王凱 閆磊 劉志新
[摘要]目的 探討神經(jīng)調(diào)節(jié)因子1(neuregulin-1,NRG1)轉(zhuǎn)染是否可以促進(jìn)骨髓基質(zhì)干細(xì)胞(bone marrow stromal cells,BMSCs)表達(dá)血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)。方法 提取與培養(yǎng)3只SD大鼠的BMSCs,采用NRG1質(zhì)粒轉(zhuǎn)染BMSCs并提取上清液,采用ELISA法測定轉(zhuǎn)染組上清液中VEGF的含量,將非轉(zhuǎn)染BMSCs的樣本作為對照組,采用免疫組化方法檢測細(xì)胞VEGF的表達(dá)。結(jié)果 BMSCs多數(shù)細(xì)胞處于伸展?fàn)顟B(tài),呈梭形;經(jīng)ELISA方法檢測,轉(zhuǎn)染組上清液VEGF的含量隨時間增加呈增長趨勢,與對照組比較,差異有統(tǒng)計學(xué)意義(P<0.05);經(jīng)免疫組化檢測,轉(zhuǎn)染組細(xì)胞VEGF陽性率為91.07%,對照組細(xì)胞陽性率為70.82 %,差異有統(tǒng)計學(xué)意義(P<0.05)。結(jié)論 NRG1轉(zhuǎn)染可以促進(jìn)BMSCs表達(dá)VEGF。
[關(guān)鍵詞]骨髓基質(zhì)干細(xì)胞;細(xì)胞培養(yǎng);血管內(nèi)皮生長因子;神經(jīng)調(diào)節(jié)因子1
[中圖分類號] R329 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1674-4721(2017)11(b)-0004-04
[Abstract]Objective To explore whether bone marrow stromal stem cells (BMSCs) could been promoted by NRG1 transfection to VEGF expression.Methods The BMSCs of three SD rats were isolated and cultured,BMSCs were transfected with NRG1 plasmids,and the supernates were extracted.The contents of VEGF in the supernates were detected by the method of ELISA,and the samples of BMSCs were regarded as the control group.The expression of VEGF in BMSCs was detected by immunohistochemical method.Results Most of BMSCs were stretched and spindle-shaped.The levels of VEGF in the transfection group were increased with time by ELISA detection,compared with the control group,there was significant difference (P<0.05).The VEGF positve cell rate of the transfection group was 91.07% by immunohistochemical detection,while the positive cell rate of the control group was 70.82%,there was significant difference compared with the control group (P<0.05).Conclusion BMSCs can promoted by NRG1 transfection to express VEGF.
[Key words]Bone marrow stromal cells;Cell culture;Vascular endothelial growth factor;Neuregulin-1
骨髓基質(zhì)干細(xì)胞(bone marrow stromal stem cells,BMSCs)因其低免疫源性、穩(wěn)定的擴增能力和無倫理問題等優(yōu)勢被應(yīng)用于治療缺血性疾病的研究[1],然而移植后BMSCs存活率過低的問題一直未被解決[2]。神經(jīng)調(diào)節(jié)因子1可通過激活血管內(nèi)皮ErbB2、ErbB3和ErbB4受體促進(jìn)血管新生,從而改善細(xì)胞存活的微環(huán)境[3]。血管內(nèi)皮生長因子是血管內(nèi)皮細(xì)胞特異性的肝素結(jié)合生長因子,可促進(jìn)內(nèi)皮細(xì)胞生長及血管新生[4]。有報道顯示,NRG1與VEGF的表達(dá)相關(guān)聯(lián)。而NRG1對BMSCs表達(dá)VEGF的影響,未被查見相關(guān)報道[5]。本研究將NRG1基因轉(zhuǎn)染到BMSCs,檢測其VEGF的表達(dá),旨在為提高移植后BMSCs存活率的相關(guān)研究奠定理論基礎(chǔ),現(xiàn)報道如下。
1材料與方法
1.1材料
出生2 d的SD大鼠3只(哈爾濱醫(yī)科大學(xué)實驗動物中心),胎牛血清、DMEM培養(yǎng)基(Hyclone公司),胰蛋白酶、EDTA(Gibco公司),Lipo2000(INVITROGEN公司),VEGF的ELISA試劑盒(GIBCO公司),VEGF抗體(Sigma公司),培養(yǎng)皿(Costar公司)。
1.2方法
1.2.1 BMSCs的提取與培養(yǎng) 新生2 d的SD大鼠用乙醚麻醉后處死,置于75%乙醇中浸泡殺菌5 min;在超凈工作臺中取出股骨,剪掉兩端,暴露骨髓腔;PBS沖洗骨髓腔,800 r/min離心沖洗3 min后去上清;用含10%胎牛血清的DMEM培養(yǎng)液重懸細(xì)胞;將懸液吸至培養(yǎng)皿,于37℃恒溫、5%CO2培養(yǎng)箱中培養(yǎng),每3天換液1次。當(dāng)細(xì)胞鋪滿培養(yǎng)板底部80%以上時傳代。
1.2.2 NRG1質(zhì)粒的轉(zhuǎn)染 取第3代融合至70%~80%細(xì)胞,向EP管內(nèi)加入1 ml的DMEM培養(yǎng)液,再加入40 μl Lipo2000,混合液室溫下靜置5 min;向另一只EP管內(nèi)加入1 ml的DMEM培養(yǎng)液,再加40 μl NRG1質(zhì)粒,混合液室溫下靜置5 min;將兩個EP管中溶液混勻后室溫下靜置20 min,將細(xì)胞培養(yǎng)皿中的原培養(yǎng)液吸出,加入6 ml的DMEM培養(yǎng)液,再加入DMEM/Lipo 2000/NRG1質(zhì)粒;繼續(xù)培養(yǎng)6 h后,吸出上清液,加常規(guī)培養(yǎng)液繼續(xù)培養(yǎng)3 d。endprint
1.2.3 ELISA法檢測VEGF表達(dá) NRG1轉(zhuǎn)染的BMSCs培養(yǎng)3 d后,接種于6孔板,作為轉(zhuǎn)染組,每孔含培養(yǎng)液3 ml(每孔底部鋪有的蓋玻片用于免疫組化檢測)。分別從繼續(xù)培養(yǎng)2、3、4、5 d的培養(yǎng)板各孔中分別吸取1 ml培養(yǎng)液至各EP管中(各孔吸取1 ml后,補充新鮮培養(yǎng)液1 ml),1000 r/min離心15~20 min,取出上清裝入新EP管中,標(biāo)記編號后將樣本放入-80℃超低溫冰箱保存?zhèn)溆?;將未轉(zhuǎn)染NRG1的BMSCs的培養(yǎng)液作為空白對照組。按照ELISA試劑盒說明檢測每個標(biāo)本中VEGF的含量。
1.2.4免疫熒光方法檢測VEGF 取出6孔板中的蓋玻片,D-Hank液漂洗3次;4%甲醛/PBS液固定15 min后,D-Hank液漂洗3次;1%牛血清白蛋白封閉30 min,加入100倍稀釋的一抗VEGF抗體孵育100 min,D-Hank液漂洗3次;1%牛血清白蛋白封閉30 min;加二抗孵育40 min,D-Hank液漂洗3次;DAB顯色1 min,D-Hank液漂洗3次;蘇木精復(fù)染胞核,樹膠封片。在熒光顯微鏡下隨機選取8個視野(n=6),取圖,計數(shù)。陽性細(xì)胞(棕色細(xì)胞)純度=陽性細(xì)胞/細(xì)胞總數(shù)(藍(lán)核細(xì)胞)×100%。
1.3統(tǒng)計學(xué)處理
采用SPSS 13.0統(tǒng)計軟件分析數(shù)據(jù),計量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,組間比較采用t檢驗,以P<0.05為差異有統(tǒng)計學(xué)意義。
2結(jié)果
2.1 BMSCs原代培養(yǎng)的光鏡形態(tài)分析
BMSCs原代培養(yǎng)第3天,在倒置顯微鏡下,多數(shù)細(xì)胞處于伸展?fàn)顟B(tài),呈梭形,折光率較低,貼于培養(yǎng)皿底壁;少數(shù)細(xì)胞處于未伸展?fàn)顟B(tài),呈圓形,折光率較高,附于培養(yǎng)皿底壁或處于懸浮狀態(tài),散在分布(圖1)。
2.2 NRG1轉(zhuǎn)染BMSCs結(jié)果分析
NRG1轉(zhuǎn)染BMSCs 3 d,熒光倒置顯微鏡下,如圖2所示,主要由細(xì)胞的胞體均發(fā)出綠色熒光(質(zhì)粒含綠色熒光蛋白eGFP基因)。由于細(xì)胞周期等因素影響,不同細(xì)胞發(fā)出的熒光強度呈現(xiàn)不統(tǒng)一狀態(tài)。
2.3 ELISA法檢測VEGF表達(dá)情況分析
NRG1轉(zhuǎn)染BMSCs上清液中VEGF的檢測結(jié)果如表1所示,NRG1轉(zhuǎn)染組VEGF表達(dá)隨時間增加呈增長趨勢,培養(yǎng)2、3、4、5 d組樣本與相應(yīng)培養(yǎng)天數(shù)的對照組樣本對比較,差異有統(tǒng)計學(xué)意義(P<0.05)。
2.4 VEGF的免疫組化檢測結(jié)果分析
免疫組化檢測結(jié)果顯示,呈棕色的細(xì)胞為VEGF表達(dá)陽性的細(xì)胞,細(xì)胞核經(jīng)蘇木精非特異性染色呈藍(lán)色,可以計數(shù)細(xì)胞總數(shù);轉(zhuǎn)染組DAB顯色深于對照組的顏色。轉(zhuǎn)染組陽性率為91.07%,對照組陽性率為70.82%,兩者比較差異有統(tǒng)計學(xué)意義(P<0.05)(圖3)。
3討論
為解決移植后BMSCs存活率過低的問題,科研工作者從不同角度進(jìn)行了大量相關(guān)研究。有學(xué)者發(fā)現(xiàn),低糖培養(yǎng)基、相對低的傳代接種密度和堿性成纖維細(xì)胞生長因子(basic fibroblast growth factor,bFGF)的使用更有利于BMSCs的增殖[6]。洛伐他汀[7]和糖皮質(zhì)激素氫化可的松[8]被證實能夠有效地抑制缺氧無血清情況下引起的BMSCs凋亡。利用轉(zhuǎn)基因技術(shù),帶有抗凋亡基因Bcl-2的BMSCs具有較高的移植存活能力并能促進(jìn)病變邊緣區(qū)的毛細(xì)血管新生[9]。其他公認(rèn)的抗凋亡基因如Akt轉(zhuǎn)染BMSCs也可減少移植后BMSCs的凋亡數(shù)量[10],具有保護(hù)細(xì)胞生存功能的熱休克蛋白家族也被應(yīng)用于促進(jìn)BMSCs存活的研究中,并被證實可促進(jìn)移植BMSCs的存活、增殖和分化能力[11]。攜帶VEGF基因的BMSCs可以促進(jìn)缺血腦組織新生血管的形成[12]。本實驗結(jié)果顯示,多數(shù)BMSCs可表達(dá)VEGF,而少數(shù)BMSCs則不表達(dá)VEGF。這可能與BMSCs存在多種亞群有關(guān)。
NRG1又稱乙酰膽堿受體誘導(dǎo)激動劑、神經(jīng)分化因子、神經(jīng)膠質(zhì)生長因子、感覺和運動神經(jīng)元衍生因子,含表皮生長因子樣活性域,屬于生長和分化因子家族,主要表達(dá)在神經(jīng)組織、呼吸系統(tǒng)和心臟,通過激活其受體ErbB發(fā)揮作用[13-14]。
有關(guān)NRG1與血管生成的關(guān)系,相關(guān)報道較少。NRG1敲除的小鼠缺血部位,毛細(xì)血管和動脈的發(fā)生減少,血流的恢復(fù)減慢;而外源性NRG1可加速血流的恢復(fù)[15]。在心臟中,NRG1主要由微血管內(nèi)皮細(xì)胞和心內(nèi)膜表達(dá),能促進(jìn)血管生成、減少細(xì)胞凋亡和減少氧化應(yīng)激等作用[16]。心肌梗死中高表達(dá)NRG1能增加缺血心肌的微血管數(shù)量[17]。在體外,NRG1可以促進(jìn)胚胎源性內(nèi)皮祖細(xì)胞增殖,并經(jīng)PI3K/Akt途徑,增強抗凋亡的能力,促進(jìn)細(xì)胞存活[18]。還有研究顯示,NRG1處理的小鼠心臟中,血管新生的血管生成素1(angiopoietin-1,Ang-1)的表達(dá)明顯增加[19]。本實驗結(jié)果顯示,NRG1還可以通過調(diào)節(jié)使VEGF過表達(dá),促進(jìn)BMSCs的存活。
NRG1與多種細(xì)胞的VEGF表達(dá)相關(guān)聯(lián)。有研究顯示,NRG1可顯著提高糖尿病大鼠心肌組織VEGF的表達(dá);在糖尿病和不穩(wěn)定型心絞痛患者中,血清中NRG1濃度與VEGF濃度呈正相關(guān)[20]。人冠狀動脈平滑肌細(xì)胞能表達(dá)ErbB2、ErbB3和ErbB4,但不能表達(dá)NRG1;NRG1處理能增強VEGF的表達(dá)[21]。在心臟發(fā)育和成熟心臟研究中發(fā)現(xiàn),NRG1可通過激活受體酪氨酸激酶的磷酸化進(jìn)行系列的信號轉(zhuǎn)導(dǎo)發(fā)揮其生物學(xué)效應(yīng),使得VEGF表達(dá)增強[5,22]。還有研究顯示,在結(jié)腸癌的活檢標(biāo)本中,NRGmRNA的表達(dá)與VEGF表達(dá)成正相關(guān)[23]。這些數(shù)據(jù)顯示,NRG1可能通過調(diào)節(jié)VEGF分泌,經(jīng)自分泌、旁分泌和促血管新生等多種機制促進(jìn)細(xì)胞的存活。
[參考文獻(xiàn)]
[1]Templin C,Lüscher TF,Landmesser U.Cell-based cardiovascular repair and regeneration in acute myocardial infarction and chronic ischemic cardiomyopathy-current status and future developments[J].Int J Dev Biol,2011,55(4-5):407-417.endprint
[2]Li HM,Liu L,Mei X,et al.Investigation on long-term survival of transplanted bone marrow mesenchymal stem cells in infarcted myocardium of rats[J].Zhonghua Xin Xue Guan Bing Za Zhi,2011,39(2):171-175.
[3]Russell KS,Stern DF,Polverini PJ,et al.Neuregulin activation of ErbB receptors in vascular endothelium leads to angiogenesis[J].Am J Physiol,1999,277(6 Pt 2):H2205-H2211.
[4]Shibuya M.Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis:a crucial target for anti-and pro-angiogenictherapies[J].Genes Cancer,2011, 2(12):1097-1105.
[5]Wadugu B,Kühn B.The role of neuregulin /ErbB2 /ErbB4 signaling in the heart with special focus on effects on cardiomyocyteproliferation[J].Am J Physiol Heart Circ Physiol,2012,302(11):H2143-H2147.
[6]Sotiropoulou PA,Perez SA,Salagianni M,et al.Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells[J].Stem Cells,2006, 24(2):462-471.
[7]徐瑞霞,陳曦.洛伐他汀抑制大鼠骨髓間充質(zhì)干細(xì)胞凋亡的實驗研究[J].中華老年多器官疾病雜志,2009,8(3):259-264.
[8]鄧琳子,陳曦.糖皮質(zhì)激素抗缺氧無血清誘導(dǎo)的大鼠骨髓間充質(zhì)干細(xì)胞的凋亡作用[J].中國分子心臟病學(xué)雜志,2009, 9(2):84-87.
[9]Li W,Ma N,Ong LL,et al.Bcl-2 engineered MSC sinhibited apoptosis and improved heart function[J].Stem Cells,2007,25(8):2118-2127.
[10]Gnecchi M,He H,Noiseux N,et al.Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement[J].FASEB J,2006,20(6):661-669.
[11]Wang X,Zhao T,Huang W,et al.Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors[J].Stem Cells,2009,27(12):3021-3031.
[12]宋艷玲,賴天寶,李嫚,等.VEGF基因修飾BMSCs移植對腦梗死大鼠血管源性機制的實驗研究[J].卒中與神經(jīng)疾病,2011,18(6):323-325.
[13]Fleck D,Garratt AN,Haass C,et al.BACE1 dependent neuregulinprocessing[J].Curr Alzheimer Res,2012,9(2):178-183.
[14]Meyer D,Yamaai T,Garratt A,et al.Isoform-specific expression and function of neuregulin[J].Development,1997,124(18):3575-3586.
[15]Hedhli N,Dobrucki LW,Kalinowski A,et al.Endothelial-derived neuregulin is an important mediator of ischaemia-induced angiogenesis and arteriogenesis[J].Cardiovasc Res,2012,93(3):516-524.
[16]Guo YF,Zhang XX,Liu Y,et al.Neuregulin-1 attenuates mitochondrial dysfunction in a rat model of heart failure[J].Chin Med J (Engl),2012,125(5):807-814.
[17]Xiao J,Li B,Zheng Z,et al.Therapeutic effects of neuregulin-1 gene transduction in rats with myocardial infarction[J].Coron Artery Dis,2012,23(7):460-468.endprint
[18]Safa RN,Peng XY,Pentassuglia L,et al.Neuregulin-1β regulation of embryonic endothelial progenitor cell survival[J].Am J Physiol Heart Circ Physiol,2011,300(4):1311-1319.
[19]Nakaoka Y,Nishida K,Narimatsu M,et al.Gab family proteins are essential for postnatal maintenance of cardiac function via neuregulin-1/ErbB signaling[J].J Clin Invest,2007,117(7):1771-1781.
[20]Zeng Z,Gui C,Nong Q,et al.Serum neuregulin-1β levels are positively correlated with VEGF and angiopoietin-1 levels in patients with diabetes and unstable angina pectoris[J].Int J Cardiol,2013,168(3):3077-3079.
[21]龐毅恒,桂春,陳力銓.神經(jīng)調(diào)節(jié)蛋白1對冠狀動脈平滑肌細(xì)胞表達(dá)血管生成因子的影響[J].中國病理生理雜志,2016,32(11):1945-1948.
[22]Mendes-Ferreira P,De Keulenaer GW,Leite-Moreira AF,et al.Therapeutic potential of neuregulin-1 in cardiovascular disease[J].Drug Discov Today,2013,18(17-18):836-842.
[23]Yonezawa M,Wada K,Tatsuguchi A,et al.Heregulin-induced VEGF expression via the ErbB3 signaling pathway in colon cancer[J].Digestion,2009,80(4):215-225.
(收稿日期:2017-07-21 本文編輯:祁海文)endprint