in real-time quantitative PCR
OATP1A2介導(dǎo)芬太尼和FEX轉(zhuǎn)運的各組間百分比分析運用GraphPad Prism 5.0軟件統(tǒng)計。OATP1A2介導(dǎo)的芬太尼凈吸收為OATP1A2過表達(dá)組和空白細(xì)胞組吸收值的差值;采用雙因素方差分析和Dunnett's多項比較檢驗統(tǒng)計 HEK293-OATP1A2和HEK293-VC介導(dǎo)的芬太尼和FEX吸收差異;抑制劑的影響采用非配對t檢驗和Welch's矯正分析。實驗結(jié)果均以均數(shù)±標(biāo)準(zhǔn)差(±SD)表示,P< 0.05為差異有統(tǒng)計學(xué)意義。
將質(zhì)粒DNA的PCR產(chǎn)物進(jìn)行瓊脂糖凝膠電泳檢測,結(jié)果顯示:在2013 bp處有特異的條帶,結(jié)果與OATP1A2基因大小一致(見圖1A)。用NheI、XhoI雙酶切重組質(zhì)粒,結(jié)果顯示:切出約2013 bp的OATP1A2片段和約5300 bp的載體片段,與預(yù)期一致(見圖1B)。同時,將PCR產(chǎn)物測序所得的序列在NCBI中進(jìn)行序列比對,顯示構(gòu)建序列與目的基因序列完全一致,編碼氨基酸序列100%正確,說明pIRES2-ZsGreen1-OATP1A2構(gòu)建成功。
圖1 pIRES2-ZsGreen1-OATP1A2質(zhì)粒的PCR驗證A:pIRES2-ZsGreen1-OATP1A2質(zhì)粒DNA PCR電泳條帶在2013 bp左右與OATP1A2大小一致,說明為目的條帶;B:酶切pIRES2-ZsGreen1-OATP1A2重組質(zhì)粒后電泳條帶與載體、目的基因的大小均一致。Fig.1 Verification of pIRES2-ZsGreen1-OATP1A2 plasmid by PCR method A: The electrophoresis shows that the band of the PCR products of OATP1A2 plasmid is about 2013 bp, which is consistent with the size of OATP1A2; B: The products of restriction endonuclease digestion were consistent with the sizes of the plasmid vector and the objective gene.
我們參考 J?rg K?nig和 Mitchell E. Taub等的方法[15,16],采用脂質(zhì)體法轉(zhuǎn)染質(zhì)粒到HEK293細(xì)胞后選擇過表達(dá)的克隆細(xì)胞,然后通過標(biāo)記抗生素篩選得到穩(wěn)定過表達(dá)OATP1A2蛋白及帶有熒光蛋白標(biāo)記的空載質(zhì)粒的HEK293細(xì)胞株。熒光顯微鏡下可見兩組細(xì)胞的熒光蛋白,初步證明穩(wěn)定株轉(zhuǎn)染成功(見圖2)。進(jìn)一步確定目的基因是否表達(dá),我們首先通過熒光定量PCR對HEK293-OATP1A2組、HEK293-VC組、con-HEK293組 的mRNA表達(dá)情況進(jìn)行了檢測,結(jié)果顯示HEK293-OATP1A2組相對表達(dá)量明顯高于后兩組,說明OATP1A2的mRNA過表達(dá)成功(見圖3A);然后采用Western blot檢測三組樣品的蛋白表達(dá)情況,電泳結(jié)果顯示HEK293-OATP1A2組的蛋白條帶最明顯(見圖3B),運用Image J軟件分析,結(jié)果顯示HEK293-OATP1A2組的灰度值明顯高于后兩者,說明OATP1A2蛋白過表達(dá)成功(見圖3C);而上述兩個實驗均顯示后兩組之間無明顯差異,提示質(zhì)粒載體本身對于細(xì)胞的OATP1A2基因表達(dá)沒有明顯影響。最后運用已知底物FEX[9]作為探針?biāo)幬矧炞CHEK293細(xì)胞過表達(dá)的OATP1A2蛋白的功能,F(xiàn)EX的吸收實驗和吸收抑制試驗結(jié)果顯示,在100 nM的濃度時過表達(dá)OATP1A2組對FEX的轉(zhuǎn)運吸收是HEK293-VC組的2.8倍;且HEK293-OATP1A2組和HEK293-VC組吸收百分比有明顯的統(tǒng)計學(xué)差異(P< 0.05;Df = 2)(見圖4A);觀察抑制OATP1A2表達(dá)后FEX的吸收情況,加入抑制劑組吸收值為12.03±0.14 nmol/ (1×106)個細(xì)胞,對照組為36.24±0.28 nmol/ (1×106)個細(xì)胞,二者有明顯的統(tǒng)計學(xué)差異(P< 0.05,見圖4B)。
圖2 pIRES2-ZsGreen1和pIRES2-ZsGreen1-OATP1A2脂質(zhì)體法轉(zhuǎn)染HEK293細(xì)胞48 h后熒光顯微鏡下(10×)細(xì)胞狀態(tài)(Bar=10 μm),轉(zhuǎn)染率> 80%Fig.2 HEK293 cells were transfected with pIRES2-ZsGreen1 and pIRES2-ZsGreen1-OATP1A2 using liposome transfection. After 48 hours, we observed the HEK293-VC cells (left) and HEK293-OATP1A2 cells (right) using white light and excitation light under fl uorescence microscope(10×) (Bar=10 μm). The transfection ef fi ciency according to green fl uorescence was above 80%.
圖3 過表達(dá)OATP1A2成功的細(xì)胞株HEK293-OATP1A2表達(dá)特征 (±SD)A:Q-PCR結(jié)果顯示穩(wěn)定表達(dá)OATP1A2的細(xì)胞株mRNA相對表達(dá)量顯著高于空白質(zhì)粒轉(zhuǎn)染組(HEK293-VC)和未轉(zhuǎn)染組(con-HEK293) (**P < 0.01);B:Western blot結(jié)果1、2、3(分別代表con-HEK293、HEK293-VC和HEK293-OATP1A2)蛋白條帶均在74KD左右且與OATP1A2大小一致,但3號最明顯,1和2號信號較低;C:灰度值相對量分析結(jié)果:HEK293-OATP1A2組明顯升高 (*P < 0.05).Fig.3 Characterization of the HEK293-OATP1A2 cell line overexpressing OATP1A2 (±SD)A: Increased expression of OATP1A2 mRNA in HEK293 cells that stably expressing OATP1A2 compared with HEK293 cells transfected with the empty vector (**P < 0.01). B: Western blot of OATP1A2 in HEK293-OATP1A2, HEK293-VC, and con-HEK293 cells. At molecular mass of approximately 74kDa, strong signal was detected for HEK293-OATP1A2 cells, and weak signals were also detectable for HEK293-VC and con-HEK293 cells. C: The relative density of HEK293-OATP1A2 was signi fi cantly higher than that of the control group (*P < 0.05).
圖4 A:HEK293-OATP1A2組較HEK293-VC組的FEX的轉(zhuǎn)運顯著升高 (*P < 0.05, F=36);B:加入OATP1A2特異性抑制劑柚皮素后,F(xiàn)EX的轉(zhuǎn)運顯著降低(*P < 0.05)。說明OATP1A2介導(dǎo)FEX的轉(zhuǎn)運,驗證了過表達(dá)細(xì)胞株的OATP1A2轉(zhuǎn)運功能正常。Fig.4 A: Uptake percentage of FEX into HEK293-OATP1A2 and HEK293-VC cells. The HEK293-OATP1A2 cells showed a signi fi cantly higher uptake(2.8-fold) of FEX compared with HEK293-VC cells (*P < 0.05, F = 36). B: The uptake of FEX was signi fi cantly reduced compared with presence of inhibitor naringenin (100 μg/ml) (*P < 0.05). The transport function was normal by the uptake experiment of probe substrate in the HEK293 cell line stably expressing OATP1A2.
為了驗證芬太尼是否為OATP1A2的底物,我們選擇過表達(dá)OATP1A2的細(xì)胞與空白質(zhì)粒轉(zhuǎn)染的細(xì)胞采用濃度梯度進(jìn)行吸收實驗,參考Ziesenitz等[17]所采用的芬太尼濃度1、10、100、1000 nM;同時進(jìn)行半數(shù)效量序貫法檢測芬太尼的細(xì)胞毒性,按劑量等比級數(shù)分為4~6組。實驗從最可能接近ED50的劑量開始,將細(xì)胞接種至96孔板,選擇OATP1A2轉(zhuǎn)運底物常用的濃度范圍5、10、100、150、300μM;顯微鏡下觀察達(dá)到一半細(xì)胞死亡時的藥物濃度,該濃度為最大用藥濃度,約為100~150 μM。為排除芬太尼對細(xì)胞的藥物毒性影響,我們所采取的濃度小于最大用藥濃度。預(yù)實驗發(fā)現(xiàn)吸收時間在15 min內(nèi)吸收呈直線相關(guān),因此選擇吸收時間為15 min。我們的研究顯示兩組的吸收百分比有顯著的統(tǒng)計學(xué)差異(P< 0.05; Df=3),且濃度為1 000 nM時過表達(dá)OATP1A2組對芬太尼的轉(zhuǎn)運吸收是對照組HEK293-VC的2.2倍 (見圖5A)。分別在HEK293-OATP1A2組加入100 nM芬太尼和100 nM芬太尼與40 μM的柚皮素(100 μg/mL)進(jìn)行吸收實驗,觀察抑制OATP1A2表達(dá)后芬太尼的吸收情況,加入抑制劑組吸收值為2.62±0.06 nmol/(1×106)個細(xì)胞,對照組為19.39±0.23 nmol/(1×106)個細(xì)胞,二者有明顯的統(tǒng)計學(xué)差異(P< 0.05,見圖5B)。
芬太尼是人工合成的μ阿片受體激動劑,起效快、效能高、作用時間短,廣泛應(yīng)用于臨床麻醉與急慢性疼痛的治療[6,18]。早在1999年,Henthorn TK等學(xué)者[19]發(fā)現(xiàn)芬太尼攝取入牛腦微血管內(nèi)皮細(xì)胞和牛肺動脈內(nèi)皮細(xì)胞的過程均主要是通過載體介導(dǎo)的主動轉(zhuǎn)運,而不是被動擴散,但芬太尼的轉(zhuǎn)運具體是由什么載體介導(dǎo),作者未作深入的探究。此后有學(xué)者給Sprague-Dawley大鼠分別靜脈注射芬太尼和P-gp競爭性抑制劑維拉帕米、Oatp競爭性抑制劑普伐他汀,然后采用高效液相色譜質(zhì)譜聯(lián)用法檢測腦和肺內(nèi)芬太尼濃度,發(fā)現(xiàn)Oatp競爭性抑制劑普伐他汀對芬太尼腦/血漿分配系數(shù)的影響遠(yuǎn)大于P-gp競爭性抑制劑維拉帕米對其的影響[6]。該研究提示血腦屏障Oatp可能在芬太尼的跨血腦屏障轉(zhuǎn)運中扮演了重要的角色。但是,人類血腦屏障OATP能否轉(zhuǎn)運芬太尼目前尚未見報道。
圖5 A:HEK293-OATP1A2組較HEK293-VC組芬太尼的轉(zhuǎn)運顯著升高(F=8.7, *P=0.042);B:加入OATP1A2特異性抑制劑柚皮素后,芬太尼的轉(zhuǎn)運顯著降低 (*P < 0.05)Fig.5 A: Uptake percentage of fentanyl into HEK293-OATP1A2 and HEK293-VC cells. The HEK293-OATP1A2 cells showed a signi fi cantly higher uptake of fentanyl (F=8.7, *P=0.042) compared with HEK293-VC cells. B: The uptake of fentanyl had a significant reduction in HEK293-OATP1A2 cells compared with presence of inhibitor naringenin (*P < 0.05).
OATPs/Oatps屬于攝入型溶質(zhì)轉(zhuǎn)運蛋白家族主要成員。目前,人類OATP家族已鑒定出11個亞型[4],其中OATP1A2是OATP家族中底物譜最廣泛的成員,既可以轉(zhuǎn)運陰離子化合物,也可以轉(zhuǎn)運中性和陽離子化合物[20],包括內(nèi)源性阿片肽δ-阿片受體激動劑DPDPE、deltorphin II、膽汁酸、類固醇及其結(jié)合物、甲狀腺激素、HIV蛋白酶抑制劑、多柔比星以及多西紫杉醇等[15,21~24]。OATP1A2主要表達(dá)在血腦屏障[12,25]毛細(xì)血管內(nèi)皮細(xì)胞頂側(cè),體外研究顯示,其在底物型藥物透血腦屏障中起重要作用[26]。因此,我們推測OATP1A2亞型能介導(dǎo)芬太尼的跨血腦屏障轉(zhuǎn)運。
據(jù)國際轉(zhuǎn)運體聯(lián)合會的推薦,證明某物質(zhì)是攝入型轉(zhuǎn)運體的底物的第一個條件是過表達(dá)該轉(zhuǎn)運體的細(xì)胞株底物吸收量顯著高于對照組;第二個條件是已知抑制劑可以抑制過表達(dá)組細(xì)胞株對底物的攝取[11]。HEK293細(xì)胞是目前研究藥物轉(zhuǎn)運體與底物關(guān)系常用的體外模型之一[27]。為了證實我們的推測,我們首先建立穩(wěn)定過表達(dá)OATP1A2的細(xì)胞株HEK293-OATP1A2,通過熒光顯微鏡觀察HEK293-OATP1A2組與HEK293-VC組質(zhì)粒載體標(biāo)記物綠色熒光蛋白的表達(dá)量,初步判斷二者轉(zhuǎn)染率均大于80%,對照組稍高于實驗組可能是因為實驗組的目的基因影響了熒光蛋白基因的表達(dá);熒光定量PCR檢測出HEK293-OATP1A2組OATP1A2 mRNA表達(dá)顯著高于HEK293-VC對照組;Western blot檢測HEK293-OATP1A2組和HEK293-VC組的目的蛋白表達(dá)也有顯著的統(tǒng)計學(xué)差異;這些都驗證了穩(wěn)定表達(dá)株建立成功。然后,運用OATP1A2的已知底物FEX作為探針?biāo)幬矧炞C穩(wěn)定過表達(dá)細(xì)胞株的轉(zhuǎn)運功能,一方面進(jìn)行HEK293-OATP1A2組與HEK293-VC組的FEX吸收實驗,另一方面運用過表達(dá)組細(xì)胞在加入抑制劑情況下進(jìn)行FEX的吸收實驗,采用HPLC-MS/MS法測定細(xì)胞內(nèi)FEX的濃度,結(jié)果顯示實驗組與對照組有顯著的統(tǒng)計學(xué)差異,與Mirjana Cvetkovic和Maki Shimizu研究[4]一致,表明OATP1A2過表達(dá)細(xì)胞株的轉(zhuǎn)運功能正常。最后,用同樣的OATP1A2過表達(dá)細(xì)胞株對芬太尼進(jìn)行濃度梯度吸收實驗,HPLC-MS/MS法測定細(xì)胞內(nèi)藥物的濃度,結(jié)果顯示HEK293-OATP1A2組胞內(nèi)芬太尼濃度顯著高于HEK293-VC組;同時向HEK293-OATP1A2細(xì)胞株培養(yǎng)基中加入抑制劑柚皮素進(jìn)行吸收實驗,結(jié)果顯示抑制有效,表明芬太尼是OATP1A2的底物。
我們首次通過體外實驗證明有機陰離子轉(zhuǎn)運多肽OATP1A2介導(dǎo)阿片類藥物芬太尼的轉(zhuǎn)運,并首次發(fā)現(xiàn)OATP1A2特異性抑制劑柚皮素能減少細(xì)胞對芬太尼的吸收。我們的研究結(jié)果為進(jìn)一步探究芬太尼的作用機制提供基礎(chǔ),同時對芬太尼的靶向治療和個體化用藥有著重要的指導(dǎo)意義。
[1]郭一飛. 遺傳藥理學(xué). 中國疼痛醫(yī)學(xué)雜志, 2011,17(6): 345 ~ 348.
[2]Xiao Y, Deng J, Liu X,et al. Different Binding Sites of Bovine Organic Anion-Transporting Polypeptide1a2 Are Involved in the Transport of Different Fluoroquinolones. Drug Metabolism and Disposition, 2014, 42(8):1261 ~ 1267.
[3]Chan GN, Hoque MT, Bendayan R. Role of nuclear receptors in the regulation of drug transporters in the brain. Trends Pharmacol Sci, 2013, 34(7): 361 ~ 372.
[4]Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol, 2012, 165(5): 1260 ~ 1287.
[5]Ronaldson PT, Davis TP. Targeted drug delivery to treat pain and cerebral hypoxia. Pharmacol Rev, 2013,65(1):291 ~ 314.
[6]Elkiweri IA, Zhang YL, Christians U,et al. Competitive Substrates for P-Glycoprotein and Organic Anion Protein Transporters Differentially Reduce Blood Organ Transport of Fentanyl and Loperamide: Pharmacokinetics and Pharmacodynamics in Sprague-Dawley Rats.Anesthesia & Analgesia, 2009, 108(1): 149 ~ 159.
[7]Gao B, Hagenbuch B, Kullak-Ublick GA,et al. Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol Exp Ther, 2000, 294(1):73 ~ 79.
[8]趙欣, 楊向軍, 白霞, 等. 穩(wěn)定表達(dá)hHCN2基因HEK293細(xì)胞系的建立. 中國應(yīng)用生理學(xué)雜志,2006(2): 254 ~ 256.
[9]Cvetkovic M, Leake B, Fromm MF,et al. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos,1999, 27(8):866 ~ 871.
[10]Shimizu M, Fuse K, Okudaira K,et al. Contribution of OATP (organic anion-transporting polypeptide) family transporters to the hepatic uptake of fexofenadine in humans. Drug Metab Dispos, 2005, 33(10): 1477 ~ 1481.
[11]Glaeser H, Bujok K, Schmidt I,et al. Organic anion transporting polypeptides and organic cation transporter 1 contribute to the cellular uptake of the fl avonoid quercetin.Naunyn Schmiedebergs Arch Pharmacol, 2014, 387(9):883 ~ 891.
[12]Zhou Y, Yuan J, Li Z,et al. Genetic Polymorphisms and Function of the Organic Anion-Transporting Polypeptide 1A2 and Its Clinical Relevance in Drug Disposition.Pharmacology, 2015, 95(3-4): 201 ~ 208.
[13]田瑩瑩, 王醫(yī)成, 武惠斌,等. HPLC-MS-MS法測定人血漿中芬太尼濃度及其生物等效性研究. 中國臨床藥理學(xué)與治療學(xué), 2012, 17(7): 785 ~ 790.
[14]Mandery K, Bujok K, Schmidt I,et al. In fl uence of the fl avonoids apigenin, kaempferol, and quercetin on the function of organic anion transporting polypeptides 1A2 and 2B1. Biochemical Pharmacology, 2010,80(11):1746 ~ 1753.
[15]Konig J, Glaeser H, Keiser M,et al. Role of Organic Anion-Transporting Polypeptides for Cellular Mesalazine(5-Aminosalicylic Acid) Uptake. Drug Metabolism and Disposition, 2011, 39(6): 1097 ~ 1102.
[16]Taub ME, Mease K, Sane RS,et al. Digoxin Is Not a Substrate for Organic Anion-Transporting Polypeptide Transporters OATP1A2, OATP1B1, OATP1B3, and OATP2B1 but Is a Substrate for a Sodium-Dependent Transporter Expressed in HEK293 Cells. Drug Metabolism and Disposition, 2011, 39(11): 2093 ~ 2102.
[17]Ziesenitz VC, K?nig SK, Mahlke N,et al. Fentanyl Pharmacokinetics is not Dependent on Hepatic Uptake by Organic Anion-Transporting Polypeptide 1B1 in Human Beings. Basic Clin Pharmacol Toxicology, 2013, 113(1):43 ~ 48.
[18]Ikeda K, Ide S, Han W,et al. How individual sensitivity to opiates can be predicted by gene analyses. Trends Pharmacol Sci, 2005, 26(6): 311 ~ 317.
[19]Henthorn TK, Liu Y, Mahapatro M,et al. Active transport of fentanyl by the blood-brain barrier. J Pharmacol Exp Ther, 1999, 289(2): 1084 ~ 1089.
[20]余娜, 馬全武, 邱慧清, 等. 有機陰離子轉(zhuǎn)運多肽1A2基因多態(tài)性的研究進(jìn)展. 沈陽藥科大學(xué)學(xué)報,2016(07): 592 ~ 598.
[21]Hartkoorn RC, Kwan WS, Shallcross V,et al. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenetics and Genomics, 2010, 20(2): 112 ~ 120.
[22]Forster S, Thumser AE, Hood SR,et al. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays. PLoS One, 2012, 7(3):25 ~ 33.
[23]Iusuf D, Hendrikx JJ, van Esch A,et al. Human OATP1B1, OATP1B3 and OATP1A2 can mediate the in vivo uptake and clearance of docetaxel. Int J Cancer,2015, 136(1): 225 ~ 233.
[24]Durmus S, Naik J, Buil L,et al. In vivo disposition of doxorubicin is affected by mouse Oatp1a/1b and human OATP1A/1B transporters. Int J Cancer, 2014, 135(7):1700 ~ 1710.
[25]Gong IY, Kim RB. Impact of Genetic Variation in OATP Transporters to Drug Disposition and Response. Drug Metabolism and Pharmacokinetics, 2013, 28(1): 4 ~ 18.
[26]Lee W, Glaeser H, Smith LH,et al. Polymorphisms in Human Organic Anion-transporting Polypeptide 1A2(OATP1A2): implications for altered drug disposition and central nervous system drug entry. J Biol Chem,2005, 280(10): 9610 ~ 9617.
[27]張文. 基于OATPs/oatps介導(dǎo)的麥冬皂苷D肝臟轉(zhuǎn)運的分子學(xué)機制研究. 南昌大學(xué), 2014.
ORGANIC ANION-TRANSPORTING POLYPEPTIDE 1A2 MEDIATES THE TRANSPORT OF FENTANYL*
YANG Hui-Wen1, ZHANG Fan1, HUANG Li-Hua2, HAN Rui1, OUYANG Wen1, XIANG Hong2, LIAO Qin1△
(1Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha 410013, China;2Center for Medical Experiments, Third Xiangya Hospital, Central South University, Changsha 410013, China)
Objective: To establish human embryonic kidney (HEK293) cell line stably expressing human OATP1A2, and to explore whether the uptake of fentanyl can be mediated by OATP1A2 in vitro.Methods: HEK293 cells were transfected with the plasmid pIRES2-ZsGreen1-OATP1A2 using a Liposome transfection reagent LipofectamineTM2000. After geneticin (G-418; 600 mg/ml) treatment, single colonies were selected and characterized. Western blot analysis and real-time PCR were used to verify the success of transfection. Different concentrations of probe drug fexofenadine was used to verify HEK293-OATP1A2 transport function. The cells were incubated with different concentrations of fentanyl. HEK293-OATP1A2 uptake experiment was performed with inhibitor naringenin. Results: Fexofenadine and fentanyl showed a significantly increased uptake (P< 0.05) into the HEK293-OATP1A2 compared with the HEK293-VC cells. The uptake value of Fexofenadine at 100 nM was 2.8-fold to that of control. The OATP1A2 inhibitor naringenin at a concentration of 100 μg/mL signi fi cantly reduced the cellular fexofenadine and fentanyl net uptake to 66.8±0.6% and 86.5±0.5% of control (fexofenadine uptake without inhibitor), respectively (P<0.05). Conclusion: HEK293 cell line with overexpression of OATP1A2 was successfully constructed, and OATP1A2 mediating fentanyl transport in vitro has been con fi rmed.
OATP1A2; Fentanyl; Substrate; Transport function; Overexpression
10.3969/j.issn.1006-9852.2017.07.004
湖南省自然科學(xué)基金(16JJ2158)
△通訊作者 zhanghaoliaoqin@163.com