高智勇,畢毅,姚朝幫
海軍工程大學(xué)艦船工程系,湖北武漢430033
靜水中并行兩船的水動(dòng)力干擾效應(yīng)數(shù)值研究
高智勇,畢毅,姚朝幫
海軍工程大學(xué)艦船工程系,湖北武漢430033
[目的]為研究近距并行兩船的相互干擾效應(yīng)對(duì)船舶操縱性的影響,[方法]基于RANS方程對(duì)靜水中并行兩船的水動(dòng)力干擾作用進(jìn)行數(shù)值模擬,分析兩船在不同橫向間距、縱向間距和航速條件下阻力、橫向力、縱向力及搖艏力矩的變化規(guī)律,并在此基礎(chǔ)上進(jìn)一步闡述各種干擾力成分在兩船水動(dòng)力干擾中的變化及貢獻(xiàn)比例。[結(jié)果]研究結(jié)果表明,兩船所受橫向力在縱向間距為0(即中對(duì)中)時(shí)最大,表現(xiàn)為吸引力;隨著橫向間距的增加,相互作用效應(yīng)減弱,橫向作用力最大降幅達(dá)到50%以上??v向間距對(duì)搖艏力矩的影響較大,兩船在進(jìn)入與駛離補(bǔ)給陣位時(shí),所受搖艏力矩使兩船艏艉相互接近,此時(shí)容易發(fā)生碰撞。在低速狀態(tài)下可以忽略航行興波對(duì)兩船相互干擾的影響,而高速航行時(shí)則不容忽略。[結(jié)論]所得結(jié)果可為研究?jī)纱倏v運(yùn)動(dòng)時(shí)相互作用力數(shù)學(xué)模型的構(gòu)建奠定基礎(chǔ)。
兩船并行;水動(dòng)力干擾;靜水;興波
航運(yùn)業(yè)的發(fā)展使得港口、航道內(nèi)的船舶密度有所增加,故海上補(bǔ)給以及兩船之間貨物、燃油的輸送作業(yè)也日益頻繁。受間距限制,兩船并行航行時(shí)其內(nèi)側(cè)流場(chǎng)會(huì)發(fā)生變化,相互作用力不可忽視,嚴(yán)重時(shí)還會(huì)危及船舶的安全航行,甚至發(fā)生事故。根據(jù)我國(guó)1990年頒布的《船舶交通事故統(tǒng)計(jì)規(guī)則》統(tǒng)計(jì)結(jié)果,船舶碰撞在海難事故中占有較大比例[1]。因此,兩船靠近時(shí)的相互作用力規(guī)律及影響因素是國(guó)內(nèi)外學(xué)者研究的熱點(diǎn)。
兩船間的相互作用力研究方法分為模型試驗(yàn)和理論計(jì)算2種?;谀P驮囼?yàn)方法,Newton[2],Remery[3],Dand[4]分別研究了深水兩船追越、狹窄水道兩船會(huì)遇與超越,以及航行船舶與系泊船的水動(dòng)力影響。近年來(lái),Vantorre等[5-6]通過(guò)開展一系列模型試驗(yàn),全面研究了復(fù)雜工況下兩船的水動(dòng)力相互作用,并提出了較為實(shí)用的兩船相互作用力估算公式。Lataire等[7-8]在船舶過(guò)駁作業(yè)方面開展了一系列模型試驗(yàn)。鄭平宇等[9]研究了補(bǔ)給過(guò)程中并行兩船的耐波性。在理論研究方面,Tuck 等[10]、Yeung[11]、Davis等[12]及 Xiang等[13]基于細(xì)長(zhǎng)體理論的匹配漸進(jìn)展開法,研究了開闊水域、狹窄水道中兩船間的相互作用力,并在研究中忽略了流體粘性的影響。此外,Xiang等[14-15]、Yuan等[16-17]基于三維Rankine源法研究了波浪中并行兩船的水動(dòng)力干擾問(wèn)題;Zhou等[18]采用勢(shì)流理論數(shù)值分析了限制水域船間水動(dòng)力相互作用;張謝東等[19]、陳波等[20]分別利用邊界元法和Green-Naghdi方程研究了淺水中兩船超越及會(huì)遇的相互作用力;許勇等[21-22]采用三維移動(dòng)脈動(dòng)源格林函數(shù)研究了波浪中并行兩船的水動(dòng)力干擾問(wèn)題,建立了相應(yīng)的數(shù)值計(jì)算方法,其計(jì)算值與試驗(yàn)值吻合度較高;周廣禮等[23]研究了兩船并行時(shí)漂角和相對(duì)位置對(duì)水動(dòng)力干擾的作用;張晨曦等[24]基于Fluent和動(dòng)網(wǎng)格技術(shù)研究了淺水中會(huì)遇船舶的相互作用力;徐華福等[25]基于高階面元法對(duì)淺水中兩船會(huì)遇和追越時(shí)的兩船水動(dòng)力干擾進(jìn)行了預(yù)報(bào)。然而,這些研究在采用勢(shì)流方法計(jì)算時(shí)均忽略了流體粘性的影響,在采用粘性方法計(jì)算時(shí)均忽略了航行興波的貢獻(xiàn),且對(duì)航行興波在兩船相互干擾作用中的貢獻(xiàn)也沒(méi)有進(jìn)行深入研究。
本文擬基于雷諾平均N-S(Reynolds Average Navier-Stokes,RANS)方程,采用商用流體力學(xué)軟件STAR CCM+模擬靜水中并行兩船的相互作用力,通過(guò)與試驗(yàn)結(jié)果的對(duì)比,驗(yàn)證數(shù)值計(jì)算方法的可靠性。并在此基礎(chǔ)上,進(jìn)一步分析兩船靠近、并行以及駛離時(shí)的相互作用力,系統(tǒng)分析相互作用力隨橫向和縱向間距的變化規(guī)律,揭示兩船近距航行時(shí)的危險(xiǎn)狀態(tài)。
RANS方程是粘性流體運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)的控制方程,本文以此作為求解船體粘性興波流場(chǎng)的基本方程,其具體形式為:
湍流模式為RNGk-ε模型:
式中:k為湍動(dòng)能;ε為湍能耗散率;xk為沿平均運(yùn)動(dòng)軌跡的空間分量。
湍流脈動(dòng)動(dòng)能方程(k方程)為:
湍流能量耗散率方程(ε方程)為:
本文選取2個(gè)模型(船a和船b)開展理論計(jì)算,其主尺度及船型參數(shù)如表1所示,模型三維圖如圖1所示。
表1 模型主尺度Table 1 Main dimensions of ship model
圖1 計(jì)算模型三維圖Fig.1 Profile of ship models
計(jì)算流域?yàn)椋捍合蚝蠹s2倍船長(zhǎng),邊界條件為壓力出口,出口壓力為未擾動(dòng)的靜水壓力;船艏向前約1倍船長(zhǎng),設(shè)為速度入口;流域向左、向右取1.5倍船長(zhǎng),設(shè)為速度入口;船底向下取1倍船長(zhǎng),設(shè)為壁面。采用剪切型網(wǎng)格對(duì)整個(gè)流域進(jìn)行離散,離散網(wǎng)格如圖2所示,整個(gè)流域網(wǎng)格總數(shù)約1.2×106,對(duì)船體附近區(qū)域進(jìn)行局部加密處理。
圖2 數(shù)值計(jì)算網(wǎng)格Fig.2 Computational grid
為驗(yàn)證所選湍流模型及網(wǎng)格離散方案的合理性,在某拖曳水池開展了模型試驗(yàn),試驗(yàn)水池長(zhǎng)132 m,寬10.8 m,水深2.0 m。采用CHLBS型拉力傳感器測(cè)量阻力,采用HGH型拉壓傳感器測(cè)量橫向力,采用光學(xué)測(cè)量系統(tǒng)Marker測(cè)量船體姿態(tài)。
試驗(yàn)時(shí)模型的拖點(diǎn)位置取于重心位置,試驗(yàn)?zāi)P蜕暇友b了激流絲,激流絲位于模型艏部1站處。試驗(yàn)時(shí)2個(gè)模型分別安裝于自主研制的雙船拖帶系統(tǒng)上,該拖帶系統(tǒng)可以模擬船體的橫傾、縱傾及升沉3個(gè)自由度。
圖3 坐標(biāo)系定義Fig.3 Definition of coordinate system
圖4 所示為Dy=0.311La時(shí),船a及船b的橫向力Rc、阻力Rt和搖艏力矩Mt隨縱向位置變化時(shí)理論計(jì)算值與模型試驗(yàn)值的對(duì)比(圖中▲表示試驗(yàn)值,□表示計(jì)算結(jié)果)。整體來(lái)說(shuō),數(shù)值計(jì)算值與試驗(yàn)值吻合良好,驗(yàn)證了本文網(wǎng)格劃分及湍流模型的適用性。部分?jǐn)?shù)據(jù)點(diǎn)存在一定誤差的原因在于:一方面,兩船干擾力試驗(yàn)測(cè)量難度較大;另一方面,粘流計(jì)算也存在數(shù)值誤差。
采用上述網(wǎng)格劃分及湍流模型,開展船a與船 b在Dx=-1.096La,-0.548La,0.548La,1.096La,Dy=0.311La,0.353La,0.395La,0.437La時(shí)兩船的阻力、橫向力以及搖艏力矩的變化規(guī)律。
圖4 理論計(jì)算值與模型試驗(yàn)值的對(duì)比Fig.4 Comparison between calculated and experimental results
兩船的橫向位置Dy=0.311La固定不變,改變兩船的縱向位置,計(jì)算得到不同航速下兩船的受力隨縱向位置的變化曲線如圖5~圖7所示。
圖5 兩船阻力隨縱向位置的變化曲線Fig.5 Comparison of resistance between at different longitudinal positions
圖6 兩船橫向力隨縱向位置的變化曲線Fig.6 Comparison of lateral force at different longitudinal positions
圖7 兩船搖艏力矩隨縱向位置的變化曲線Fig.7 Comparison of yaw moment at different longitudinal positions
根據(jù)圖5~圖7的計(jì)算結(jié)果,兩船在不同縱向位置時(shí)的受力如圖8所示。
圖8 兩船靠近與駛離過(guò)程的受力變化示意圖Fig.8 Demonstration of force for two ships at different longitudinal distance
由圖5~圖8可知,兩船相撞事故多發(fā)生在靠近與駛離階段,具體為:
1)兩船靠近與離開過(guò)程中,所受橫向力、搖艏力矩的大小和方向均會(huì)發(fā)生較大變化,水動(dòng)力干擾顯著。
2)在兩船從靠近階段I至并行階段的過(guò)程中,兩船的相互作用力由相互排斥逐步變?yōu)橄嗷ノ?,兩船靠近;同時(shí),搖艏力矩使兩船艏艉相互接近,故容易發(fā)生碰撞。
3)在兩船從并行階段至駛離階段I的過(guò)程中,兩船的相互作用力由相互吸引逐步轉(zhuǎn)向相互排斥,搖艏力矩使兩船艏艉相互接近從而容易發(fā)生碰撞。
同時(shí),船a及船b所受的阻力和側(cè)向力受兩船的縱向位置影響較大;不同速度下的橫向作用力均在 Dx/La=0(即“中對(duì)中”)時(shí)達(dá)到最大,當(dāng) Fn=0.171時(shí),船a所受到最大橫向力為1.471 N,約占該時(shí)刻船a裸體阻力的35%,而船b所受最大橫向力為1.487 N,約占該時(shí)刻船b裸體阻力的29.7%;在 Dx從-1.096La變化至1.096La的過(guò)程中,兩船相互作用力依次為相互排斥—相互吸引—相互排斥;隨著航速的增加,兩船所受的橫向作用力、阻力及搖艏力矩均增大。
兩船的縱向位置Dx=0固定不變,改變兩船的橫向位置,研究?jī)纱淖枇ΑM向作用力以及搖艏力矩隨橫向間距的變化規(guī)律。不同速度下兩船的相互作用力隨橫向間距的變化規(guī)律如圖9~圖11所示。
隨著橫向間距的增加,兩船的橫向作用力減幅明顯;當(dāng) Fn=0.298時(shí),橫向間距 Dy由0.311La增大至0.437La時(shí),船a的橫向作用力由4.613 N減至1.185 N,降幅達(dá)74.3%;船b的橫向作用力由4.47 N減至2.11 N,降幅達(dá)52.8%,這說(shuō)明優(yōu)化選擇橫向間距是保證兩船安全航行的重要因素。
圖9 兩船阻力隨橫向位置的變化曲線Fig.9 Comparison of resistance at different lateral positions
圖10 兩船橫向力隨橫向位置的變化曲線Fig.10 Comparison of lateral force at different lateral positions
圖11 兩船搖艏力矩隨橫向位置的變化曲線Fig.11 Comparison of yaw moment at different lateral positions
根據(jù)構(gòu)成干擾力的物理成分,可將船間干擾劃分為粘性干擾和興波干擾,粘性干擾又劃分為摩擦力和粘壓力。對(duì)不同航速而言,各種干擾力成分在兩船航行干擾力中的占比不同。
兩船的縱向位置Dx=0及橫向位置Dy=0.311La均固定不變,改變兩船的航行速度,研究各種干擾力成分在兩船航行干擾力中的大小以及貢獻(xiàn)比例隨航速的變化,結(jié)果如圖12~圖14所示。其中,摩擦阻力和粘壓阻力由模型計(jì)算中監(jiān)測(cè)數(shù)據(jù)所得,興波阻力由興波狀態(tài)下計(jì)算結(jié)果與疊模狀態(tài)下計(jì)算結(jié)果相減所得。
由圖12~圖14可知:低速狀態(tài)下,興波對(duì)兩船水動(dòng)力干擾的貢獻(xiàn)較小,當(dāng)Fn=0.128時(shí),興波對(duì)船a阻力、橫向力和搖艏力矩的貢獻(xiàn)僅為4.57%,5.71%和7.94%,興波對(duì)船b阻力、橫向力和搖艏力矩的貢獻(xiàn)僅為11.86%,13.64%和5.79%;當(dāng)Fn=0.171時(shí),興波對(duì)兩船水動(dòng)力干擾的貢獻(xiàn)在20%以下。因此,低速狀態(tài)下的兩船水動(dòng)力干擾計(jì)算可以忽略興波的影響,為減少計(jì)算量,建議選擇疊模計(jì)算。
圖12 不同航速下的各阻力成分對(duì)比Fig.12 Comparison of different parts of resistance force at different velocities
圖13 不同航速下的各橫向力成分對(duì)比Fig.13 Comparison of different parts of lateral force at different velocities
圖14 不同航速下的各搖艏力矩成分對(duì)比Fig.14 Comparison of different parts of yaw moment at different velocities
隨著航速的增加,興波對(duì)兩船水動(dòng)力干擾的貢獻(xiàn)增長(zhǎng)較快,較高航速時(shí)興波已經(jīng)是兩船水動(dòng)力干擾的重要組成部分,在Fn=0.298時(shí),興波對(duì)船a阻力、橫向力的貢獻(xiàn)已經(jīng)達(dá)到23.44%和28.47%,興波對(duì)船b阻力、橫向力的貢獻(xiàn)已經(jīng)達(dá)到23.41%和21.6%。因此在速度較高時(shí),不應(yīng)選擇疊模計(jì)算,而應(yīng)考慮興波的影響,從而獲得更準(zhǔn)確的計(jì)算結(jié)果。
本文基于RANS方程研究了兩船間相互作用力與其縱向位置、橫向位置的變化關(guān)系以及各阻力成分在船體阻力中的變化及貢獻(xiàn)比例,得到如下結(jié)論:
1)兩船相互作用力受縱向間距影響較大??v向間距變化時(shí),橫向作用力及搖艏力矩的大小與方向均發(fā)生變化。當(dāng)兩船縱向間距為0時(shí),橫向作用力及搖艏力矩達(dá)到最大值,且此時(shí)橫向作用力表現(xiàn)為兩船相吸。當(dāng)Fn=0.171時(shí),船a的橫向作用力約占裸體阻力的35%,船b約占29.7%。
2)兩船的橫向作用力及搖艏力矩的大小及方向變化規(guī)律為:當(dāng)兩船從縱向靠近到駛離時(shí),兩船依次經(jīng)歷相互排斥—相互吸引—相互排斥的過(guò)程;隨著航速的增加,兩船所受的橫向作用力、阻力及搖艏力矩均增大。兩船縱向距離較?。磳⒖拷騽倓傫傠x)時(shí),兩船間的相互作用力表現(xiàn)為相互吸引,在該吸力作用下兩船靠近;同時(shí),搖艏力矩使兩船艏艉相互接近,此時(shí)容易發(fā)生碰撞。
3)隨著橫向間距的增加,兩船的相互作用力減弱,當(dāng)橫向位置 Dy由0.311La增大至0.437La時(shí),兩船的橫向作用力降幅均在50%以上,因此,選擇合適的橫向間距對(duì)兩船的安全較為重要。
4)航行興波對(duì)兩船水動(dòng)力干擾的貢獻(xiàn)隨船速變化。在低速狀態(tài)下,航行興波對(duì)兩船水動(dòng)力干擾的貢獻(xiàn)較小,當(dāng)速度在Fn=0.171以下時(shí),航行興波對(duì)兩船水動(dòng)力干擾的貢獻(xiàn)低于20%,因此在低速狀態(tài)下計(jì)算兩船水動(dòng)力干擾時(shí)可以忽略航行興波影響,選擇疊模計(jì)算,以節(jié)省計(jì)算時(shí)間。而隨著速度的增加,航行興波對(duì)兩船水動(dòng)力干擾的貢獻(xiàn)增長(zhǎng)較快,航行興波對(duì)兩船水動(dòng)力干擾的貢獻(xiàn)比例逐漸增加,因此在速度較高時(shí),不應(yīng)選擇疊模計(jì)算,而應(yīng)考慮航行興波的影響,從而獲得更準(zhǔn)確的計(jì)算結(jié)果。
[1]關(guān)政軍.船舶交通事故的分析[J].大連海事大學(xué)學(xué)報(bào),1997,23(1):46-51.
[2]NEWTON R N.Some notes on interaction effects be?tween ships close aboard in deep water[C]//First Sym?posium on Naval Maneuverability.Washington D.C.:[s.n.],1960:1-24.
[3]REMERY G F M.Mooring forces induced by passing ships[C]//Offshore Technology Conference.Houston,Dallas:[s.n.],1974.
[4]DAND I W.Some measurements in interaction be?tween ship models passing on parallel courses:Report 108[R].[S.l.]:National Maritime Institute,1981.
[5]VANTORRE M,VERZHBITSKAYA E,LAFORCE E.Model test based formulations of ship-ship interac?tion forces[J].Ship Technology Research,2002,49:124-141.
[6]VANTORRE M,LAFORCE E,VERZHBITSKAYA E.Model test based formulations of ship-ship interac?tion forces for simulation purposes[C]//IMSF-28th An?nual General Meeting.Genova,Italy:IMSF,2001.
[7]LATAIRE E,VANTORRE M,DELEFORTRIE G.Captive model testing for ship to ship operations[C]//Proceedings of International Conference on Marine Sim?ulation and Ship Maneuverability.Panama:IMSF,2009:1-10.
[8] LATAIRE E,VANTORRE M,DELEFORTRIE G,et al.Mathematical modelling of forces acting on ships during lightering operations[J].Ocean Engineering,2012,55:101-115.
[9]鄭平宇,李鵬,劉敬喜,等.兩船并行補(bǔ)給過(guò)程中耐波性的分析[J].中國(guó)艦船研究,2017,12(2):30-40,48.ZHENG P Y,LI P,LIU J X,et al.Seakeeping analy?sis of two ships advancing parallel for underway replen?ishment[J].Chinese Journal of Ship Research,2017,12(2):30-40,48(in Chinese).
[10]TUCK E O,NEWMAN J N.Hydrodynamic interac?tions between ships[C]//10th ONR Symposium on Na?val Hydrodynamics.Cambridge,USA:Office of Na?val Research,1974:35-70.
[11]YEUNG R W.On the interactions of slender ships in shallow water[J]. Journal of Fluid Mechanics,1978,85(1):143-159.
[12]DAVIS A M J,GEER J F.The application of uni?form-slender-body theory to the motion of two ships in shallow water[J].Journal of Fluid Mechanics,1982,114:419-441.
[13]XIANG X.Maneuvering of two interacting ships in waves[D].Trondheim:NTNU,2012.
[14]XIANG X,F(xiàn)ALTINSEN O M.Maneuvering of two in?teracting ships in calm water[C]//11th International Symposium on Practical Design of Ships and Other Floating Structures.Rio de Janeiro,Brazil:[s.n.],2010.
[15]XIANG X,F(xiàn)ALTINSEN O M.Time domain simula?tion of two interacting ships advancing parallel in waves[C]//Proceedings of 2011 the 30th International Conference on Ocean,Offshore and Arctic Engineer?ing.Rotterdam,The Netherlands:ASME,2011:1-13.
[16]YUAN Z M,INCECIK A,DAI S S,et al.Hydrody?namic interactions between two ships travelling or sta?tionary in shallow waters[J].Ocean Engineering,2015,108:620-635.
[17]YUAN Z M,HE S,KELLETT P,et al.Ship-to-ship interaction during overtaking operation in shallow wa?ter[J].Journal of Ship Research,2015,59(3):172-187.
[18] ZHOU X Q,SUTULO S,SOARES C G.Computation of ship hydrodynamic interaction forces in restricted waters using potential theory[J].Journal of Marine Science and Application,2012,11(3):265-275.
[19]張謝東,劉祖源,吳秀恒.船舶超越時(shí)相互作用力理論計(jì)算[J].武漢交通科技大學(xué)學(xué)報(bào),1997,21(3):236-241.ZHANG X D,LIU Z Y,WU X H.Calculation of the interaction forces between ships with one overtaking the other[J].Journal of Wuhan Transportation Uni?versity,1997,21(3):236-241(in Chinese).
[20] 陳波,吳建康.淺水域中兩船交錯(cuò)運(yùn)行時(shí)的非定常波浪干涉[J].水動(dòng)力學(xué)研究與進(jìn)展(A輯),2005,20(4):486-491.CHEN B,WU J K.Interaction of shallow water waves generated by two parallel ships moving in opposite di?rections[J].Chinese Journal of Hydrodynamics(Ser.A),2005,20(4):486-491(in Chinese).
[21] 許勇,董文才.波浪中多船近距離并行航行的水動(dòng)力干擾研究[J].應(yīng)用數(shù)學(xué)和力學(xué),2014,35(4):389-400.XU Y,DONG W C.Hydrodynamic interactions be?tween multiple ships advancing parallel in close prox?imity in waves[J].Applied Mathematics and Mechan?ics,2014,35(4):389-400(in Chinese).
[22]XU Y,DONG W C.Study on characteristics of 3-D translating-pulsating source Green function of deep-water Havelock form and its fast integration method[J].China Ocean Engineering,2011,25(3):365-380.
[23]ZHOU G L,DONG W C,XIAO W B.Numerical study on the hydrodynamic interaction of ship-ship models in calm water[J].Journal of Ship Mechanics,2015,19(3):237-248.
[24]張晨曦,鄒早建,楊勇.淺水中會(huì)遇船舶水動(dòng)力相互作用數(shù)值研究[J].船舶力學(xué),2012,16(1/2):27-35.ZHANG C X,ZOU Z J,YANG Y.Numerical study on hydrodynamic interaction between ships meeting in shallow water[J].Journal of Ship Mechanics,2012,16(1/2):27-35(in Chinese).
[25]XU H F,ZOU Z J,LIU X Y.Prediction of ship-ship interaction forces in shallow water using a high-order panel method[J].Journal of Ship Mechanics,2016,20(12):1535-1546.
Numerical study of hydrodynamic interaction between two ships in calm water
GAO Zhiyong,BI Yi,YAO Chaobang
Department of Naval Architecture Engineering,Naval University of Engineering,Wuhan 430033,China
[Objectives]This paper researches the influence of hydrodynamic interaction between two parallel vehicles advancing in close proximity on maneuvering.[Methods]Based on an unsteady RANS approach,the hydrodynamic interaction between two parallel ship models advancing in calm water in close proximity is analyzed via numerical 3D simulations.The effects of transverse and longitudinal distances on hydrodynamic forces acting on the hull under distinct forward velocities are investigated.Meanwhile,the changes and contributions of various disturbance components in the hydrodynamic interactions of two parallel ships are discussed.[Results]The results indicate that the lateral force reaches its peak when the longitudinal distance between the ships'centers is zero,with each ship drawing the other close.The effect of lateral interaction sees a downward trend with the lateral distance increases,with the maximum decrease of lateral force reaching 50%in the studied range.The longitudinal distance has a great effect on yaw moment,resulting in changes in value and direction.It is easier for two ships to collide when they are near or have just pulled away.The influence of wave-making on the hydrodynamic interaction between two hulls can be ignored at low speeds,while at high speeds it should be taken into account.[Conclusions]The numerical results of this paper provide the basis for constructing a mathematical model of the interaction between two ships.
two parallel ships;hydrodynamic interaction;calm water;wave-making
U661.32
A
10.3969/j.issn.1673-3185.2017.06.002
http://kns.cnki.net/kcms/detail/42.1755.TJ.20171128.1111.024.html期刊網(wǎng)址:www.ship-research.com
高智勇,畢毅,姚朝幫.靜水中并行兩船的水動(dòng)力干擾效應(yīng)數(shù)值研究[J].中國(guó)艦船研究,2017,12(6):6-14.
GAO Z Y,BI Y,YAO C B.Numerical study of hydrodynamic interaction between two ships in calm wate[rJ].Chinese Journal of Ship Research,2017,12(6):6-14.
2017-04-25 < class="emphasis_bold"> 網(wǎng)絡(luò)出版時(shí)間:
時(shí)間:2017-11-28 11:11
國(guó)家自然科學(xué)基金資助項(xiàng)目(50879090,5150256);水動(dòng)力重點(diǎn)基金資助項(xiàng)目(9140A143071251311044);航空科學(xué)基金資助項(xiàng)目(20152316005)
高智勇,男,1992年生,碩士生。研究方向:船舶流體動(dòng)力性能。
E-mail:GAOZhiyong_HG@163.com
畢毅(通信作者),男,1963年生,副教授,碩士生導(dǎo)師。研究方向:船舶流體動(dòng)力性能。
E-mail:biyi101@163.com