項(xiàng)麗慧,林清霞,余文權(quán),陳 林*,王振康
(1.福建省農(nóng)業(yè)科學(xué)院茶葉研究所,福建 福安 355015;2.福建省農(nóng)業(yè)科學(xué)院,福建 福州 350002)
茶葉中糖苷類香氣前體物質(zhì)研究進(jìn)展
項(xiàng)麗慧1,林清霞1,余文權(quán)2*,陳 林1*,王振康1
(1.福建省農(nóng)業(yè)科學(xué)院茶葉研究所,福建 福安 355015;2.福建省農(nóng)業(yè)科學(xué)院,福建 福州 350002)
糖苷水解產(chǎn)生的揮發(fā)性成分是茶葉香氣的重要組成之一。本文系統(tǒng)總結(jié)了茶葉糖苷類香氣前體物質(zhì)的化學(xué)組成、代謝途徑、檢測(cè)方法及影響因素。
茶葉;鍵合態(tài)香氣物質(zhì);糖苷酶;糖基轉(zhuǎn)移酶
香氣是茶葉感官品質(zhì)的重要評(píng)價(jià)指標(biāo)之一。糖苷類香氣前體物質(zhì)水解后通常表現(xiàn)出不同的香型風(fēng)味,是茶葉主要的香氣前體。糖苷類香氣前體物質(zhì),無(wú)味、無(wú)揮發(fā)性,存在于許多植物中,如玫瑰花[1]、葡萄[2]、煙草[3]、茶葉[4]、梨[5]等。竹尾忠一[4]首次發(fā)現(xiàn)茶鮮葉中芳樟醇、香葉醇可能以葡萄糖苷的形式存在。隨后,國(guó)內(nèi)外學(xué)者對(duì)茶葉中不同的糖苷類香氣前體物質(zhì)進(jìn)行了廣泛而深入的研究,陸續(xù)分離鑒定出香葉基葡萄糖苷[6]、苯甲基葡萄糖苷[6]、香葉基櫻草糖苷[7]、芳樟基櫻草糖苷[7]等20余種糖苷類香氣前體物質(zhì)[8-15]。本文系統(tǒng)總結(jié)了茶葉糖苷類香氣前體物質(zhì)的化學(xué)組成、代謝途徑、檢測(cè)方法及影響因素,以期為闡明茶葉香氣物質(zhì)的形成與轉(zhuǎn)化機(jī)制、茶樹(shù)高香優(yōu)質(zhì)品種選育和茶葉增香加工技術(shù)調(diào)控提供參考依據(jù)。
糖苷在植物中分布極廣,是糖和糖的衍生物等與另一非糖物質(zhì)(苷元)失去水分子,通過(guò)苷鍵縮合而成的化合物?;衔锱c糖結(jié)合成苷以后,水溶性增大,揮發(fā)性降低,穩(wěn)定性增強(qiáng),生物活性或毒性亦會(huì)發(fā)生變化[16]。糖苷類香氣前體物質(zhì)指的是苷元為揮發(fā)性物質(zhì)或揮發(fā)性物質(zhì)前體的糖苷。
根據(jù)苷元的類型,茶葉中的糖苷類香氣前體物質(zhì)可分為以下幾類:脂肪族醇類、芳香族醇類、萜烯醇類、芳香族酯類等。第一、脂肪族醇類在茶鮮葉中含量較高,其沸點(diǎn)低,易揮發(fā),主要為順-3-乙烯醇,高濃度的順-3-乙烯醇呈現(xiàn)強(qiáng)烈的青草氣,稀釋后有清香的感覺(jué);第二、芳香族醇類,沸點(diǎn)較高,其香氣特征是類似花香或果香,包括苯甲醇、苯乙醇等;第三、萜烯醇類物質(zhì),沸點(diǎn)較高,此類化合物具有花香或果實(shí)香,對(duì)茶香形成有重要作用,包括香葉醇、芳樟醇及其氧化物等;第四、芳香族酯類主要為水楊酸甲酯,具有濃的冬青油香,不僅是茶葉的主要呈香物質(zhì)之一,還可作為誘導(dǎo)多種防御反應(yīng)的信號(hào)物質(zhì)[17,18]。張正竹等[19]研究表明在茶鮮葉中,順-3-己烯醇、芳樟醇及其氧化物(Ⅰ、Ⅱ)、香葉醇、水楊酸甲酯、苯甲醇和2-苯乙醇是糖苷類香氣前體物質(zhì)的主要苷元,且不同季節(jié)的茶樹(shù)鮮葉中糖苷類香氣前體物質(zhì)在苷元組成上基本一致。大部分糖苷類香氣前體物質(zhì)水解后,可直接釋放揮發(fā)性苷元,但并不是所有的糖苷苷元都是揮發(fā)性物質(zhì),如β-D-苯乙腈葡萄糖苷預(yù)先被β-葡萄糖苷酶水解成為中間產(chǎn)物苯乙腈,再被苯乙腈裂解酶[20]酶解為苯甲醛(苦杏仁香氣)。
表1 茶葉糖苷類香氣前體物質(zhì)的化學(xué)組成
糖苷類香氣物質(zhì)中直接與苷元結(jié)合的糖基是β-D-葡萄糖。該葡萄糖還可連接一個(gè)或多個(gè)其他糖基,如木糖、芹菜糖、阿拉伯糖等。茶葉糖苷類香氣前體物質(zhì)的糖基種類主要包括β-D-葡萄糖苷、β-櫻草糖苷、β-芹菜糖基葡萄糖苷、β-巢菜糖苷(表1)。有文獻(xiàn)[31]提出除了以上4種糖基以外,還存在第5種糖基——野黑櫻苷(β-D-苯乙腈葡萄糖苷)[8],其糖基為β-D-葡萄糖。
2.1 糖苷類香氣前體物質(zhì)的生物合成
糖苷類香氣前體物質(zhì)的生物合成:在糖基轉(zhuǎn)移酶(EC 2.4.x.y)催化作用下,活性糖供體與苷元相結(jié)合形成糖苷化合物[32]。糖基轉(zhuǎn)移酶分子質(zhì)量大約40~60 KD,等電點(diǎn)為4.1~6.2,對(duì)糖基受體Km為0.4~3600 μmol·L-1,最適pH值為5.9~9.0[33]。尿苷二磷酸-葡萄糖、鼠李糖、半乳糖、木糖和葡萄糖醛酸均可作用糖基轉(zhuǎn)移酶的活性糖供體[32],與活性糖供體相結(jié)合的受體基團(tuán)包含-COOH,-NH2,-SH,-OH,C-C等[34]。茶葉中的糖苷類香氣前體物質(zhì)與活性糖供體相結(jié)合的受體基團(tuán)主要為-OH[35]。
近年有關(guān)植物中糖苷化合物的酶促合成分子機(jī)理研究越來(lái)越多。擬南芥糖基轉(zhuǎn)移酶UGT73C5 能以多種萜醇類化合物作為糖基受體[36],催化合成多種萜醇類糖苷化合物。茶葉中的2種糖基轉(zhuǎn)移酶CsGT1和CsGT2可以分別通過(guò)葡萄糖基化作用和木糖基化作用將游離的揮發(fā)性化合物轉(zhuǎn)化為櫻草糖苷鍵合態(tài)復(fù)合物貯存于茶葉中[37]。
2.2 糖苷類香氣前體物質(zhì)的釋放途徑
在茶葉生長(zhǎng)及加工過(guò)程中,因蟲(chóng)食、病毒侵染、失水或機(jī)械損傷等,導(dǎo)致茶葉細(xì)胞區(qū)室化功能破壞,使得茶葉中的糖苷鍵合態(tài)物質(zhì),經(jīng)內(nèi)源及外源糖苷酶分解釋放揮發(fā)性物質(zhì)[38]。茶葉中參與糖苷類香氣前體物質(zhì)水解反應(yīng)的糖苷酶主要是β-葡萄糖苷酶和β-櫻草糖苷酶。
β-葡萄糖苷酶(EC 3.2.1.21)是糖苷水解酶家族中的一大類酶,其主要功能是水解結(jié)合于底物末端非還原性的β-D-葡萄糖苷鍵,生成β-D-葡萄糖,并釋放出相應(yīng)苷元[39]。該酶存在于幾乎所有的生物體內(nèi),是生物體糖代謝途徑中不可或缺的一類酶。目前,GENBANK中登錄的茶樹(shù)β-葡萄糖苷酶基因核苷酸序列有6個(gè),登錄號(hào)分別為HQ679938.2、AM285295.2、KF933435.1、AF537127.1、KF981725.1、KT165373.1。李遠(yuǎn)華[40]認(rèn)為茶葉中β-葡萄糖苷酶主要分布在細(xì)胞質(zhì)的微粒體或溶酶體中,其分布與葉綠體有關(guān),柵欄組織是合成β-葡萄糖苷酶的重要場(chǎng)所。Zhou Y[41]對(duì)茶樹(shù)β-葡萄糖苷酶進(jìn)行亞細(xì)胞定位,結(jié)果表明CsGH1BG1,CsGH3BG1定位于細(xì)胞質(zhì)和液泡中,CsGH5BG1定位于細(xì)胞壁,推測(cè)CsGH1BG1,CsGH3BG1可能負(fù)責(zé)茶葉加工過(guò)程中糖苷類香氣前體物質(zhì)的水解。周漢琛等[42-44]詳細(xì)介紹了β-葡萄糖苷酶的生物信息學(xué)及基因表達(dá),及其在茶葉增香以及抗病蟲(chóng)害方面的作用,表明β-葡萄糖苷酶在茶樹(shù)抵御逆境反應(yīng)中具有積極響應(yīng)作用,在茶葉加工過(guò)程中,β-葡萄糖苷酶可以促進(jìn)糖苷類香氣前體物質(zhì)的水解并釋放出揮發(fā)性苷元,為茶葉香氣成分的積累提供物質(zhì)基礎(chǔ)。
β-櫻草糖苷酶(EC 3.2.1.149)是催化糖苷類香氣前體物質(zhì)水解的另一主要酶類。它通過(guò)水解萜醇類糖苷香氣物質(zhì),使茶葉呈現(xiàn)出天然花香,并對(duì)外來(lái)入侵起到一定的防御作用[45]。Bridel M[46]首次在報(bào)春花上發(fā)現(xiàn)了β-櫻草糖苷酶具有水解β-櫻草糖苷的生物活性。β-櫻草糖苷酶基因已被克隆出來(lái)[47],GENEBANK登錄號(hào)為AB088027.1。Gui等[48]研究指出烏龍茶品種金萱在做青過(guò)程中,多次搖青產(chǎn)生的機(jī)械損傷雖然使得在制葉萎縮扭曲而細(xì)胞壁卻仍然保持完整,細(xì)胞壁中糖苷水解酶與糖苷態(tài)香氣物質(zhì)未發(fā)生接觸反應(yīng),糖苷態(tài)香氣物質(zhì)并未出現(xiàn)下降變化,β-葡萄糖苷酶和β-櫻草糖苷酶的活性及其基因表達(dá)水平并未出現(xiàn)增強(qiáng),甚至呈現(xiàn)了下降的變化趨勢(shì),該研究對(duì)糖苷酶是否直接促進(jìn)烏龍茶花果香氣形成提出質(zhì)疑。
茶葉中糖苷類香氣前體物質(zhì)的提取方法,主要包括乙醇浸提法[49]、甲醇浸提法[50]、熱水浸提法[7],其分析檢測(cè)流程見(jiàn)圖1。張正竹[51]用沸水和沸乙醇提取茶樹(shù)鮮葉中的糖苷類香氣前體物質(zhì)進(jìn)行了對(duì)比研究,結(jié)果表明沸水提取的得率較低,僅為沸乙醇的68.85%。由于茶葉中糖苷類香氣前體物質(zhì)標(biāo)品不易獲得,需對(duì)其進(jìn)行分離,常采用酶或酸水解,然后對(duì)水解后的糖苷苷元進(jìn)行GC-MS分析。酸水解方法在葡萄[52]、橙子[53]、梨子[54]、柑橘[55]等水果的糖苷研究應(yīng)用較多。萜烯醇類物質(zhì)在酸性條件下可發(fā)生分子重排現(xiàn)象[56],因此局限了酸水解法在茶葉糖苷類香氣前體物質(zhì)分析中的應(yīng)用。與酸水解方法相比,酶水解反應(yīng)較酸水解法更溫和,水解釋放的香氣物質(zhì)更接近茶葉的香氣。通常采用從茶樹(shù)鮮葉中提取的酶進(jìn)行糖苷類香氣前體物質(zhì)的釋放。
除了上述分析方法以外,還可直接對(duì)糖苷類香氣前體物質(zhì)進(jìn)行三氟乙酰衍生化分析。這種方法可更準(zhǔn)確判斷糖苷的結(jié)構(gòu),特別是糖基的結(jié)構(gòu)。Wang等[23]通過(guò)三氟乙?;苌ǚ治隽瞬枞~中26種糖苷類香氣前體物質(zhì),這些糖苷主要是櫻草糖苷、葡萄糖苷和巢菜糖苷,苷元部分主要是脂肪醇類、萜烯醇類和芳香醇類等。Gu等[57]優(yōu)化了三氟乙酰衍生條件,發(fā)現(xiàn)在 60℃下反應(yīng)50 min效果最好,同時(shí)還采用GC結(jié)合電子捕獲檢測(cè)器(electron capture detector,ECD)對(duì)糖苷衍生后的氟化物進(jìn)行檢測(cè),結(jié)果表明在0.05~200 mg·L-1范圍內(nèi)具有良好的線性關(guān)系。此外,崔繼來(lái)[50]以苯甲醇、2-苯乙醇、順-3-己烯醇、芳樟醇和香葉醇的櫻草糖苷和葡萄糖苷作為標(biāo)品,建立了LC-MS的定量定性分析方法。戴偉東等[58]基于LC-MS和Q-TOF/MS的非靶向修飾特異性代謝組學(xué)方法,鑒定了茶葉中40種糖苷類化合物。
圖1 茶葉中糖苷類香氣前體物質(zhì)檢測(cè)方法Fig. 1 Analytical methods for determination of glycoside-bound aroma precursors in tea
4.1 生物因素
在茶樹(shù)生長(zhǎng)發(fā)育過(guò)程,蟲(chóng)食、病毒侵染等生物因素會(huì)影響糖苷類香氣前體物質(zhì)的水解釋放。Cho[59]研究認(rèn)為,東方美人茶(假眼小綠葉蟬聚集侵害茶樹(shù)嫩梢,受侵食后的茶芽被采摘下來(lái),以傳統(tǒng)加工工藝生產(chǎn)出的烏龍茶)產(chǎn)生高香的原因在于葉片被小綠葉蟬取食而導(dǎo)致芳樟醇及其氧化物等化合物升高,這些物質(zhì)來(lái)源可能是從頭合成和糖苷類香氣前體物質(zhì)的水解。戚麗等[60]研究表明茶葉游離態(tài)香氣組分和糖苷類香氣前體物質(zhì)對(duì)茶云紋葉枯病致病菌均具有顯著的抑制作用。由此提出,糖苷類香氣前體物質(zhì)合成并貯存在茶樹(shù)葉片中,當(dāng)遇到茶云紋葉枯病等致病菌侵染時(shí),在內(nèi)源糖苷酶和外源病原菌水解酶的作用下,水解并釋放出揮發(fā)性苷元,從而表現(xiàn)出抗病性。
4.2 非生物因素
茶鮮葉從茶樹(shù)母體上采摘下來(lái)后,至高溫殺青以前仍然是活體,在此過(guò)程中經(jīng)歷著光輻射、組織損傷、失水等非生物脅迫,不僅促進(jìn)了茶葉水分散失、葉片萎軟、青氣散發(fā),并且引起了在制品糖苷類香氣前體物質(zhì)的酶促水解,從而提高了茶葉香氣品質(zhì)。Wang D等[61]發(fā)現(xiàn)在紅茶揉捻工序中櫻草糖苷明顯減少,經(jīng)發(fā)酵工序后,幾乎完全消失,而葡萄糖苷含量保持不變,說(shuō)明櫻草糖苷是紅茶香氣主要前體物質(zhì)。然而在烏龍茶曬青過(guò)程中,大多數(shù)糖苷含量上升,成茶的糖苷達(dá)到最高水平[62],這與紅茶加工中糖苷的變化趨勢(shì)不同。崔繼來(lái)[50]研究了糖苷類香氣前體物質(zhì)對(duì)紅茶和烏龍茶香氣形成的貢獻(xiàn),結(jié)果表明櫻草糖苷是紅茶香氣形成的前體物質(zhì),葡萄糖苷對(duì)紅茶香氣形成沒(méi)有貢獻(xiàn),這與Wang D研究結(jié)果一致;2種糖苷在烏龍茶加工過(guò)程中沒(méi)有發(fā)生水解,對(duì)烏龍茶的香氣沒(méi)有貢獻(xiàn)。Gui等[48]比較了烏龍茶殺青前各工序糖苷類香氣前體物質(zhì)的變化,結(jié)果顯示糖苷含量沒(méi)有減少,以順-3-乙烯醇為苷元的糖苷在搖青階段有所增加。謝運(yùn)海等[49]測(cè)定了漳平水仙茶加工過(guò)程中糖苷類香氣前體物質(zhì)的含量,結(jié)果表明晾青葉糖苷類香氣前體物質(zhì)較鮮葉有顯著增加,秋茶的糖苷類香氣前體物質(zhì)含量顯著高于春茶。趙飛[63]研究表明不同工藝加工制得的成品茶中糖苷前體含量差異顯著,其中烘青綠茶和炒青綠茶中的糖苷含量最高,烏龍茶次之,PCD茶(即不經(jīng)萎凋直接殺青、烘干)最低,推斷萎凋和搖青可增加糖苷類香氣前體物質(zhì)的含量,且在加工過(guò)程中,存在糖苷類香氣前體物質(zhì)的合成反應(yīng)和水解反應(yīng)的動(dòng)態(tài)平衡。魏志文等[64]研究發(fā)現(xiàn)在綠茶加工過(guò)程中,茶鮮葉中的糖苷類香氣前體物質(zhì)只有20.34%的苷元得以釋放,而紅茶加工過(guò)程中,95.60%的苷元水解釋放出游離態(tài)香氣成分。
茶葉中糖苷類香氣前體物質(zhì)是重要的香氣前體,與茶葉香氣品質(zhì)和抗性密切相關(guān)。國(guó)內(nèi)外研究表明,茶葉中存在的糖苷類香氣前體物質(zhì),通過(guò)酶促水解反應(yīng),可釋放潛在的香氣物質(zhì),但仍然存在如下問(wèn)題有待研究:第一、高香優(yōu)質(zhì)品種選育與鑒定方面,已有報(bào)道[65]表明適制烏龍茶品種的糖苷類香氣前體物質(zhì)高于適制綠茶品種,初步推斷其可作為一種品種適制性的新指標(biāo),但如何將指標(biāo)應(yīng)用到生產(chǎn)實(shí)踐,利用糖苷類香氣前體物質(zhì)代謝過(guò)程的關(guān)鍵酶基因進(jìn)行高香茶樹(shù)品種的精準(zhǔn)篩選值得探究;第二、農(nóng)藝栽培過(guò)程的代謝調(diào)控方面,關(guān)于茶葉加工過(guò)程糖苷類香氣前體物質(zhì)的研究已被大量報(bào)道,但關(guān)于遮陰、覆蓋、施用有機(jī)肥等農(nóng)藝栽培措施對(duì)糖苷類香氣前體物質(zhì)代謝調(diào)控尚未見(jiàn)報(bào)道;第三、茶葉加工品質(zhì)的質(zhì)量控制方面,國(guó)內(nèi)外學(xué)者對(duì)紅茶加工過(guò)程糖苷類前體的變化規(guī)律研究結(jié)果基本一致,研究結(jié)果均表明糖苷類物質(zhì)在紅茶加工過(guò)程中得以水解,特別是櫻草糖苷,而對(duì)綠茶、烏龍茶加工過(guò)程糖苷對(duì)香氣形成的貢獻(xiàn)尚存在異議,其他茶類加工過(guò)程糖苷變化趨勢(shì)研究尚未見(jiàn)報(bào)道;第四、茶葉增香途徑方面,Zhang等[66]發(fā)現(xiàn),漆酶和α-半乳糖苷酶能顯著提高鐵觀音夏暑茶的感官品質(zhì),可考慮從茶葉加工過(guò)程中通過(guò)添加β-葡萄糖苷酶和β-櫻草糖苷酶,改善茶葉品質(zhì),提高茶葉香氣。
[1]Francis MJO, Allcock C. Geraniol β-d-glucoside; occurrence and synthesis in rose flowers [J]. Phytochemistry,1969,8(8):1339-1347.
[2]Cordonnier R BC. Mise en évidence dans la baie de raisin, variété Muscat d’Alexandrie, de monoterpènes liés révélables par une ou plusieurs enzymes du fruit [J]. CR Acad. Sci. ,1974,(278): 3387-3390.
[3]李英波,宛曉春,張正竹.煙草糖苷類香氣前體研究進(jìn)展[J].煙草科技,2006,(3):41-43.
[4]Takeo T. Production of linalol and geraniol by hydrolytic breakdown of bound forms in disrupted tea shoots [J]. Phytochemistry,1981,20(9):2145-2147.
[5]范剛,王可興,潘思軼.水果中糖苷鍵合態(tài)香氣物質(zhì)的研究進(jìn)展[J].中國(guó)農(nóng)業(yè)科學(xué),2010,43(24):5100-5111.
[6]Yano M, Joki Y, Mutoh H,etal. Benzyl Glucoside from Tea Leaves(Food & Nutrition) [J].Agricultural & Biological Chemistry,1991,(55):1205-1206.
[7]Guo W, Hosoi R, Sakata K,etal. (S)-linalyl, 2-phenylethyl, and benzyl disaccharide glycosides isolated as aroma precursors from oolong tea leaves [J].Bioscience Biotechnology & Biochemistry,1994,58(8):1532-1534.
[8]Guo W, Sasaki N, Fukuda M,etal. Isolation of An Aroma Precursor of Benzaldehyde from Tea Leaves (Camellia sinensis var. sinensis cv. Yabukita) [J]. Bioscience Biotechnology & Biochemistry,1998,62(10):2052-2054.
[9]Guo W F, Sakata K, Watanabe N,etal. Geranyl 6-O-beta-D-xylopyranosyl-beta-D-glucopyranoside isolated as an aroma precursor from tea leaves for oolong tea [J]. Phytochemistry,1993,33(6):1373-1375.
[10]Moon J H, Watanabe N, Sakata K,etal. Studies on the Aroma Formation Mechanism of Oolong Tea III. Trans and cis-Linalool 3,6Oxide 6-O-Beta-D-Xylopyranosyl-Beta-D glucopyranosides Isolated as Aroma Precursors from Leaves for Oolong Tea [J]. Bioscience Biotechnology and Biochemistry,1994,58(9):1742-1744.
[11]Morita K, Wakabayashi M, Kubota K,etal. Glycoside Precursor of Tea Aroma. Part 2. Aglycone Constituents in Fresh Tea Leaves Cultivated for Green and Black Tea [J]. Bioscience Biotechnology and Biochemistry,1994,58(4):687-690.
[12]Moon J H, Watanabe N, Ijima Y,etal. Studies on aroma formation mechanism in oolong tea .6. Cis- and trans-linalool 3,7-oxides and methyl salicylate glycosides and (Z)-3-Hexenyl beta-D-glucopyranoside as aroma precursors from tea leaves for oolong tea [J]. Bioscience Biotechnology and Biochemistry,1996,60(11):1815-1819.
[13]Nishikitani M, Kubota K, Kobayashi A,etal. Geranyl 6-O-alpha-L-arabinopyranosyl-beta-D-glucopyranoside isolated as an aroma precursor from leaves of a green tea cultivar [J]. Bioscience Biotechnology and Biochemistry,1996,60(5):929-931.
[14]Nishikitani M, Wang D M, Kubota K,etal. (Z)-3-Hexenyl and trans-linalool 3,7-oxide beta-primeverosides isolated as aroma precursors from leaves of a green tea cultivar [J]. Bioscience Biotechnology and Biochemistry,1999,63(9):1631-1633.
[15]Ma S J, Watanabe N, Yagi A,etal. The (3R,9R)-3-hydroxy-7,8-dihydro-beta-ionol disaccharide glycoside is an aroma precursor in tea leaves [J]. Phytochemistry,2001,56(8):819-825.
[16]陳業(yè)高,呂瑜平,丁中濤,等.植物化學(xué)成分[M].北京:化學(xué)工業(yè)出版社,2004:121.
[17]Ryals J A, Neuenschwander U H, Willits M G,etal. Systemic Acquired Resistance [J]. Plant Physiology,1996,8(10):1809.
[18]宛曉春,黃繼軫,沈生榮.茶葉生物化學(xué)[M].北京:中國(guó)農(nóng)業(yè)出版社,2007:40-46.
[19]張正竹,宛曉春,陶冠軍.茶鮮葉中糖苷類香氣前體的液質(zhì)聯(lián)用分析[J].茶葉科學(xué),2005,25(4):42-48.
[20]王曉.β-葡萄糖苷酶基因差異表達(dá)與茶樹(shù)輪斑病感抗性關(guān)系的研究[D].長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué).2015.
[21]Yang Z Y, Baldermann S, Watanabe N. Recent studies of the volatile compounds in tea [J]. Food Research International,2013,53(2):585-599.
[22]Kobayashi A, Kubota K, Joki Y,etal. (Z)-3-Hexenyl-glucopyranoside in Fresh Tea Leaves as a Precursor of Green Odor [J]. Bioscience Biotechnology & Biochemistry,1994,58(3):592-593.
[23]Wang D M, Yoshimura T, Kubota K,etal. Analysis of glycosidically bound aroma precursors in tea leaves. 1. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds [J]. Journal of Agricultural and Food Chemistry,2000,48(11):5411-5418.
[24]Zhou Y, Dong F, Kunimasa A,etal. Occurrence of glycosidically conjugated 1-phenylethanol and its hydrolase β-primeverosidase in tea (Camelliasinensis) flowers [J]. Journal of Agricultural & Food Chemistry,2014,62(32):8042-8050.
[25]Yano M, Okada K, Kubota K,etal. Studies on the precursors of monoterpene alcohols in tea leaves [J]. Agricultural & Biological Chemistry,2006,54(4):1023-1028.
[26]Moon J H, Watanabe N, Ijima Y,etal. Cis- and trans-linalool 3,7-oxides and methyl salicylate glycosides and (Z)-3-hexenyl beta-D-glucopyranoside as aroma precursors from tea leaves for oolong tea [J]. Bioscience Biotechnology & Biochemistry,1996,60(11):1815-1819.
[27]Guo W, Sasaki N, Fukuda M,etal. Isolation of an aroma precursor of benzaldehyde from tea leaves (Camelliasinensisvar.sinensiscv. Yabukita) [J]. Bioscience Biotechnology and Biochemistry,1998,62(10):2052-2054.
[28]Zhang D, Liu R, Sun L,etal. Anti-inflammatory activity of methyl salicylate glycosides isolated from Gaultheria yunnanensis (Franch.) Rehder [J]. Molecules,2011,16(5):3875-3884.
[29]Wang K, Ruan J. Analysis of chemical components in green tea in relation with perceived quality, a case study with Longjing teas [J]. International Journal of Food Science & Technology, 2010,44(12):2476-2484.
[30]Ijima Y, Ogawa K, Watanabe N,etal. Characterization of beta-primeverosidase, being concerned with alcoholic aroma formation in tea leaves to be processed into black tea, and preliminary observations on its substrate specificity [J]. Journal of Agricultural & Food Chemistry,1998,46(5):1712-1718.
[31]鄭得林,譚俊峰,林智.茶葉中糖苷類香氣前體的研究進(jìn)展[J].熱帶作物學(xué)報(bào),2012,33(9):1708-1713.
[32]Bowles D, Lim E K, Poppenberger B,etal. Glycosyltransferases of lipophilic small molecules [J]. Annual Review of Plant Biology,2006,57(57):567-597.
[33]姬向楠,何非,段長(zhǎng)青,等.植物UDP-糖基轉(zhuǎn)移酶生化特性和功能研究進(jìn)展[J].食品科學(xué),2013,34(9):316-323.
[34]Hjelmeland A K, Ebeler S E. Glycosidically Bound Volatile Aroma Compounds in Grapes and Wine:: A Review [J]. American Journal of Enology & Viticulture,2015,66(1):1-11.
[35]張正竹,施兆鵬,宛曉春.萜類物質(zhì)與茶葉香氣(綜述)[J].安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2000,27(1):53-56.
[36]Fujioka S, Vaistij F E, Seto H,etal. The UGT73C5 of Arabidopsis thaliana Glucosylates Brassinosteroids [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(42):15253-15258.
[37]Ohgami S, Ono E, Horikawa M,etal. Volatile Glycosylation in Tea Plants: Sequential Glycosylations for the Biosynthesis of Aroma β-Primeverosides Are Catalyzed by Two Camellia sinensis Glycosyltransferases [J]. Plant Physiology,2015,168(2):464-477.
[38]Aharoni A, Giri A P, Deuerlein S,etal. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants [J]. Plant Cell,2003,15(12):2866-2884.
[39]潘利華,羅建平.β-葡萄糖苷酶的研究及應(yīng)用進(jìn)展[J].食品科學(xué),2006,27(12):803-807.
[40]李遠(yuǎn)華.β-葡萄糖苷酶的研究進(jìn)展(綜述)[J].安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2002,29(4):421-425.
[41]Zhou Y, Zeng L T, Gui J D,etal. Functional characterizations of beta-glucosidases involved in aroma compound formation in tea (Camellia sinensis) [J]. Food Research International, 2017,(96):206-214.
[42]陳榮榮,王根女,張獻(xiàn)忠,等.糖苷酶在茶葉增香及香氣形成中的應(yīng)用研究進(jìn)展 [J].香料香精化妝品,2014,(5):48-52.
[43]王曉,沈程文,周躍斌.β-葡萄糖苷酶與茶增香及抗病蟲(chóng)害的研究進(jìn)展[J].茶葉通訊,2014,41(4):8-12.
[44]周漢琛,雷攀登,丁勇.茶樹(shù)β-葡萄糖苷酶研究進(jìn)展[J].茶葉科學(xué),2016,36(2):111-118.
[45]項(xiàng)麗慧,林馥茗,孫威江.茶葉中β-櫻草糖苷酶及其底物的研究進(jìn)展[J].食品工業(yè)科技,2014,35(21):376-379.
[46]Bridel M. Primeverose,primeverosides and primeverosidase [J]. C.R. Acad Sci Paris, 1925,(180):1421-1425.
[47]Mizutani M, Nakanishi H, Ema J,etal. Cloning of beta-primeverosidase from tea leaves, a key enzyme in tea aroma formation [J]. Plant Physiology,2002,130(4):2164-2176.
[48]Gui J D, Fu X M, Zhou Y,etal. Does Enzymatic Hydrolysis of Glycosidically Bound Volatile Compounds Really Contribute to the Formation of Volatile Compounds During the Oolong Tea Manufacturing Process? [J]. Journal of Agricultural and Food Chemistry,2015,63(31):6905-6914.
[49]謝運(yùn)海,鄭德勇,葉乃興,等.漳平水仙茶加工過(guò)程中香氣前體含量的變化[J].茶葉科學(xué),2016,36(1):11-17.
[50]崔繼來(lái).糖苷類香氣前體對(duì)烏龍茶和紅茶香氣形成的貢獻(xiàn)[D].重慶:西南大學(xué).2016.
[51]張正竹.綠茶主要香氣物質(zhì)的糖苷類前體研究[D].長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué).2000.
[52]胡竹韻.葡萄香氣糖苷提取分析方法的優(yōu)化設(shè)計(jì)與應(yīng)用[D].楊凌:西北農(nóng)林科技大學(xué).2015.
[53]范剛,張弛,柴倩,等.錦橙汁鍵合態(tài)香氣物質(zhì)酸解和酶解效果比較研究[J].食品科學(xué),2007,28(12):169-172.
[54]周志,范剛,王可興,等.微波輔助酸解釋放刺梨汁鍵合態(tài)香氣物質(zhì)的效果[J].食品科學(xué),2012,33(8):99-103.
[55]范剛.柑橘及其加工制品中游離態(tài)和鍵合態(tài)揮發(fā)性物質(zhì)的研究[D].武漢:華中農(nóng)業(yè)大學(xué).2010.
[56]Maicas S, Mateo J J. Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review [J]. Applied Microbiology & Biotechnology,2005,67(3):322.
[57]Gu X, Yao C, Zhang Z,etal. GC-ECD Method for Determination of Glucosidically Bound Aroma Precursors in Fresh Tea Leaves [J]. Chromatographia,2011,73(1-2):189-193.
[58]Dai W D, Tan J F, Lu M L,etal. Nontargeted Modification-Specific Metabolomics Investigation of Glycosylated Secondary Metabolites in Tea (CamelliasinensisL.) Based on Liquid Chromatography-High-Resolution Mass Spectrometry [J]. Journal of Agricultural and Food Chemistry,2016,64(35):6783-6790.
[59]Cho J Y, Mizutani M, Shimizu B,etal. Chemical Profiling and Gene Expression Profiling during the Manufacturing Process of Taiwan Oolong Tea “Oriental Beauty” [J]. Bioscience Biotechnology & Biochemistry,2007,71(6):1476.
[60]戚麗,吳慧平,宛曉春,等.茶葉中游離態(tài)和鍵合態(tài)香氣組分對(duì)茶云紋葉枯病致病菌的抑制作用[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2008,31(1):42-46.
[61]Wan D, Kurasawa E, Yamaguchi Y,etal. Analysis of Glycosidically Bound Aroma Precursors in Tea Leaves. 2. Changes in Glycoside Contents and Glycosidase Activities in Tea Leaves during the Black Tea Manufacturing Process[J]. Journal of Agricultural & Food Chemistry, 2001,49(4):1900.
[62]Wang D, Kubota K, Kobayashi A,etal. Analysis of glycosidically bound aroma precursors in tea leaves. 3. Change in the glycoside content of tea leaves during the oolong tea manufacturing process [J]. Journal of Agricultural & Food Chemistry,2001,49(11):5391-5396.
[63]趙飛.茶樹(shù)品種及加工工藝對(duì)茶葉中糖苷類香氣前體的影響[D].杭州:浙江大學(xué).2012.
[64]魏志文,李大祥,張華艷,等.紅綠茶加工工藝對(duì)茶鮮葉香氣和糖苷類香氣前體的影響[J].中國(guó)農(nóng)學(xué)通報(bào),2007,23(11):109-112.
[65]廖書(shū)娟,童華榮.不同茶樹(shù)品種脂肪酸和糖苷類香氣前體分析[J].西南大學(xué)學(xué)報(bào):自然科學(xué)版,2008,30(8):62-66.
[66]Zhang X, Du X. Effects of Exogenous Enzymatic Treatment During Processing on the Sensory Quality of Summer Tieguanyin Oolong Tea from the Chinese Anxi County [J]. Food Technology & Biotechnology,2015,53(2):180.
ResearchAdvancesonGlycoside-boundAromaPrecurosrsinTea
XIANG Li-hui1, LIN Qing-xia1, YU Wen-quan2*, CHEN Lin1*, WANG Zhen-kang1
(1.TeaResearchInstitute,FujianAcademyofAgriculturalSciences,Fu’an,Fujian355015,China;2.FujianAcademyofAgriculturalSciences,Fuzhou,Fujian350002,China)
Enzymatic digestion of glycoside-bound aroma precursors releases volatile components, which contribute significantly to the aromatic quality of tea. The structures, metabolic pathways and analytical methodologies of the glycoside-bound precursors, as well as factors affecting the aroma formation in tea are summarized.
tea; bound aroma precursors; glycosidase; glycosyltransferase
S571.1
A
2096-0220(2017)03-0132-06
2017-07-25初稿;2017-08-25修改稿
福建省科技重大專項(xiàng)專題(2017NZ0002-1);福建省自然科學(xué)基金(2016J01121);福建省屬公益類科研院所科研基本專項(xiàng)(2016R1011-1)。
項(xiàng)麗慧(1991-),女,研究實(shí)習(xí)員,主要從事茶葉生物化學(xué)及茶樹(shù)分子生物學(xué)應(yīng)用基礎(chǔ)研究。E-mail:xlh1991@foxmail.com
*通信作者:余文權(quán)(1972-),男,博士,教授級(jí)高級(jí)農(nóng)藝師,主要從事茶學(xué)研究。E-mail:ywq333@163.com
陳林(1975-),男,博士,副研究員,主要從事茶葉加工、茶葉生物化學(xué)及綜合利用研究。E-mail:chenlin_xy@163.com