国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

航天器捕獲制動(dòng)過(guò)程的質(zhì)量特性在軌辨識(shí)方法研究

2017-12-05 05:28宇,曹
載人航天 2017年6期
關(guān)鍵詞:轉(zhuǎn)動(dòng)慣量估計(jì)值推進(jìn)器

韓 宇,曹 濤

(1.上海航天控制技術(shù)研究所,上海 201400;2.上海市空間智能控制技術(shù)重點(diǎn)實(shí)驗(yàn)室,上海 201400)

航天器捕獲制動(dòng)過(guò)程的質(zhì)量特性在軌辨識(shí)方法研究

韓 宇1,2,曹 濤1,2

(1.上海航天控制技術(shù)研究所,上海 201400;2.上海市空間智能控制技術(shù)重點(diǎn)實(shí)驗(yàn)室,上海 201400)

針對(duì)航天器系統(tǒng)質(zhì)量、質(zhì)心位置和慣性矩陣的在軌辨識(shí)問(wèn)題提出一種解決方法:將系統(tǒng)所有未知參數(shù)以組的形式進(jìn)行劃分,每組未知參數(shù)都可以轉(zhuǎn)化為線性表示形式,從而將一個(gè)非線性系統(tǒng)的參數(shù)辨識(shí)問(wèn)題轉(zhuǎn)化為若干個(gè)線性的子參數(shù)辨識(shí)問(wèn)題;用遞推式最小二乘法對(duì)每個(gè)子參數(shù)辨識(shí)問(wèn)題進(jìn)行求解,在對(duì)某組參數(shù)求解時(shí)所需的其他未知參數(shù)則用其估計(jì)值代替。通過(guò)該方法可將復(fù)雜非線性系統(tǒng)轉(zhuǎn)化為若干線性系統(tǒng)實(shí)現(xiàn)系統(tǒng)參數(shù)在軌辨識(shí)。通過(guò)數(shù)值仿真對(duì)采用推進(jìn)器激勵(lì)的航天器的總質(zhì)量、質(zhì)心位置和慣性矩陣進(jìn)行辨識(shí),驗(yàn)證了方法的有效性。

捕獲制動(dòng);最小二乘;質(zhì)量特性辨識(shí);推進(jìn)器激勵(lì)

1 引言

地外天體探測(cè)變軌捕獲制動(dòng)過(guò)程中,推力施加的效果和姿態(tài)的變化會(huì)使得航天器的質(zhì)量特性發(fā)生變化[1]。進(jìn)行地外天體探測(cè)的航天器往往本身質(zhì)量較大,而捕獲制動(dòng)過(guò)程由于近心點(diǎn)的位置而時(shí)間較短,變軌速度增量大,所以都采用具有推力大、比沖小、推進(jìn)劑消耗多的大推力發(fā)動(dòng)機(jī)進(jìn)行大推力變軌,以保證任務(wù)成功率和對(duì)近心點(diǎn)高度范圍的控制[2]。在發(fā)射前利用地面手段計(jì)算出航天器的質(zhì)量特性僅為近似準(zhǔn)確的標(biāo)準(zhǔn)數(shù)據(jù)[3],當(dāng)航天器運(yùn)行時(shí),燃料消耗、結(jié)構(gòu)變形(如天線等)、以及對(duì)航天器進(jìn)行在軌維修導(dǎo)致的潛在載荷消耗的影響,均會(huì)導(dǎo)致航天器的質(zhì)量特性發(fā)生改變,無(wú)法獲得高精度航天器質(zhì)量特性[4]。因此,對(duì)捕獲制動(dòng)過(guò)程的航天器進(jìn)行高效可靠的在軌辨識(shí)是獲取質(zhì)量特性的重要途徑。

目前為止,有不少學(xué)者就航天器質(zhì)量特性在軌辨識(shí)這一問(wèn)題開(kāi)展研究。早在上世紀(jì)80年代,Bergmann等[5]就基于高斯二階濾波對(duì)航天器質(zhì)量特性進(jìn)行了辨識(shí),然而該算法過(guò)于復(fù)雜不適合在軌應(yīng)用,且辨識(shí)模型中忽略了ω×Iω項(xiàng),影響了模型準(zhǔn)確性。Wilson等[6]將航天器運(yùn)動(dòng)學(xué)近似線性化,利用速率陀螺的測(cè)量數(shù)據(jù),實(shí)現(xiàn)系統(tǒng)的慣量和質(zhì)心位置的在線辨識(shí),但不能保證模型的精確性。國(guó)內(nèi)這一領(lǐng)域的研究不多,且大部分僅能實(shí)現(xiàn)對(duì)單一質(zhì)量特性的辨識(shí)。劉偉霞等[7]通過(guò)星上陀螺測(cè)量角速率信息,基于擴(kuò)展卡爾曼濾波和最小二乘方法,用兩步對(duì)航天器的轉(zhuǎn)動(dòng)慣量完成了辨識(shí);黃河等[8]通過(guò)閉環(huán)控制來(lái)辨識(shí)航天器轉(zhuǎn)動(dòng)慣量;朱東方等[9]基于擴(kuò)展卡爾曼濾波,考慮柔性附件對(duì)航天器姿態(tài)的影響,辨識(shí)了航天器的轉(zhuǎn)動(dòng)慣量。目前航天器質(zhì)量參數(shù)在軌辨識(shí)仍存在兩個(gè)重要問(wèn)題:1)航天器建模的準(zhǔn)確性,辨識(shí)中需考慮系統(tǒng)中存在的耦合情況,以提高辨識(shí)精度;2)需要同時(shí)對(duì)航天器質(zhì)量、質(zhì)心位置、系統(tǒng)慣量進(jìn)行辨識(shí)。

針對(duì)以上問(wèn)題,本文提出一種對(duì)一般非線性系統(tǒng)均有效的在軌辨識(shí)算法:將未知參數(shù)按組劃分,從而將對(duì)未知參數(shù)的在軌辨識(shí)問(wèn)題轉(zhuǎn)化為對(duì)每組參數(shù)的辨識(shí)問(wèn)題。在對(duì)每組參數(shù)的辨識(shí)過(guò)程中應(yīng)用其他參數(shù)的估計(jì)值進(jìn)行計(jì)算。將該方法應(yīng)用于捕獲制動(dòng)過(guò)程中的質(zhì)量參數(shù)在軌辨識(shí)問(wèn)題可以航天器的質(zhì)量參數(shù)劃分為質(zhì)心位置、轉(zhuǎn)動(dòng)慣量矩陣以及轉(zhuǎn)動(dòng)慣量矩陣的逆四組子問(wèn)題,然后通過(guò)推進(jìn)器激勵(lì),利用角速度和線加速度的采樣信息來(lái)進(jìn)行在軌辨識(shí)。

2 辨識(shí)算法

本節(jié)提出一種對(duì)最小二乘估計(jì)的改進(jìn)算法,使其可有效地在軌辨識(shí)一般形式的非線性系統(tǒng),并通過(guò)一個(gè)例子來(lái)說(shuō)明算法特點(diǎn)及普遍性。

線性最小二乘估計(jì)問(wèn)題的標(biāo)準(zhǔn)形式可以記作式(1)[8]:

其中,b為無(wú)噪聲測(cè)量矢量,ε為測(cè)量噪聲矢量,x為待識(shí)別的參數(shù),矩陣A包含了系統(tǒng)已知的變量和參數(shù),處于無(wú)噪聲狀態(tài)。“?”表示無(wú)噪聲情況下相等。最小二乘估計(jì)的解^x可以使得誤差A(yù)^x-b的平方和最小[10],求解如式(2):

大多數(shù)問(wèn)題并不能剛好轉(zhuǎn)化為標(biāo)準(zhǔn)形式Ax=b+ε,如矩陣A中存在噪聲,或待辨識(shí)參數(shù)x并不能如標(biāo)準(zhǔn)形式般在已知參數(shù)A和測(cè)量矢量b間形成線性關(guān)系。以往多為直接將所求問(wèn)題模型轉(zhuǎn)化為最小二乘標(biāo)準(zhǔn)形式,如去掉未知參數(shù)的耦合項(xiàng)等[5]。但對(duì)航天器去掉系統(tǒng)非線性部分會(huì)導(dǎo)致模型不精確。為了更直觀地描述這一情況,下面舉例說(shuō)明??紤]某系統(tǒng)如式(3):

式中,b為測(cè)量值,c1、c2和c12均為已知數(shù)值,x1和x2為待辨識(shí)的未知參數(shù)。轉(zhuǎn)化為辨識(shí)方程令求解??紤]到系統(tǒng)噪聲的存在,元素三會(huì)與元素一和元素二的乘積產(chǎn)生偏差,從而導(dǎo)致系統(tǒng)變形。若忽略元素三的存在,又與原系統(tǒng)不符。

針對(duì)這類問(wèn)題,本文提出一種方案。對(duì)式(3)所示系統(tǒng),可將其視作兩個(gè)方程,第一個(gè)方程中將參數(shù)x2視作已知變量,僅需識(shí)別x1;第二個(gè)方程則正相反。則系統(tǒng)方程轉(zhuǎn)化為式(4):

其中,第一個(gè)方程待辨識(shí)參數(shù)為x1,將x2視作已知參數(shù),取其最優(yōu)化估計(jì)值^x2,第二個(gè)方程則正相反,則可分別求解^x1、^x2。換言之,若對(duì)系統(tǒng)的兩個(gè)參數(shù)^x1、^x2分別求解,考慮每個(gè)參數(shù)的估計(jì)值是充分準(zhǔn)確的,則可在對(duì)某個(gè)參數(shù)辨識(shí)的過(guò)程中共享其余參數(shù)的估計(jì)值。式(4)的辨識(shí)結(jié)果可以通過(guò)遞推最小二乘估計(jì)得出。

為驗(yàn)證該方法可行性,本文進(jìn)行如下仿真:令c1=2、c2=3和c12=5,考慮系統(tǒng)輸入白噪聲的功率為0.1,按照前文所提出的兩種情況進(jìn)行仿真:第一種情況A=[c1,c2,c12],x=第二種情況A=仿真結(jié)果如表1所示。

表1 數(shù)學(xué)仿真結(jié)果Table 1 Results of Mathematical Simulation

由仿真結(jié)果可以看出,待辨識(shí)參數(shù)存在耦合時(shí),采用其他待辨識(shí)參數(shù)的估計(jì)值的算法準(zhǔn)確度更高。求解實(shí)際問(wèn)題時(shí),所建系統(tǒng)模型往往不能完全描述系統(tǒng)真實(shí)工作狀態(tài),常存在一些系統(tǒng)模型中未包含的附加影響。因而若上述方法在計(jì)算過(guò)程中所產(chǎn)生的誤差遠(yuǎn)小于這些附加影響產(chǎn)生的誤差,該算法就值得進(jìn)一步研究。

這種系統(tǒng)參數(shù)的辨識(shí)方法可以拓展應(yīng)用于任意未知參數(shù)x的情況。其中,x對(duì)其中包含的數(shù)組量不限制,而每個(gè)數(shù)組中參數(shù)個(gè)數(shù)也不限制。該辨識(shí)方法對(duì)其中使用的估計(jì)算法不加以限制,上文采用的是遞推最小二乘法,但若采用其它估計(jì)方法也不會(huì)對(duì)系統(tǒng)的結(jié)構(gòu)造成影響。

x中存在多個(gè)數(shù)組的情況下的辨識(shí)方法如式(5)所示,其中下標(biāo)表明該參數(shù)所處的組別,而每組的參數(shù)個(gè)數(shù)不定。

其中,第一行為對(duì)未知參數(shù)x1進(jìn)行辨識(shí)的遞推最小二乘估計(jì)(RLSID)的回歸方程,其余方程均類似。

采用RLSID作為估計(jì)算法時(shí),對(duì)某參數(shù)辨識(shí)時(shí)需要應(yīng)用到其余參數(shù)的估計(jì)值,這就使得結(jié)果的精確度與初值的選擇有著直接的關(guān)系。

考慮實(shí)際應(yīng)用的情況,通常一個(gè)系統(tǒng)待辨識(shí)參數(shù)中每個(gè)參數(shù)的不確定性不同。以航天器為例,其質(zhì)量、質(zhì)心位置參數(shù)、轉(zhuǎn)動(dòng)慣量矩陣對(duì)角線元素等,均會(huì)由于地外天體捕獲過(guò)程中燃料的消耗、推力施加的效果而變化,因而待辨識(shí)。而這幾個(gè)待辨識(shí)參數(shù)中如質(zhì)量主要與燃料消耗相關(guān),可通過(guò)噴氣時(shí)長(zhǎng)等估算,相對(duì)而言不確定性較低;而質(zhì)心位置參數(shù)與燃料消耗、結(jié)構(gòu)變形等情況均相關(guān),相對(duì)更難估算,不確定性較高。由此易知,以質(zhì)量的估計(jì)值來(lái)求解質(zhì)心位置,其結(jié)果的精確性可得到提高,反之則精確性會(huì)降低。由此,對(duì)高不確定性參數(shù)辨識(shí)的過(guò)程中應(yīng)用低不確定性的參數(shù)的估計(jì)值可以提高結(jié)果的精確性。

考慮到測(cè)量值往往與一些參數(shù)更加直接相關(guān),所以本章所提出的這種參數(shù)辨識(shí)方法對(duì)系統(tǒng)更具合理性。例如,在航天器的推進(jìn)器點(diǎn)火時(shí)僅產(chǎn)生力矩,陀螺測(cè)量的轉(zhuǎn)動(dòng)力矩相對(duì)于航天器質(zhì)心是相對(duì)獨(dú)立的。在測(cè)量質(zhì)心位置時(shí),這組數(shù)據(jù)更多的是基于測(cè)量噪聲而非物理現(xiàn)象。因此,在對(duì)質(zhì)心位置辨識(shí)時(shí)采用的測(cè)量數(shù)據(jù)中應(yīng)盡量避免對(duì)陀螺測(cè)量數(shù)據(jù)的使用。由于本章所提出的方法會(huì)對(duì)幾個(gè)待辨識(shí)數(shù)據(jù)分別進(jìn)行處理,可以更加合理的選擇和應(yīng)用測(cè)量數(shù)據(jù)。

如果待辨識(shí)參數(shù)的初值在設(shè)定時(shí)不確定性過(guò)高,當(dāng)測(cè)量噪聲偏高時(shí),可能導(dǎo)致估計(jì)值中的某個(gè)值或某些值的偏離。此時(shí)就彰顯了估計(jì)值獨(dú)立性的重要性,因?yàn)榫邆洫?dú)立性的估計(jì)值可以幫助系統(tǒng)進(jìn)行異常值檢測(cè),并從開(kāi)始進(jìn)行預(yù)防。如果估計(jì)誤差的協(xié)方差設(shè)定合理,且測(cè)量值不受異常值影響,則毋需考慮這一情況。

3 航天器質(zhì)量參數(shù)在軌辨識(shí)

3.1 航天器系統(tǒng)建模

航天器捕獲制動(dòng)過(guò)程包含姿態(tài)運(yùn)動(dòng)和平動(dòng)運(yùn)動(dòng),針對(duì)這兩種情況分別介紹如下。

考慮航天器配備飛輪和推進(jìn)器作為執(zhí)行機(jī)構(gòu),并裝配了三軸速率陀螺和加速度計(jì)測(cè)量提供航天器角速度和線速度。以軌道坐標(biāo)系為參考系,記本體坐標(biāo)系相對(duì)于軌道坐標(biāo)系的軌道角速度為ω,且ω∈,則航天器的姿態(tài)動(dòng)力學(xué)方程可寫(xiě)為式(6):

其中,I∈ RR3×3表示航天器的轉(zhuǎn)動(dòng)慣量矩陣,需要根據(jù)實(shí)際質(zhì)心位置進(jìn)行測(cè)量;τ∈ RR3表示航天器所受到的力矩。

當(dāng)推進(jìn)器作為航天器的執(zhí)行機(jī)構(gòu)時(shí),航天器所受到的總力矩可以記為式(7):

其中,n航天器搭載的推進(jìn)器數(shù)量,Li∈ RR3表示第i個(gè)推進(jìn)器在體坐標(biāo)系下的x-y-z的位置信息;Di∈ RR3表示體坐標(biāo)系下第i個(gè)推進(jìn)器的推力方向的單位矢量;Ski為一個(gè)標(biāo)量,表示第i個(gè)推進(jìn)器的幅值比例參數(shù),包括排氣的影響以及多個(gè)推進(jìn)器同時(shí)點(diǎn)火時(shí)推力下降的影響;Fnom,i為常數(shù),其值對(duì)應(yīng)了相應(yīng)推進(jìn)器名義上提供的推力;Fbias,i表示第i個(gè)推進(jìn)器的恒定非名義推力;Frandom,i表示第i個(gè)推進(jìn)器的脈沖穩(wěn)定非名義推力;Tki值為0或1,表示在k時(shí)刻第i個(gè)推進(jìn)器是否點(diǎn)火的有效值;τdisturb∈ RR3表示由外界干擾源(如拖拽、重力梯度、CMG、RWA等)作用于航天器的所有力矩的總和。

考慮航天器配備加速度計(jì),可以測(cè)得航天器在本體坐標(biāo)系下的平移加速度為x¨body,且x¨body∈,則航天器的平動(dòng)方程可寫(xiě)為式(8):

綜上,由推進(jìn)器作為執(zhí)行器的航天器轉(zhuǎn)動(dòng)方程和平動(dòng)方程可記為式(10)、(11):

3.2 質(zhì)量參數(shù)辨識(shí)

航天器轉(zhuǎn)動(dòng)方程中待辨識(shí)的參數(shù)包括質(zhì)量m、質(zhì)心位置(包含L)、轉(zhuǎn)動(dòng)慣量矩陣以及其逆。但是這些參數(shù)之間相互存在耦合運(yùn)算,且無(wú)法直接簡(jiǎn)化為線性形式,即Ax?b。通過(guò)前一節(jié)所提出的參數(shù)辨識(shí)算法,將航天器質(zhì)量辨識(shí)問(wèn)題轉(zhuǎn)化為幾個(gè)閉環(huán)的子參數(shù)辨識(shí)問(wèn)題,易保證每個(gè)子問(wèn)題都是可以簡(jiǎn)化為線性形式并通過(guò)RLSID進(jìn)行求解。

根據(jù)我國(guó)國(guó)內(nèi)官方報(bào)道以及巴基斯坦國(guó)內(nèi)的報(bào)道,以及出臺(tái)的相關(guān)安全報(bào)告中,很少有中國(guó)人員(投資人員、項(xiàng)目工人)在巴基斯坦受到恐怖組織或者恐怖分子的襲擊,僅有的專門(mén)針對(duì)中國(guó)在巴投資的人員的襲擊更是為數(shù)不多。從2004年以來(lái),我在巴基斯坦利益受到20多起恐怖襲擊,僅僅是個(gè)位到十位的變化(發(fā)生次數(shù))。

參數(shù)辨識(shí)過(guò)程中的初始值需選擇最優(yōu)估計(jì)值(如標(biāo)稱值),對(duì)每個(gè)參數(shù)的估計(jì)誤差的協(xié)方差矩陣的設(shè)定會(huì)依據(jù)初始標(biāo)稱值的可信度。RLSID在更新的過(guò)程中會(huì)考量敏感器誤差協(xié)方差矩陣,每個(gè)子辨識(shí)問(wèn)題都需要應(yīng)用到其他參數(shù)的最新估計(jì)值,例如在對(duì)質(zhì)心位置進(jìn)行估計(jì)時(shí),需要應(yīng)用到轉(zhuǎn)動(dòng)慣量的最新估計(jì)值。質(zhì)量參數(shù)辨識(shí)的優(yōu)化通過(guò)對(duì)系統(tǒng)方程中其他對(duì)估計(jì)值具備顯著影響的參數(shù)的拓展來(lái)實(shí)現(xiàn)。

影響航天器質(zhì)量特性的一些參數(shù)可以準(zhǔn)確得到,如燃料的損耗變化,該參數(shù)可以由點(diǎn)火時(shí)間(Burn-Time-Integration,BTI)計(jì)算得到。根據(jù)每個(gè)推進(jìn)器的BTI數(shù)據(jù)計(jì)算其耗損的燃料,綜合所有推進(jìn)器的燃料損耗可以推算航天器質(zhì)量、質(zhì)心位置、轉(zhuǎn)動(dòng)慣量等質(zhì)量特性。然而航天器質(zhì)量特性估計(jì)也需要考慮BTI存在偏差的情況,BTI的偏差在質(zhì)量參數(shù)辨識(shí)過(guò)程中可以拓展為一個(gè)或幾個(gè)未知參數(shù)的變化。

僅受力矩作用時(shí),航天器僅存在轉(zhuǎn)動(dòng)運(yùn)動(dòng)而不存在平動(dòng)運(yùn)動(dòng),此時(shí)僅需測(cè)得的航天器角速度便可辨識(shí)得到航天器的轉(zhuǎn)動(dòng)慣量。此時(shí)轉(zhuǎn)動(dòng)慣量的辨識(shí)結(jié)果是相對(duì)獨(dú)立的,由第2節(jié)可知,這種相對(duì)獨(dú)立的辨識(shí)結(jié)果更加精確,因此轉(zhuǎn)動(dòng)慣量的估計(jì)值在航天器僅受力矩作用時(shí)進(jìn)行更新。而若要辨識(shí)航天器的質(zhì)心位置,航天器必受到平移的力因此質(zhì)心位置的估計(jì)值僅在受到平移力時(shí)更新。

下文提出一種估計(jì)算法,通過(guò)陀螺提供的角速度測(cè)量信息,實(shí)現(xiàn)對(duì)航天器轉(zhuǎn)動(dòng)慣量矩陣、轉(zhuǎn)動(dòng)慣量的逆矩陣以及質(zhì)心位置的在軌辨識(shí)。質(zhì)心位置C決定了航天器體坐標(biāo)系的原點(diǎn),也決定了各個(gè)推進(jìn)器在體坐標(biāo)系的位置,即L的值。同樣的,質(zhì)心位置的偏差ΔC,即實(shí)際質(zhì)心位置C與標(biāo)稱質(zhì)心位置Cnom之間的差也會(huì)對(duì)L產(chǎn)生影響。Cnom的取值可以確定,包括由綜合點(diǎn)火時(shí)間計(jì)算而得的相應(yīng)變化值;Lnom的值可以由此計(jì)算而得;C、L和ΔC并不能準(zhǔn)確得知;可以由參數(shù)辨識(shí)算法得到估計(jì)值,從而計(jì)算得到和。對(duì)轉(zhuǎn)動(dòng)慣量矩陣和轉(zhuǎn)動(dòng)慣量的逆矩陣的求解與其類似。如式(12)~(15)所示。

應(yīng)用前文給出的參數(shù)辨識(shí)算法,將轉(zhuǎn)動(dòng)方程(10)轉(zhuǎn)化為三個(gè)子方程,每個(gè)子方程中包含一個(gè)待辨識(shí)參數(shù)(C、I、I-1),并化簡(jiǎn)為可以進(jìn)行最小二乘估計(jì)進(jìn)行求解的標(biāo)準(zhǔn)形式。三個(gè)子方程中相應(yīng)的變量A、x和b分別如式(16)~(18)所列:

僅用陀螺測(cè)量值對(duì)質(zhì)心位置估計(jì)的標(biāo)準(zhǔn)形式的方程變量為式(19):

若將矢積量作為干擾項(xiàng)處理,得到的轉(zhuǎn)動(dòng)慣量逆矩陣的估計(jì)的標(biāo)準(zhǔn)形式方程為式(21),轉(zhuǎn)動(dòng)慣量矩陣的估計(jì)值標(biāo)準(zhǔn)形式為式(22):

但若將矢積量作為干擾處理,則需要盡可能的剝離矢積量與待辨識(shí)參數(shù)之間的聯(lián)系,而不能對(duì)矢積量加以應(yīng)用。而考慮航天器模型中矢積量的存在是有重要意義的,因此,下面給出將矢積量作為相關(guān)項(xiàng)處理,所得到的轉(zhuǎn)動(dòng)慣量矩陣的估計(jì)的標(biāo)準(zhǔn)形式方程如式(23):

考慮航天器慣量特性直接與回轉(zhuǎn)量相關(guān),且可依據(jù)航天器轉(zhuǎn)動(dòng)更新測(cè)量值,因此辨識(shí)航天器的慣量特性時(shí),首選式(23)。然而,如果航天器的對(duì)稱性或角速率特性使回轉(zhuǎn)量可忽略,式(23)就不具備特別的運(yùn)算優(yōu)勢(shì)了。

上文所述的方程中均包含其他變量的估計(jì)值。因此,當(dāng)k取值發(fā)生變化時(shí),每個(gè)估計(jì)值均需要更新,并相應(yīng)更新標(biāo)準(zhǔn)形式方程中矩陣Ak、向量bk,從而依據(jù)RLSID實(shí)時(shí)求解。

4 仿真驗(yàn)證

為對(duì)所提出的方法進(jìn)行驗(yàn)證,在Matlab/Simulink中建立了航天器的動(dòng)力學(xué)模型。設(shè)定航天器的待辨識(shí)質(zhì)量特性為:

航天器裝配的12個(gè)推進(jìn)器布局如圖1,圖中的箭頭方向?yàn)閲姎馐噶糠较?,與產(chǎn)生的推力方向相反。各推進(jìn)器的幅值均為2 N,安裝位置及推力矢量方向如表1。同時(shí)配備了陀螺儀和加速度計(jì)測(cè)量系統(tǒng)的角加速度和線加速度。

模擬航天器地外天體捕獲制動(dòng)過(guò)程開(kāi)展仿真,仿真時(shí)間為100 s,初始姿態(tài)機(jī)動(dòng),機(jī)動(dòng)過(guò)程航天器的姿態(tài)由=[000]T轉(zhuǎn)為=[6°-7°8°]T,待姿態(tài)穩(wěn)定后開(kāi)始參數(shù)辨識(shí)階段,在(20,50)s以推進(jìn)器激勵(lì),推進(jìn)器的作用順序?yàn)椋篺1,f2→f7,f8→f3,f9→f5,f11→f4,f12→f6,f10。各推進(jìn)器均以最大推力工作,每對(duì)推進(jìn)器作用時(shí)間為5 s,總機(jī)動(dòng)時(shí)間為30 s。由表2可知,該過(guò)程中的航天器僅受力矩作用,航天器的慣性矩陣辨識(shí)在這段時(shí)間進(jìn)行,在(50,60)s時(shí)間段推力器作用順序?yàn)閒1→f2,每個(gè)推進(jìn)器作用時(shí)間為5 s。這段時(shí)間內(nèi)航天器受力作用,可以對(duì)航天器質(zhì)量及質(zhì)心位置進(jìn)行辨識(shí)。

表2 推進(jìn)器安裝位置及推力矢量Table 2 The positions and vectors of thrusters

仿真過(guò)程中的航天器角速度和歐拉角變化情況分別如圖2、圖3所示,可見(jiàn)航天器的姿態(tài)和角速度在機(jī)動(dòng)過(guò)程后可達(dá)到穩(wěn)定狀態(tài),在參數(shù)辨識(shí)階段,航天器的角速度量級(jí)較小,有利于提高辨識(shí)精度。

各質(zhì)量特性的辨識(shí)誤差如表2所示,質(zhì)量和質(zhì)心位置的辨識(shí)精度可達(dá)10-3,慣性矩陣的辨識(shí)精度可達(dá)10-4。

表3 質(zhì)量特性辨識(shí)誤差Table 3 Error of mass characteristics identification

5 結(jié)論

本文基于最小二乘估計(jì)算法提出的在軌辨識(shí)方法,通過(guò)遞歸的方法減小各個(gè)待辨識(shí)參數(shù)間的耦合問(wèn)題,可辨識(shí)所有質(zhì)量特性參數(shù),在驗(yàn)證算例中質(zhì)量和質(zhì)心位置的辨識(shí)精度可達(dá)10-3量級(jí),慣性矩陣的辨識(shí)精度可達(dá)10-4量級(jí)。

本文的仿真過(guò)程主要目的是對(duì)所提出的辨識(shí)方法進(jìn)行原理性驗(yàn)證,因此沒(méi)有引入測(cè)量誤差。未來(lái)將進(jìn)一步考慮工程性應(yīng)用問(wèn)題,根據(jù)實(shí)際航天器研制任務(wù)中的具體情況,加入測(cè)量誤差,以對(duì)算法的性能進(jìn)行更充分的驗(yàn)證,并加以工程實(shí)現(xiàn)。

(References)

[1] 麻永平.繞月探測(cè)飛行控制[M].北京:國(guó)防工業(yè)出版社,2010.Ma Yongping.Spacecraft Control of Circumlunar Exploration[M].Beijing:National Defense Industry Press,2010.(in Chinese)

[2] 劉玥,荊武興.利用虛擬衛(wèi)星法求解火星探測(cè)器近火點(diǎn)制動(dòng)策略[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2013,45(1):14-18.Liu Yue,Jing Wuxing.Mars probe near-center braking strategy using virtual satellite method[J].Journal of Harbin Institute of Technology,2013,45(1):14-18.(in Chinese)

[3] 王洪鑫,徐在峰,趙科,等.航天器質(zhì)量特性測(cè)試技術(shù)新進(jìn)展[J].航天器環(huán)境工程,2011,28(2):171-174.Wang Hongxin,Xu Zaifeng,Zhao Ke,et.Recent advances of mass property measuring technology for spacecraft[J].Spacecraft Environment Engineering,2011,28(2):171-174.(in Chinese)

[4] Mohan S,Miller D W.Operational impact of mass property update for on-orbit assembly[C]//AIAA SpaceOps 2006 Conference,Rome,Italy,AIAA 2006-5658,June 19-23,2006.

[5] Bergmann E V,Walker B K,Levy D R.Mass property estimation for control of asymmetrical satellites[J].Journal of Guidance,Control,and Dynamics,1987,10(2):483-492.

[6] Wilson E,Lages C,Mah R.On-line gyro-based,mass-property identification for thruster-controlled spacecraft using recursive least squares[C]//The 45th Midwest Symposium on Circuits and Systems,Tulsa,Oklahoma,Aug.4-7,2002.

[7] 劉偉霞,熊智,郁豐,等.組合航天器轉(zhuǎn)動(dòng)慣量在軌兩步辨識(shí)標(biāo)定[J].中國(guó)空間科學(xué)技術(shù),2013(2):32-39.Liu Weixia,Xiong Zhi,Yu Feng,et al.On-orbit calibration technique based on the two-step moment of inertia identification of the combination spacecraft[J].Chinese Space Science and Technology,2013(2):32-39.(in Chinese)

[8] 黃河,周軍,劉瑩瑩.航天器轉(zhuǎn)動(dòng)慣量在線辨識(shí)[J].系統(tǒng)仿真學(xué)報(bào),2010,22(5):1117-1120.Huang He,Zhou Jun,Liu Yingying.On-line identification of spacecraft moment of inertia[J].Journal of System Simulation,2010,22(5):1117-1120.(in Chinese)

[9] 朱東方,王衛(wèi)華,宋婷,等.復(fù)雜撓性航天器轉(zhuǎn)動(dòng)慣量在線辨識(shí)算法研究[J].上海航天,2015,32(5):1-8.Zhu Dongfang,Wang Weihua,Song Ting,et al.On-line identification of flexible spacecraft moment of inertia[J].Aerospace Shanghai,2015,32(5):1-8.(in Chinese)

[10] 石賢良,吳成富.基于MATLAB的最小二乘法參數(shù)辨識(shí)與仿真[J].微處理機(jī),2005,12(6):44-46.Shi Xianliang,Wu Chengfu.Rls parameter identification and emulate based on Matlab/Simulink[J].Microprocessors,2005,12(6):44-46.(in Chinese)

[11] Xiong L,Ma H D,F(xiàn)ang H Z,et al.Anomaly detection of spacecraft based on least squares support vector machine[C]//Prognostics and System Health Management Conference(PHM-Shenzhen),2011.IEEE,2011:1-6.

[12] Milhano T,Sequeira J,Di Sotto E.Spacecraft parameter identification using S-estimators[C]//9th International ESA Conference on Guidance,Navigation&Control Systems,O-porto,Portugal.June 2014.

[13] Gunnarsson S.Combining tracking and regularization in recursive least squares identification[C]//Decision and Control,1996.,Proceedings of the 35th IEEE Conference on.IEEE,1996,3:2551-2552.

Research on Identification of Mass Characteristics of Spacecraft during Capture Brake

HAN Yu1,2,CAO Tao1,2
(1.Shanghai Aerospace Control Technology Institute,Shanghai 201400,China;2.Shanghai Key Laboratory of Aerospace Intelligent Control Technology,Shanghai 201400,China)

Targeting the on-orbit identification of the system mass,the position of the center of mass and the inertia matrix of a spacecraft,a method was proposed in this paper for identifying the unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented.In this method,the vector of the unknown parameters was segmented into a plurality of groups where each individual group of the unknown parameters could be isolated linearly by manipulation of the said equations.Multiple concurrent and independent recursive least squares identification of each said group run,

treating other unknown parameters appearing in their regression equation as if they were known perfectly,with said values provided by recursive least squares estimation from the other groups,thereby enabling the use of fast,compact,efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches.The validity of this method was verified by numerical simulation in identification of the total mass,the position of the center of mass and inertia matrix for a spacecraft with thruster actuation.

capture brake;least square;mass characteristics identification;thruster actuation

V412.4;V448.25

A

1674-5825(2017)06-0724-07

2017-02-09;

2017-09-18

載人航天預(yù)先研究項(xiàng)目(060101)

韓宇,女,博士,工程師,研究方向?yàn)楹教炱髯藨B(tài)控制、容錯(cuò)控制。E-mail:tabubu@126.com

(責(zé)任編輯:龍晉偉)

猜你喜歡
轉(zhuǎn)動(dòng)慣量估計(jì)值推進(jìn)器
均質(zhì)剛體轉(zhuǎn)動(dòng)慣量的幾種算法
云上黑山羊生長(zhǎng)曲線擬合的多模型比較
地震動(dòng)非參數(shù)化譜反演可靠性分析
風(fēng)機(jī)用拖動(dòng)大轉(zhuǎn)動(dòng)慣量電動(dòng)機(jī)起動(dòng)過(guò)程分析
變速箱中不同輪系等效轉(zhuǎn)動(dòng)慣量的計(jì)算方法
基于CFD扇翼推進(jìn)器敞水性能預(yù)報(bào)分析
EM算法在閃爍噪聲分布參數(shù)估計(jì)中的應(yīng)用
如何快速判讀指針式壓力表
發(fā)揮考核“指揮棒”“推進(jìn)器”作用
鉆井平臺(tái)傾角全回轉(zhuǎn)推進(jìn)器優(yōu)勢(shì)概述