方 幸,李世昌,徐 帥
肌肉因子與運動對骨骼的作用
方 幸1,2,李世昌1,2,徐 帥1,2
肌肉組織已經(jīng)被認定為內(nèi)分泌器官,其分泌的活性分子——“肌肉因子”備受關(guān)注。從早期胚胎發(fā)育到衰老或退化,肌肉和骨骼在形式和功能上都緊密相關(guān),研究肌肉對骨骼的非機械力學作用越來越多。肌肉組織能分泌多種肌肉因子,包括IGF-1、FGF-2、Myostatin、Irisin、IL-6、IL-7、IL-15、BMPs、OGN、FAM5C等。這些分泌因子都對骨組織的各類細胞(如成骨細胞、破骨細胞和軟骨細胞)產(chǎn)生不同的作用。運動可以影響肌肉因子的表達水平,進而調(diào)控骨代謝。與年齡相關(guān)的肌肉衰減(Sarcopenia)和骨質(zhì)疏松(Osteoporosis)是困擾老年人群健康的兩大問題。將肌肉和骨骼視為一個系統(tǒng),稱為肌骨系統(tǒng),并探討該系統(tǒng)內(nèi)部的生物機制可能是解決這些問題的關(guān)鍵所在。進一步揭示肌肉因子介導肌肉和骨骼之間的“Crosstalk”的多條路徑,將為運動防治肌肉衰減和骨質(zhì)疏松提供新的視角。
肌肉因子;骨代謝;運動
肌肉和骨骼都來源于中胚層,同屬運動系統(tǒng),二者又如此相互鄰近,無論在遺傳學、生理學,還是在解剖學上,這兩種組織之間都存在著不可分割的密切關(guān)系。過去,肌肉和骨骼的關(guān)系主要被視為機械力學性質(zhì)的關(guān)系,其中,肌肉作為機械負荷的提供者,骨骼作為肌肉的被作用者。已有研究已經(jīng)支持了骨骼肌的機械力學刺激能夠調(diào)節(jié)骨代謝。然而,近來研究者發(fā)現(xiàn),肌肉和骨骼之間除了機械耦合外,還有生物合成代謝上的共存和適應(yīng)關(guān)系,如,骨骼達到峰值骨之前會緊接著加快增加肌肉的質(zhì)量,而骨量的丟失會伴隨著肌肉的萎縮[73];相反,因肌肉麻痹造成肌肉質(zhì)量減少時,會明顯誘導皮質(zhì)骨骨量快速丟失[85];機體會有共同的代謝信號導致肌肉衰減和骨質(zhì)疏松同時或相繼的發(fā)生[46]。所以,肌骨系統(tǒng)比單獨的肌肉器官和骨骼器官要復雜得多,這種肌肉和骨骼在機械上的“couple”關(guān)系和生化上的“crosstalk”關(guān)系是肌骨系統(tǒng)間復雜關(guān)系所在。
在過去的10年,骨骼肌已經(jīng)被研究者認定為內(nèi)分泌器官。肌肉能夠以自分泌、旁分泌和內(nèi)分泌的方式調(diào)節(jié)著其他的遠端器官。有研究者將這些肌源性分泌因子定義為“肌肉因子(Myokines)”[66,69],但是,肌肉因子并不都是肌肉組織特異性的。很多的骨折愈合實驗結(jié)果表明,肌肉組織在骨折愈合中扮演著不可或缺或不可替代的角色:1)有完整的肌肉組織覆蓋在骨折位點上的修復比受損的肌肉組織效果好[84];2)即使骨折位點上覆蓋有豐富血管的筋膜皮膚,也沒有完整的肌肉組織修復效果好[35];3)將肌肉植入骨膜可以直接刺激新骨的生成[89]。因此,肌肉組織本身對于骨形成和骨修復具有積極作用,肌肉旁分泌物質(zhì)對于骨骼具有重要作用[21]。Hamrick等[29,30,32]人證實了肌肉作為分泌器官分泌的生長因子以旁分泌方式作用于骨骼,這可能是骨骼肌收縮產(chǎn)生的機械信號轉(zhuǎn)換成生物信號的一種方式,且骨骼肌是骨骼局部生長因子的主要來源。肌肉分泌的肌肉因子包括胰島素樣生長因子1(Insulin-like Growth Factor-I,IGF-1)、成纖維細胞生長因子2(Fibroblast Growth Factor-2,F(xiàn)GF-2)、肌肉生長抑制素(Myostatin)、鳶尾素(Irisin)、白介素6(Interleukin-6,IL-6)、IL-7、IL-15、骨形成蛋白(Bone Morphogenetic Protein,BMPs)、Osteoglycin(OGN)、FAM5C以及其他分泌因子,這些因子對骨代謝具有積極或消極的影響[47](圖1)。本文將闡述肌肉因子對骨代謝的作用機制,以及希望能夠選擇出一些關(guān)鍵的肌肉因子作為肌肉衰減和骨質(zhì)疏松的實驗檢測和運動干預(yù)的生物標記,從而提高實驗檢測和運動處方的精確性和有效性。
圖 1 肌肉因子對骨代謝的積極或消極影響示意圖 [47]Figure 1. Myokines Positively or Negatively A ff ecting Bone Metabolism
肌肉因子中的IGF-1和FGF-2是兩個重要的生骨因子[69],由肌管分泌且在肌肉組織中大量存在。Hamrick等[32]人運用免疫組織化學技術(shù)和ELISA技術(shù)發(fā)現(xiàn):在骨骼肌肉交界面上,肌纖維直接附著在骨膜表面,且骨膜表面存在著IGF-1和FGF-2以及它們倆的受體;在肌肉勻漿中,IGF-1含量明顯比FGF-2高,而損傷的肌肉卻會明顯增加FGF-2的分泌并減少IGF-1的產(chǎn)生(圖2)。
已有研究表明,IGF-1與肌肉質(zhì)量增加相關(guān),IGF-1通過激活PI3K/Akt/mTOR信號通路和PI3K/Akt/GSK3信號通路參與骨骼肌肥大形成過程。即使循環(huán)中的IGF-1和骨骼自分泌的IGF-1能夠維持骨密度和促進骨形成,但是,肌源性的IGF-1在肌肉和骨骼“crosstalk”中扮演著重要角色[8]。小鼠肌肉中過表達IGF-1會導致肌肉質(zhì)量增加和皮質(zhì)骨骨量增加,而與正常小鼠相比,敲除IGF-1基因的小鼠表現(xiàn)出骨小梁減少[77]。在骨骼肌中IGF-1會與IGF結(jié)合蛋白(IGF Bonding Protein,IGFBPs)結(jié)合,如IGFBP5能促進骨形成作用,這是因為IGF-1與IGFBP5結(jié)合能夠通過PI3K/Akt信號通路提高成骨細胞的活性[77]。研究發(fā)現(xiàn),血清中IGFBP2的水平與骨密度(BMD)呈負相關(guān)[55]。此外,已有研究發(fā)現(xiàn),敲除IGF-1基因的骨細胞在接受機械負荷刺激后會使得Wnt/β-catenin信號通路相關(guān)蛋白的表達減少[28],這表明了IGF-1可能通過調(diào)節(jié)Wnt信號通路使得骨組織不斷地對增加的機械負荷產(chǎn)生適應(yīng)(圖3)。Lang 等人[54]在論文中表述過IGF-1是能夠作用于肌肉組織和骨骼組織的激素,并且與男性骨質(zhì)疏松和肌衰減密切相關(guān)。另外,Choi[40]在對肌肉因子IGF-1的研究過程中發(fā)現(xiàn),肌肉因子IGF-1能夠以旁分泌形式直接作用于骨骼,且在機體生長旺盛期間作用十分明顯,而在生長成熟后其作用就不那么明顯。因此,有研究者認為,IGF-1是一種能夠共同促進成骨細胞和成肌細胞(尤其是衛(wèi)星細胞)增殖分化的肌肉因子[8,78,83]。
成纖維細胞生長因子(Fibroblast Growth Factor,F(xiàn)GFs)是調(diào)控骨形成和成骨細胞活性的重要因子,其家族有23個成員,尤以FGF-2最為重要。FGF-2是廣泛存在于機體組織的一種多聚肽,為強烈的有絲分裂劑。早期研究已證實,通過全身或局部給予FGF-2可加快生長發(fā)育中大鼠的骨膜內(nèi)骨形成[13],而FGF-2的過表達會增加大鼠顱蓋骨的厚度[15]。Kodama等[52]人研究表明,F(xiàn)GF-2/FGF-2R信號可通過激活BMP2和Runx2通路調(diào)控骨組織合成代謝,使骨再生能力增強。在肌肉中,F(xiàn)GF-2通過活化蛋白激酶MAPK/ERK通路促進細胞增殖,是一種重要的肌肉生長因子(圖3)。FGF-2通過經(jīng)典的胞吐作用從細胞內(nèi)輸出,而機械誘導細胞膜破裂是釋放細胞內(nèi)FGF-2的一種方式。研究發(fā)現(xiàn),在培養(yǎng)液中肌管的FGF-2含量隨著機械拉伸而增加,離心拉長收縮對于肌細胞釋放存儲于胞液中的FGF-2尤為明顯[30]。由于FGF-2對于肌肉和骨骼的生長有積極的作用,因此,肌肉離心收縮發(fā)生的肌纖維膜的破損可以增加FGF-2的釋放,這可能是肌肉作用于骨骼的機械信號轉(zhuǎn)化成生化信號的一種機制。
肌肉生長抑制素(Myostain /GDF-8),簡稱為肌抑素,主要由肌肉組織分泌。所以,肌抑素可以真正意義上被認為是“肌肉因子”。顧名思義,肌抑素對骨骼肌的生長具有負調(diào)控作用,其作用機制是一方面通過上調(diào)細胞周期依賴性蛋白激酶抑制劑(p21)表達水平來抑制成肌細胞增殖;另一方面,肌抑素通過激活Smad3,從而增加Smad3與MyoD結(jié)合,抑制MyoD的活性和表達,最終抑制成肌細胞的分化[2]。當肌肉廢用萎縮時,與癌癥相關(guān)的惡病質(zhì)以及糖皮質(zhì)激素水平的增加都可見肌抑素的表達水平提高;相反, 肌抑素缺乏會引起肌肉質(zhì)量的增加(圖3)。
圖 2 肌肉因子IGF-1、FGF-2和運動對骨的影響 [32]Figure 2. The E ff ects of Myokines IGF-1 and FGF-2 and Exercise on Bone
圖 3 肌肉因子IGF-1/FGF-2/肌肉生長抑制素/鳶尾素作用于肌骨系統(tǒng)的分子機制示意圖 [77]Figure 3. Myokines IGF-1 / FGF-2 / Myostain / Irisin on Musculoskeletal System
在過去的10年中,Hamrick等[33]人研究發(fā)現(xiàn),肌抑素缺失的小鼠經(jīng)過運動訓練后肌肉質(zhì)量和骨骼強度都比野生型小鼠大;肌抑素缺失小鼠的骨髓間充質(zhì)干細胞(bone marrow-derived mesenchymal stem cells,BMSCs)向成骨細胞分化的能力,會隨著強度的增加而增強[34];而使用重組前肽阻斷肌抑素可以促進肌肉再生和骨折愈合[31]。與體內(nèi)研究結(jié)果相一致,Elkasrawy 等[24]人在體外研究中發(fā)現(xiàn),肌抑素抑制BMSCs的增殖和軟骨細胞的分化。該研究者還研究發(fā)現(xiàn),肢體創(chuàng)傷導致肌纖維破壞會使得肌抑素表達增加,局部使用外源性的肌抑素會加劇肌肉纖維化而抑制骨骼的修復[26]。該研究結(jié)果和上述的骨折實驗結(jié)果相一致,完整的肌肉塊能夠促進骨折愈合,而受損的肌肉塊對于骨折的修復沒有明顯的效果。Hamrick和Elkasrawy[25]一致認為,肌抑素是肌肉和骨骼共同的調(diào)控因子,在調(diào)控肌肉質(zhì)量和骨密度中發(fā)揮關(guān)鍵的作用。因此,Karasik等[48]人研究認為,肌抑素基因是與肌肉衰減和骨質(zhì)疏松相關(guān)的共同基因。
最近有研究表明,肌抑素可能通過干擾破骨細胞形成,從而治療類風濕性關(guān)節(jié)炎的潛在靶點,因為在體外研究中發(fā)現(xiàn),肌抑素能夠通過激活T細胞核因子的轉(zhuǎn)錄因子Smad2,從而明顯增強介導破骨細胞形成的RANKL受體活性[19],導致肌抑素能夠促進破骨細胞的分裂而提高骨吸收作用。在研究運動調(diào)控肌抑素表達的實驗中發(fā)現(xiàn),8周跑臺運動訓練能夠促進大鼠心肌細胞對運動產(chǎn)生適應(yīng)性肥大,其機制是通過抑制肌抑素 mRNA和蛋白表達從而解除其對心肌生長的負調(diào)控作用[3];急性運動會使得肌抑素mRNA和IGF-1 mRNA表達水平發(fā)生相反的變化,前者表達增加,后者下降[1];抗阻訓練可以減少肌抑素 mRNA的表達[70]。因此,肌肉的離心運動以及肌肉損傷可能通過釋放肌抑素抑制骨形成。
白介素6、7、15(IL-6、IL-7、IL-15)都被認為是肌肉因子,參與肌骨系統(tǒng)間的生化作用[37,68,72]。已有研究證實IL-6能夠影響骨代謝:在體外研究發(fā)現(xiàn),肌管受到機械負荷后會通過釋放IL-6促進破骨細胞形成[44];IL-6與可溶性IL-6受體結(jié)合,進而刺激骨吸收作用,這可能與絕經(jīng)后骨質(zhì)疏松的發(fā)病機制有關(guān)[6];IL-6在生理條件下對于骨重建不是必需的,但是,在骨轉(zhuǎn)換率高的情況下對于成骨細胞形成具有重要作用[27];IL-6能夠促進成骨細胞早期分化,而IL-6缺失的小鼠表現(xiàn)出低骨量的狀態(tài),這表明了IL-6可能是促進成骨細胞形成的調(diào)控因子[47]。最初,Pedersen 等人[67,68]已經(jīng)宣布IL-6與運動密切相關(guān),因為在運動過程中肌肉會表達并釋放IL-6,運動過后檢測到血清中IL-6水平提高,I型肌纖維(慢?。┲蠭L-6表達水平也較高。肌肉收縮會誘導IL-6 mRNA水平提高[50,76],而如果肌糖原儲存低[14],運動會進一步增強IL-6的轉(zhuǎn)錄率。一次急性運動停止后,機體即刻IL-6濃度達到峰值水平,但是很快就會恢復到運動前水平。由于IL-6是一種經(jīng)典的炎性細胞因子,所以最初認為運動誘導IL-6釋放歸因于肌肉損傷。但是,已有很多研究表明肌肉中大量IL-6的產(chǎn)生不依賴于肌肉損傷。
IL-7是T細胞和B細胞生長過程中的關(guān)鍵細胞因子,并且在肌肉組織中表達活躍[37]。IL-7能對成骨細胞和破骨細胞產(chǎn)生影響[4,86];成骨細胞特異性過表達IL-7,能夠挽救IL-7缺陷雌性小鼠的骨質(zhì)減少;IL-7可以調(diào)節(jié)由于雌激素缺乏誘導的骨量丟失[91]。Haugen等[37]人研究發(fā)現(xiàn),經(jīng)過11周力量訓練后檢測到IL-7表達增加了3~4倍。
IL-15是近來發(fā)現(xiàn)的新肌肉因子,不僅能夠促進骨骼肌蛋白合成,還能夠影響骨代謝和脂肪代謝。Quinn等[72]人研究證實,小鼠過表達IL-15表現(xiàn)出脂肪質(zhì)量的減少和骨量的增加。隨著抗阻訓練量的增加,骨骼肌中IL-15的表達量會上升[60]。
鳶尾素(Irisin)是新發(fā)現(xiàn)的運動介導調(diào)控能量代謝的肌肉因子,也是過氧化物酶體增殖物激活受體γ輔激活因子(PGC-1α)依賴性肌肉因子[9]。PGC-1α能激活肌肉中Ⅲ型纖連蛋白組件包含蛋白5(Fibronectin Type Ⅲ Domain-Containing Protein 5,F(xiàn)NDC5)基因的表達,F(xiàn)NDC5經(jīng)蛋白水解酶水解后形成可分泌的多肽片段——鳶尾素,最后釋放進入血液循環(huán)。在骨代謝中,鳶尾素對成骨細胞分化有積極作用[16],而對破骨細胞分化具有抑制作用[39]。Qiao等[71]人在體外培養(yǎng)成骨細胞揭示,鳶尾素能夠通過P38/MAPK/ERK信號通路直接作用于成骨細胞,增強堿性磷酸酶(Alkaline Phosphatase,ALP)活性和鈣離子沉積,從而促進成骨細胞增殖分化及礦化(圖3)。Zhang等[90]人研究指出,鳶尾素可以通過抑制RANKL受體活性或者抑制活化T細胞的核因子(NFATc1)通路來抑制破骨細胞分化。另外,在體內(nèi)的研究發(fā)現(xiàn),對雄性小鼠進行重組鳶尾素給藥后,鳶尾素主要通過刺激骨形成和減少破骨細胞的數(shù)量來增加皮質(zhì)骨骨量以及提高骨強度[17]。Palermo[63]和Anastasilakis[5]都認為,骨質(zhì)疏松性骨折與鳶尾素表達水平低相關(guān)。因此,這些發(fā)現(xiàn)表明了鳶尾素可能是評估肌骨系統(tǒng)紊亂的重要肌肉因子[18,64]。目前研究表明,運動可能通過激活PGC-1α轉(zhuǎn)錄因子、促進肌肉中FNDC5的表達以及激活某種蛋白水解酶參與鳶尾素的表達調(diào)控。然而,鳶尾素對運動訓練的應(yīng)答反應(yīng)依賴于運動強度、運動時間、運動方式以及訓練狀態(tài)[20,53,58,61]。
骨形成蛋白(Bone Morphogenetic Protein,BMPs)也是在肌肉組織中釋放,具有自分泌、旁分泌以及內(nèi)分泌生理功能的因子,它們中除了BMP-1其余均屬于轉(zhuǎn)化生長因子-β(transforming growth factorβ,TGF-β)超家族。BMPs和TGF-β是骨和軟骨形成的重要調(diào)節(jié)因子[74],參與全身組織架構(gòu)的生長。在BMPs存在下,肌細胞能夠分化成表達骨性標志物的細胞[11,49,56,87],同樣,衛(wèi)星細胞衍生的成肌細胞可以分化成成骨細胞。Hashimoto 等人[36]已觀察到衛(wèi)星細胞能夠表達成肌細胞的標志物(Pax7,MyoD)和成骨細胞的標志物(ALP,Runx2),并且能夠自發(fā)地分化成成骨細胞。
BMP-1不是真正的骨形態(tài)發(fā)生蛋白,而是一種剪切原骨膠原蛋白前肽片段的金屬蛋白酶[51]。在體外研究發(fā)現(xiàn)BMP-1由培養(yǎng)的原代肌管分泌[38],而小鼠的肌管暴露于濃度高的胰島素中會降低BMP-1的分泌[88]。Jackson 等[41]人對在戰(zhàn)爭中經(jīng)歷過爆炸創(chuàng)傷的病人進行肌肉活檢發(fā)現(xiàn),他們的BMP-1蛋白和mRNA水平很高。由于爆炸創(chuàng)傷伴隨異位骨化的發(fā)生率很高,因此這也是一個對骨骼有重要作用的肌肉因子。另外,在骨折愈合方面很多新興的方法是利用BMP-2修飾肌細胞,促進其分泌BMP-2[21]。這類方法經(jīng)常利用離體基因治療法迫使培養(yǎng)的成肌細胞表達BMPs,再將它們植入實驗動物后可以導致新骨形成。以上研究均表明了BMPs在骨折修復中的重要作用,是肌骨系統(tǒng)中的重要肌肉因子。
Osteoglycin(OGN)是富亮氨酸低分子蛋白聚糖家族的第7成員,機械負荷可以介導機械敏感基因促進骨骼合成代謝,而OGN基因恰好屬于這類基因[65]。OGN由成肌細胞產(chǎn)生,不僅可以明顯促進大鼠成肌細胞C2C12細胞的肌纖維生長[14],還可以提高成骨細胞骨形成相關(guān)指標的表達。Tanaka等人研究指出,在條件控制的培養(yǎng)皿中培養(yǎng)OGN表達過量的成肌細胞能夠促進晚期成骨細胞的分化成熟[82]。
在成骨細胞分裂期間,F(xiàn)AM5C和Tmem119表達會增加。當C2C12 細胞過表達FAM5C與MC3T3-E1時,細胞中osterix、ALP和OCN mRNA水平增加,而抑制FAM5C的表達會阻止這些骨形成相關(guān)指標的產(chǎn)生[81]。與對照組相比,C2C12細胞過表達Tmem119會導致成骨細胞相關(guān)蛋白表達增加,以及成骨細胞礦化也提高[80]。在培養(yǎng)C2C12細胞過程中,MCP-1被認為是肌肉組織中最豐富的肌肉因子之一,最近研究發(fā)現(xiàn),MCP-1能夠通過介導甲狀旁腺激素參與骨的合成代謝[79]。
富含半胱氨酸的酸性蛋白(SPARC)或骨粘連蛋白(Osteonectin),是一種在很多組織(包括骨組織和肌肉組織)細胞外基質(zhì)中含量豐富的糖蛋白,并且參與骨組織的修復、細胞外基質(zhì)重塑以及促進成骨細胞膠原蛋白的礦化過程[10]。小鼠缺失SPARC會表現(xiàn)出骨質(zhì)疏松及骨礦含量減少[22],而研究發(fā)現(xiàn),SPARC在損傷和再生的肌管和肌纖維中分泌,并隨著抗阻訓練和肌管的合成而增加[43]。對骨折愈合整個階段進行縱向研究過程中檢測到SPARC轉(zhuǎn)錄物水平最顯著的是第9天到第15天[21],這表明了骨再生過程中SPARC的重要性,以及在骨折修復過程中肌肉是SPARC的重要來源。
與SPARC相似,基質(zhì)金屬蛋白酶(Matrix Metalloproteinase-2,MMP-2)存在于肌肉和骨骼中,對肌骨修復起重要作用。小鼠缺乏MMP-2表現(xiàn)出骨量減少和骨密度降低,也會影響骨折愈合后期階段骨組織的重塑[57]。體外培養(yǎng)肌管發(fā)現(xiàn)MMP-2分泌活躍且在損傷的肌肉表達水平更高,而MMP-2表達隨著運動和后肢懸掛后再受負荷后而增加[23,45]。因此,OGN,F(xiàn)AM5C、Tmem119 、MCP-1、SPARC和MMP-2在肌骨系統(tǒng)中參與的生物信號反應(yīng)通路,可能是調(diào)控肌肉與骨骼“crosstalk”的重要路徑。
能夠作用于骨代謝的其他肌肉因子還有白血病抑制因子(Leukemia Inhibitory Factor,LIF)、腦源性神經(jīng)營養(yǎng)因子(Brain-Derived Neurotrophic Factor,BDNF)、肌肉素(Musclin)、CNTF等。LIF可以由成肌細胞和成骨細胞分泌,運動訓練可以提高成肌細胞中LIF的分泌水平,從而作用于骨膜的成骨細胞[77]。BDNF是維持成年期肌肉組織中肌原細胞數(shù)量的關(guān)鍵因子,在成骨細胞和軟骨細胞中均有其受體,小鼠缺失BDNF會導致骨量和白色脂肪組織增加[12]。肌肉素是一種新發(fā)現(xiàn)的肌肉因子,能夠抑制破骨細胞生成[7]。CNTF是細胞因子家族IL-6的一部分,研究發(fā)現(xiàn),肌肉組織中CNTF表達豐富的大鼠顯示出成骨細胞的分化受到抑制[42]。
表1 肌肉因子、運動方式與骨代謝的作用Table 1 Myokines,Exercise and Bone Metabolism
目前,關(guān)于肌肉作為內(nèi)/旁分泌器官對骨代謝作用的研究越來越多,而尋找肌肉因子并且了解其生理病理作用是一個熱點研究話題。肌肉是骨骼的“鄰居”,雖然兩者之間在非機械力學上的關(guān)系非常復雜,但是,肌肉因子對骨組織各類細胞作用的具體機制的研究將會越來越深入。運動作為一種現(xiàn)代社會人們公認的能夠促進健康的方式,也被證實可以通過誘導肌肉因子的表達對骨骼產(chǎn)生積極作用[59,75](表1)。在老年人群中肌骨系統(tǒng)無可避免地發(fā)生與年齡相關(guān)的衰變和功能紊亂,從而形成肌肉衰減癥和骨質(zhì)疏松癥[62]。因此,通過研究肌肉因子在肌骨系統(tǒng)中參與的分子信號通路,不僅可以用運動處方的手段將肌肉作為靶點,促進肌肉因子的釋放從而維持骨密度和骨強度;也可以通過研制新型的藥物作用于肌肉,可能會同時提高肌肉和骨骼的質(zhì)量和力量,從而減少老年人相關(guān)疾病的發(fā)生率。比如,肌肉因子肌抑素被認為是防治肌肉衰減和骨質(zhì)疏松的潛在靶點,通過運動可以抑制肌抑素的表達,這既可以使得肌肉質(zhì)量增加,又可以促進骨骼修復。運動可以,協(xié)同力學機制和生物機制對肌骨系統(tǒng)產(chǎn)生積極作用,所以,研究運動介導肌肉因子對骨代謝的作用以安排科學合理的運動處方將是非常有價值的。
[1] 賀道遠,曾凡星,朱一力,等. 急性運動后大鼠骨骼肌Myostatin和IGF-1基因表達呈反向變化[J]. 體育科學,2008(02):54-58.
[2] 胡楊.運動分子生物學[M].北京:北京體育大學出版社,2013:129-130.
[3] 張靚,楊洪濤,趙磊,等. 運動性心肌肥大大鼠心肌肌肉生長抑制素表達的變化[J]. 中國運動醫(yī)學雜志,2013(01):45-49.
[4] AGUILA H L,MUN S H,KALINOWSKI J,et al. Osteoblast-speci fi c overexpression of human interleukin-7 rescues the bone mass phenotype of interleukin-7-de fi cient female mice[J].J Bone Miner Res,2012,27(5):1030-1042.
[5] ANASTASILAKIS A D,POLYZOS S A,MAKRAS P,et al.Circulating irisin is associated with osteoporotic fractures in postmenopausal women with low bone mass but is not a ff ected by either teriparatide or denosumab treatment for 3 months[J].Osteoporos Int,2014,25(5):1633-1642.
[6] BAKKER A D,JASPERS R T. IL-6 and IGF-1 signaling within and between muscle and bone:How important is the mTOR pathway for bone metabolism?[J]. Curr Osteoporos Rep,2015,13(3):131-139.
[7] BARTELL S M,KIM H N,AMBROGINI E,et al. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation[J]. Nat Commun,2014,5:3773.
[8] BIKLE D D,TAHIMIC C,CHANG W,et al. Role of IGF-I signaling in muscle bone interactions[J]. Bone,2015,80:79-88.
[9] BOSTROM P,WU J,JEDRYCHOWSKI M P,et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis[J]. Nat,2012,481(7382):463-468.
[10] BREKKEN R A,SAGE E H. SPARC,a matricellular protein:at the crossroads of cell-matrix communication[J]. Matrix Biol,2001,19(8):816-827.
[11] CAIRNS D M,LIU R,SEN M,et al. Interplay of Nkx3.2,Sox9 and Pax3 regulates chondrogenic differentiation of muscle progenitor cells[J]. PLoS One,2012,7(7):e39642.
[12] CAMERINO C,ZAYZAFOON M,RYMASZEWSKI M,et al.Central depletion of brain-derived neurotrophic factor in mice results in high bone mass and metabolic phenotype[J]. Endocrinol,2012,153(11):5394-5405.
[13] CANALIS E,CENTRELLA M,MCCARTHY T. E ff ects of basic fibroblast growth factor on bone formation in vitro[J]. J Clin Invest. 1988,81(5):1572-1577.
[14] CHAN C Y,MASUI O,KRAKOVSKA O,et al. Identi fi cation of di ff erentially regulated secretome components during skeletal myogenesis[J]. Mol Cell Proteomics,2011,10(5):M110.
[15] COFFIN J D,F(xiàn)LORKIEWICZ R Z,NEUMANN J,et al. Abnormal bone growth and selective translational regulation in basic fi broblast growth factor (FGF-2) transgenic mice[J]. Mol Biol Cell,1995,6(12):1861-1873.
[16] COLAIANNI G,CUSCITO C,MONGELLI T,et al. Irisin enhances osteoblast di ff erentiation in vitro[J]. Int J Endocrinol,2014:902186.
[17] COLAIANNI G,CUSCITO C,MONGELLI T,et al. The myokine irisin increases cortical bone mass[J]. Proc Natl Acad Sci U S A,2015,112(39):12157-12162.
[18] COLAIANNI G,GRANO M. Role of Irisin on the bone-muscle functional unit[J]. Bonekey Rep,2015,4:765.
[19] DANKBAR B,F(xiàn)ENNEN M,BRUNERT D,et al. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice[J]. Nat Med,2015,21(9):1085-1090.
[20] DASKALOPOULOU S S,COOKE A B,GOMEZ Y H,et al.Plasma irisin levels progressively increase in response to increasing exercise workloads in young,healthy,active subjects[J].Eur J Endocrinol,2014,171(3):343-352.
[21] DAVIS K M,GRIFFIN K S,CHU T G,et al. Muscle-bone interactions during fracture healing[J]. J Musculoskelet Neuronal Interact,2015,15(1):1-9.
[22] DELANY A M,AMLING M,PRIEMEL M,et al. Osteopenia and decreased bone formation in osteonectin-de fi cient mice[J].J Clin Invest,2000,105(9):1325.
[23] DEUS A P,BASSI D,SIMOES R P,et al. MMP(-2) expression in skeletal muscle after strength training[J]. Int J Sports Med,2012,33(2):137-141.
[24] ELKASRAWY M N,F(xiàn)ULZELE S,BOWSER M,et al. Myostatin (GDF-8) inhibits chondrogenesis and chondrocyte proliferation in vitro by suppressing Sox-9 expression[J]. Growth Factors,2011,29(6):253-262.
[25] ELKASRAWY M N,HAMRICK M W. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure[J]. J Musculoskelet Neuronal Interact,2010,10(1):56-63.
[26] ELKASRAWY M N,IMMEL D,WEN X,et al. Immunolocalization of myostatin (GDF-8) following musculoskeletal injury and the e ff ects of exogenous myostatin on muscle and bone healing[J].J Histochem Cytochem,2012,60(1):22-30.
[27] FRANCHIMONT N,WERTZ S,MALAISE M. Interleukin-6:An osteotropic factor influencing bone formation?[J]. Bone,2005,37(5):601-606.
[28] GOODMAN C A,HORNBERGER T A,ROBLING A G. Bone and skeletal muscle:Key players in mechanotransduction and potential overlapping mechanisms[J]. Bone,2015,80:24-36.
[29] HAMRICK M W. A role for myokines in muscle-bone interactions[J].Exerc Sport Sci Rev,2011,39(1):43-47.
[30] HAMRICK M W. The skeletal muscle secretome:an emerging player in muscle-bone crosstalk[J]. Bonekey Rep,2012,1:60.
[31] HAMRICK M W,AROUNLEUT P,KELLUM E,et al. Recombinant myostatin (GDF-8) propeptide enhances the repair and regeneration of both muscle and bone in a model of deep penetrant musculoskeletal injury[J]. J Trauma,2010,69(3):579-583.
[32] HAMRICK M W,MCNEIL P L,PATTERSON S L. Role of muscle-derived growth factors in bone formation[J]. J Musculoskelet Neuronal Interact,2010,10(1):64-70.
[33] HAMRICK M W,SAMADDAR T,PENNINGTON C,et al. Increased muscle mass with myostatin de fi ciency improves gains in bone strength with exercise[J]. J Bone Miner Res,2006,21(3):477-483.
[34] HAMRICK M W,SHI X,ZHANG W,et al. Loss of myostatin(GDF8) function increases osteogenic di ff erentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading[J]. Bone,2007,40(6):1544-1553.
[35] HARRY L E,SANDISON A,PEARSE M F,et al. Comparison of the vascularity of fasciocutaneous tissue and muscle for coverage of open tibial fractures[J]. Plast Reconstr Surg,2009,124(4):1211-1219.
[36] HASHIMOTO N,KIYONO T,WADA M R,et al. Osteogenic properties of human myogenic progenitor cells[J]. Mech Dev,2008,125(3-4):257-269.
[37] HAUGEN F,NORHEIM F,LIAN H,et al. IL-7 is expressed and secreted by human skeletal muscle cells[J]. Am J Physiol Cell Physiol,2010,298(4):C807-C816.
[38] HITTEL D S,BERGGREN J R,SHEARER J,et al. Increased secretion and expression of myostatin in skeletal muscle from extremely obese women[J]. Diabetes,2009,58(1):30-38.
[39] HOLMES D. Bone:Irisin boosts bone mass[J]. Nat Rev Endocrinol,2015,11(12):689.
[40] CHOI HY H. Postnatal Regulation of Bone Growth by Muscle IGF-1[ D].Philadelphia:University of Pennsylvania,2015:1-30.
[41] JACKSON W M,ARAGON A B,ONODERA J,et al. Cytokine expression in muscle following traumatic injury[J]. J Orthop Res,2011,29(10):1613-1620.
[42] JOHNSON R W,WHITE J D,WALKER E C,et al. Myokines(muscle-derived cytokines and chemokines) including ciliary neurotrophic factor(CNTF) inhibit osteoblast di ff erentiation[J].Bone,2014,64:47-56.
[43] JORGENSEN L H,PETERSSON S J,SELLATHURAI J,et al.Secreted protein acidic and rich in cysteine(SPARC) in human skeletal muscle[J]. J Histochem Cytochem,2009,57(1):29-39.
[44] JUFFER P,JASPERS R T,KLEIN-NULEND J,et al. Mechanically loaded myotubes affect osteoclast formation[J]. Calcif Tissue Int,2014,94(3):319-326.
[45] KAASIK P,RISO E M,SEENE T. Extracellular matrix and myofi brils during unloading and reloading of skeletal muscle[J]. Int J Sports Med,2011,32(4):247-253.
[46] KAJI H. Linkage between muscle and bone:common catabolic signals resulting in osteoporosis and sarcopenia[J]. Curr Opin Clin Nutr Metab Care,2013,16(3):272-277.
[47] KAJI H. E ff ects of myokines on bone[J]. Bonekey Rep,2016,5:826.
[48] KARASIK D,COHEN-ZINDER M. The genetic pleiotropy of musculoskeletal aging[J]. Front Physiol,2012,3:303.
[49] KATO S,SANGADALA S,TOMITA K,et al. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdi ff erentiation of myoblasts into the osteoblastic phenotype[J].Mol Cell Biochem,2011,349(1-2):97-106.
[50] KELLER C,STEENSBERG A,PILEGAARD H,et al. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle:in fl uence of muscle glycogen content[J]. FASEB J,2001,15(14):2748-2750.
[51] KESSLER E,TAKAHARA K,BINIAMINOV L,et al. Bone morphogenetic protein-1:the type I procollagen C-proteinase[J].Sci,1996,271(5247):360-362.
[52] KODAMA N,NAGATA M,TABATA Y,et al. A local bone anabolic e ff ect of rhFGF2-impregnated gelatin hydrogel by promoting cell proliferation and coordinating osteoblastic di ff erentiation[J]. Bone,2009,44(4):699-707.
[53] KRAEMER R R,SHOCKETT P,WEBB N D,et al. A transient elevated irisin blood concentration in response to prolonged,moderate aerobic exercise in young men and women[J]. Horm Metab Res,2014,46(2):150-154
[54] LANG T F. The bone-muscle relationship in men and women[J].J Osteoporos,2011:702-735.
[55] LEBRASSEUR N K,ACHENBACH S J,MELTON L R,et al. Skeletal muscle mass is associated with bone geometry and microstructure and serum insulin-like growth factor binding protein-2 levels in adult women and men[J]. J Bone Miner Res,2012,27(10):2159-2169.
[56] LEE J Y,QU-PETERSEN Z,CAO B,et al. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing[J]. J Cell Biol,2000,150(5):1085-1100.
[57] LIEU S,HANSEN E,DEDINI R,et al. Impaired remodeling phase of fracture repair in the absence of matrix metalloproteinase-2[J]. Dis Model Mech,2011,4(2):203-211.
[58] LOFFLER D,MULLER U,SCHEUERMANN K,et al. Serum irisin levels are regulated by acute strenuous exercise[J]. J Clin Endocrinol Metab,2015,100(4):1289-1299.
[59] LOMBARDI G,SANCHIS-GOMAR F,PEREGO S,et al. Implications of exercise-induced adipo-myokines in bone metabolism[J]. Endocrine,2016,54(2):284-305.
[60] NIELSEN A R,MOUNIER R,PLOMGAARD P,et al. Expression of interleukin-15 in human skeletal muscle e ff ect of exercise and muscle fibre type composition[J]. J Physiol,2007,584(Pt 1):305-312.
[61] NORHEIM F,LANGLEITE T M,HJORTH M,et al. The effects of acute and chronic exercise on PGC-1alpha,irisin and browning of subcutaneous adipose tissue in humans[J]. FEBS J,2014,281(3):739-749.
[62] NOVOTNY S A,WARREN G L,HAMRICK M W. Aging and the muscle-bone relationship[J]. Physiology (Bethesda),2015,30(1):8-16.
[63] PALERMO A,STROLLO R,MADDALONI E,et al. Irisin is associated with osteoporotic fractures independently of bone mineral density,body composition or daily physical activity[J].Clin Endocrinol (Oxf),2015,82(4):615-619.
[64] PARK K H,ZAICHENKO L,BRINKOETTER M,et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome[J]. J Clin Endocrinol Metab,2013,98(12):4899-4907.
[65] PATEL M J,LIU W,SYKES M C,et al. Identi fi cation of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine[J]. J Cell Biochem,2007,101(3):587-599.
[66] PEDERSEN B K. Muscles and their myokines[J]. J Exp Biol,2011,214(Pt 2):337-346.
[67] PEDERSEN B K,AKERSTROM T C,NIELSEN A R,et al.Role of myokines in exercise and metabolism[J]. J Appl Physiol(1985),2007,103(3):1093-1098.
[68] PEDERSEN B K,EDWARD F. Adolph distinguished lecture:muscle as an endocrine organ:IL-6 and other myokines[J]. J Appl Physiol (1985),2009,107(4):1006-1014.
[69] PEDERSEN B K,F(xiàn)EBBRAIO M A. Muscles,exercise and obesity:skeletal muscle as a secretory organ[J]. Nat Rev Endocrinol,2012,8(8):457-465.
[70] POPOV D V,LYSENKO E A,BACHININ A V,et al. In fl uence of resistance exercise intensity and metabolic stress on anabolic signaling and expression of myogenic genes in skeletal muscle[J].Muscle Nerve,2015,51(3):434-442.
[71] QIAO X,NIE Y,MA Y,et al. Irisin promotes osteoblast proliferation and di ff erentiation via activating the MAP kinase signaling pathways[J]. Sci Rep,2016,6:18732.
[72] QUINN L S,ANDERSON B G,STRAIT-BODEY L,et al. Oversecretion of interleukin-15 from skeletal muscle reduces adiposity[J].Am J Physiol Endocrinol Metab,2009,296(1):E191-E202
[73] RAUCH F,BAILEY D A,BAXTER-JONES A,et al. The ‘muscle-bone unit’ during the pubertal growth spurt[J]. Bone,2004,34(5):771-775.
[74] SARTORI R,SANDRI M. BMPs and the muscle-bone connection[J].Bone,2015,80:37-42.
[75] SCHNYDER S,HANDSCHIN C. Skeletal muscle as an endocrine organ:PGC-1alpha,myokines and exercise[J]. Bone,2015,80:115-125.
[76] STEENSBERG A,F(xiàn)EBBRAIO M A,OSADA T,et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content[J]. J Physiol,2001,537(Pt 2):633-639.
[77] TAGLIAFERRI C,WITTRANT Y,DAVICCO M J,et al. Muscle and bone,two interconnected tissues[J]. Ageing Res Rev,2015,21:55-70.
[78] TAHIMIC C G,WANG Y,BIKLE D D. Anabolic e ff ects of IGF-1 signaling on the skeleton[J]. Front Endocrinol (Lausanne),2013,4:6.
[79] TAMASI J A,VASILOV A,SHIMIZU E,et al. Monocyte chemoattractant protein-1 is a mediator of the anabolic action of parathyroid hormone on bone[J]. J Bone Miner Res,2013,28(9):1975-1986.
[80] TANAKA K,INOUE Y,HENDY G N,et al. Interaction of Tmem119 and the bone morphogenetic protein pathway in the commitment of myoblastic into osteoblastic cells[J]. Bone,2012,51(1):158-167.
[81] TANAKA K,MATSUMOTO E,HIGASHIMAKI Y,et al.FAM5C is a soluble osteoblast di ff erentiation factor linking muscle to bone[J]. Biochem Biophys Res Commun,2012,418(1):134-139.
[82] TANAKA K,MATSUMOTO E,HIGASHIMAKI Y,et al. Role of osteoglycin in the linkage between muscle and bone[J]. J Biol Chem,2012,287(15):11616-11628.
[83] TEN B R,GREFTE S,VON DEN HOFF J W. Regulatory factors and cell populations involved in skeletal muscle regeneration[J].J Cell Physiol,2010,224(1):7-16.
[84] UTVAG S E,GRUNDNES O,RINDAL D B,et al. In fl uence of extensive muscle injury on fracture healing in rat tibia[J]. J Orthop Trauma,2003,17(6):430-435.
[85] WARNER S E,SANFORD D A,BECKER B A,et al. Botox induced muscle paralysis rapidly degrades bone[J]. Bone,2006,38(2):257-264.
[86] WEITZMANN M N,ROGGIA C,TORALDO G,et al. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen de fi ciency[J]. J Clin Invest,2002,110(11):1643-1650.
[87] WONG E,SANGADALA S,BODEN S D,et al. A novel low-molecular-weight compound enhances ectopic bone formation and fracture repair[J]. J Bone Joint Surg Am,2013,95(5):454-461.
[88] YOON J H,YEA K,KIM J,et al. Comparative proteomic analysis of the insulin-induced L6 myotube secretome[J]. Proteomics,2009,9(1):51-60.
[89] ZACKS S I,SHEFF M F. Periosteal and metaplastic bone formation in mouse minced muscle regeneration[J]. Lab Invest,1982,46(4):405-412.
[90] ZHANG J,VALVERDE P,Zhu X F,et al. Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism[J]. Bone Res,2017,5(1):49-62.
[91] ZHAO R. Immune regulation of osteoclast function in postmenopausal osteoporosis:a critical interdisciplinary perspective[J].Int J Med Sci,2012,9(9):825-832.
The Effects of Myokines and Exercise on Bone
FANG Xing1,2,LI Shi-chang1,2,XU Shuai1,2
Muscle has been identi fi ed as an endocrine organ,and it’s myokine has also been attracted much attention in recent years. Bone and muscle,from early embryonic development through aging and involution,are tightly coupled in both form and function. However,the study of the non-mechanical e ff ects of muscle on bone has been explored more and more. Muscle can secret various myokines,such as IGF-1,F(xiàn)GF-2,Myostatin,Irisin,IL-6,IL-7,IL-15,BMPs,OGN,F(xiàn)AM5C,which can in fl uence cells of bone (for example,osteoblasts,osteoclasts and osteocytes) di ff erently.Besides,exercise interventions have an impact on the expression of myokine,then progressively regulates bone metabolism. Age-related sarcopenia and osteoporosis are two major problems disrupting the health of the elderly population. Therefore,considering skeletal muscle systems and skeleton systems as one system called musculoskeletal system and exploring the biological mechanisms within this system may be the key to solve the problems. The fi ndings are supposed to better understand the bene fi cial roles of exercise on “muscle-bone crosstalk” and suggest a new perspectives of treatments to prevent sarcopenia and osteoporosis.
myokine;bone metabolism;exercise
G804.2
A
2017-01-11;
2017-08-10
方幸,女,在讀碩士研究生,主要研究方向為運動與骨健康, E-mail:451074413@qq.com。
1.青少年健康評價與運動干預(yù)教育部重點實驗室,上海 200241;2.華東師范大學 體育與健康學院,上海200241 1. Key Laboratory of Adolescent and Exercise Intervention in the Ministry of Education,Shanghai 200241,China;2. East China Normal University,Shanghai 200241,China.
1002-9826(2017)06-0071-08
10. 16470/j. csst. 201706008