劉曉瑩,鄒偉,于學(xué)平
中國(guó)因卒中死亡的患者每年有160萬[1-2],其中有18%~47%是出血性卒中患者[3]。出血性卒中即非外傷性腦出血,是卒中的一個(gè)分型,其病理?yè)p害主要包括原發(fā)性腦損傷和繼發(fā)性腦損傷。原發(fā)性腦損傷是指出血后的占位效應(yīng),顱內(nèi)容積增大、內(nèi)環(huán)境遭到破壞而導(dǎo)致的顱內(nèi)壓升高等;繼發(fā)性腦損傷是指由初級(jí)損傷誘發(fā)的血液循環(huán)障礙、代謝紊亂、腦水腫、血液分解產(chǎn)物釋放等[4-5]。目前仍無有效的治療方法改善出血性卒中高發(fā)病率和高死亡率的現(xiàn)狀。越來越多的證據(jù)表明先天性免疫應(yīng)答和炎癥損傷參與了腦出血后神經(jīng)功能損傷的病理過程[4,6-9]。巨噬細(xì)胞誘導(dǎo)的C型凝集素受體(macrophage-inducible C-type lectin,Mincle)會(huì)結(jié)合壞死細(xì)胞中釋放的SAP130配體而激發(fā)下游反應(yīng)[10-11]。在壞死或外界刺激下,Mincle使下游脾酪氨酸激酶(spleen tyrosine kinase,Syk)磷酸化,促使NF-κB通路激活,產(chǎn)生促炎因子,并促進(jìn)中性粒細(xì)胞浸潤(rùn)[11-12]。在包括缺血性卒中和腦外傷在內(nèi)的中樞神經(jīng)系統(tǒng)疾病中,Mincle/Syk通路已被證實(shí)作為激發(fā)點(diǎn)參與炎癥反應(yīng)的發(fā)生[13-14]。最新研究表明,抑制Mince/Syk通路有助于控制蛛網(wǎng)膜下腔出血后早期的炎性腦損傷[10]。本文就Mincle/Syk信號(hào)轉(zhuǎn)導(dǎo)通路研究進(jìn)展進(jìn)行綜述,以期為研究出血性卒中發(fā)病機(jī)制提供新思路,為治療出血性卒中提供新靶點(diǎn)。
Mincle也叫作CLEC4E,連同Dectin-1、Dectin-2、MCL、MMR及DC-SIGN都隸屬于C型凝集素受體(C-type lectin receptor,CLR)家族[15-17],是由Makoto Matsumoto等[18]于1999年在小鼠腹腔巨噬細(xì)胞中發(fā)現(xiàn)的。目前對(duì)Mincle受體結(jié)構(gòu)的研究尚不完善,Makoto Matsumoto等[18]指出它是一種含有219個(gè)氨基酸的Ⅱ型跨膜蛋白,其中包括含氨基端的胞內(nèi)區(qū),一段跨膜區(qū)和含有羧基端的胞外區(qū)。Mincle受體在人類基因組中由于胞外區(qū)缺乏多態(tài)性,而使其生物學(xué)活性處于相對(duì)保守狀態(tài)[19]。Mincle受體主要在髓系細(xì)胞中表達(dá),特別是某些抗原提呈細(xì)胞如巨噬細(xì)胞、樹突狀細(xì)胞,在B細(xì)胞及大腦的小膠質(zhì)細(xì)胞中也可發(fā)現(xiàn)受體的表達(dá)[19-21]。Yue He等[10]最新的實(shí)驗(yàn)結(jié)果表明,Mincle在蛛網(wǎng)膜下腔出血(Subarachnoid Hemorrhage,SAH)大鼠腦組織的小神經(jīng)膠質(zhì)細(xì)胞和神經(jīng)元中均有表達(dá),但在星形細(xì)胞中無表達(dá)。Christine Ribbing等[22]發(fā)現(xiàn)肥大細(xì)胞表面也是Mincle受體表達(dá)分布的區(qū)域。
Mincle已被廣泛證實(shí),作為致病刺激的受體,隨之引發(fā)了先天的促炎癥反應(yīng)[23]。然而,最新的研究指出,Mincle不單純誘導(dǎo)促炎癥反應(yīng),還是一種免疫調(diào)節(jié)劑,它參與并促進(jìn)了抗炎細(xì)胞因子的表達(dá),并對(duì)抗調(diào)節(jié)促炎癥信號(hào)通路[24]。實(shí)驗(yàn)顯示,白細(xì)胞介素10(interleukin-10,IL-10)分泌增多可增強(qiáng)老鼠對(duì)病原菌的易感性[25]。而Mincle在巨噬細(xì)胞上的IL-10表達(dá)中起重要作用[26-27]。除了誘導(dǎo)抗炎細(xì)胞因子分泌外,Mincle最近還被發(fā)現(xiàn)關(guān)系到促炎信號(hào)的下行調(diào)節(jié)。Mincle基因敲除小鼠腹腔感染真菌后炎性細(xì)胞因子及中性粒細(xì)胞募集均較少[28]。Mincle可與結(jié)核分枝桿菌結(jié)合,激活巨噬細(xì)胞產(chǎn)生炎性因子和一氧化碳。此外機(jī)體在受到輻射等刺激時(shí),會(huì)引發(fā)胸腺細(xì)胞死亡和中性粒細(xì)胞浸潤(rùn),此時(shí)Mincle將發(fā)揮其免疫監(jiān)視的作用,減少炎性浸潤(rùn)造成的組織細(xì)胞損傷,有利于后期恢復(fù)。還有學(xué)者在類風(fēng)濕性關(guān)節(jié)炎患者血清中檢測(cè)到Mincle信使核糖核酸(ribonucleic acid,RNA)水平升高[29]??梢奙incle廣泛參與多種免疫反應(yīng)及炎癥反應(yīng)過程,而炎癥反應(yīng)正是出血性卒中后腦水腫加重的誘因,可引起嚴(yán)重的繼發(fā)性腦損傷。由此可見抑制Mincle及其相關(guān)的炎性反應(yīng)通路,可為防止出血性卒中炎性腦損傷、降低腦水腫造成的風(fēng)險(xiǎn)提供新思路。
CLR信號(hào)通過Syk-Card9通路生成一個(gè)獨(dú)特的轉(zhuǎn)錄激活程序。Syk與CLR胞內(nèi)磷酸化ITAM基序或銜接蛋白相綁定以啟動(dòng)信號(hào)轉(zhuǎn)導(dǎo)是通過以下幾種模塊完成的:①PLCγ2,在Dectin-1激活后被磷酸化誘發(fā)Ca2+流出,繼而通過激活鈣調(diào)磷酸酶觸發(fā)了NFAT轉(zhuǎn)錄因子的核外露[30-31]。PLCγ2-DC無法通過激活MAPK來分泌炎性細(xì)胞因子和指導(dǎo)T細(xì)胞Th1/Th17極化[30,32]。②Card9-Bcl10-Malt1復(fù)合體對(duì)由Dectin-1配體凝膠多糖所誘發(fā)的基因表達(dá)及TDM和TDB至關(guān)重要[33-34]。Card9-Bcl10-Malt1導(dǎo)致NF-κB激活而不需要激活MAPKs ERK1/2、JNK和p38[33,35-36]。同時(shí)有證據(jù)表明PLCγ將Syk與Card9相鏈接[30]。③Dectin-1和Syk激活的同時(shí)也激活了Raf-1受體,導(dǎo)致RelA磷酸化,從而介導(dǎo)了NF-kb調(diào)解基因的表達(dá)[37]。SAP130作為Mincle的一種結(jié)合蛋白是U2 snRNP的一個(gè)組件,固定存在于活細(xì)胞的細(xì)胞核中[11,38],當(dāng)組織損傷、細(xì)胞壞死時(shí),SAP130將被釋放出來,作為配體與Mincle受體相結(jié)合,使下游Syk磷酸化,進(jìn)而激活Card9依賴的級(jí)聯(lián)信號(hào)。其中Card9含量的多少與免疫反應(yīng)效果直接相關(guān),而Card9-Bcl10-Malt1復(fù)合體在NF-κB途徑的激活中扮演至關(guān)重要的角色。一旦NF-κB信號(hào)通路被激活,包括腫瘤壞死因子α、IL-6等在內(nèi)的相關(guān)炎性因子將呈現(xiàn)高表達(dá)。已有研究證實(shí)NF-κB參與了出血性卒中的炎性反應(yīng)過程[39],而關(guān)于其上游的Mincle的研究還比較少見。
De Rivero Vaccari Juan Carlos等[13]實(shí)驗(yàn)發(fā)現(xiàn),腦外傷后Mincle在大腦皮層神經(jīng)元細(xì)胞中被SAP130激活,并產(chǎn)生腫瘤壞死因子(tumor necrosis factor,TNF)。外傷后腦組織及腦脊液中Mincle表達(dá)增多,抑制Mincle通路后,TNF表達(dá)減少。Thiruma V Arumugam等[40]提出Mincle/Syk信號(hào)轉(zhuǎn)導(dǎo)通路參與了缺血性卒中小鼠的病理生理過程。也有實(shí)驗(yàn)表明[14],Mincle在人和鼠缺血腦組織中的免疫細(xì)胞及非免疫細(xì)胞中均有表達(dá);Mincle、Syk參與的先天免疫系統(tǒng)在腦缺血及再灌注的病理過程中起關(guān)鍵作用。Yue He等[10]實(shí)驗(yàn)發(fā)現(xiàn),Mincle在小膠質(zhì)細(xì)胞及神經(jīng)元中有表達(dá);SAH后Mincle/Syk信號(hào)通路被激活,炎性因子及MPO表達(dá)增多,抑制其通路激活則相應(yīng)指標(biāo)表達(dá)降低,并可減輕神經(jīng)功能損傷程度。Yi Xie等[41]在此基礎(chǔ)上,以Mincle/Syk為靶點(diǎn),利用人白蛋白干預(yù)SAH大鼠,取得了很好的抑制免疫及抗炎的效果。
Mincle作為CLR家族中“年輕的成員”,人們對(duì)其機(jī)理的研究尚不全面,但因其參與了多種疾病的先天性免疫應(yīng)答過程,并與炎癥反應(yīng)的激活密切相關(guān)而得到了學(xué)術(shù)界廣泛關(guān)注。并且大量實(shí)驗(yàn)數(shù)據(jù)表明,Mincle在腦組織,特別是小膠質(zhì)細(xì)胞和神經(jīng)元中均有表達(dá)。同時(shí)Mincle/Syk信號(hào)轉(zhuǎn)導(dǎo)通路也被發(fā)現(xiàn)參與了包含缺血性卒中在內(nèi)的多種神經(jīng)系統(tǒng)疾病的神經(jīng)炎性反應(yīng),特異性的抑制該通路激活可以抑制神經(jīng)炎癥,抗凋亡及改善神經(jīng)功能損傷。對(duì)于有著相同結(jié)構(gòu)基礎(chǔ)和相似生理病理機(jī)制的腦出血,Mincle在其發(fā)病及治療中的作用還未得到關(guān)注。基于以上研究成果和本綜述回顧情況,全面而深入地探索Mincle/Syk通路在腦出血神經(jīng)炎性反應(yīng)中的作用可能會(huì)成為理解腦出血發(fā)病機(jī)制和有效治療腦出血的新方法。
[1] JOHNSTON S C,MENDIS S,MATHERS C D.Global variation in stroke burden and mortality:estimates from monitoring,surveillance,and modelling[J]. Lancet Neurol,2009,8(4):345-354.
[2] CHEN Z. The mortality and death cause of national sample areas[M]. Beijing:Peking Union Medical University Press,2008.
[3] LIU L,WANG D,WONG K S,et al. Stroke and stroke care in China:huge burden,signi ficant workload,and a national priority[J]. Stroke,2011,42(12):3651-3654.
[4] KEEP R F,HUA Y,XI G. Intracerebral haemorrhage:mechanisms of injury and therapeutic targets[J].Lancet Neurol,2012,11(8):720-731.
[5] URDAY S,BESLOW L A,GOLDSTEIN D W,et al. Measurement of perihematomal edema in intracerebral hemorrhage[J]. Stroke,2015,46(4):1116-1119.
[6] FANG H,WANG P F,ZHOU Y,et al. Toll-like receptor 4 signaling in intracerebral hemorrhageinduced in fl ammation and injury[J/OL]. J Neuroin fl ammation,2013,10:27. https://doi.org/10.1186/1742-2094-10-27
[7] HWANG B Y,APPELBOOM G,AYER A,et al.Advances in neuroprotective strategies:potential therapies for intracerebral hemorrhage[J].Cerebrovasc Dis,2011,31(3):211-222.
[8] ZHOU Y,WANG Y,WANG J,et al. In fl ammation in intracerebral hemorrhage:from mechanisms toclinical translation[J/OL]. Prog Neurobiol,2014,115:25-44. https://doi.org/10.1016/j.pneurobio.2013.11.003
[9] LEI C,LIN S,ZHANG C,et al. High-mobility group box1 protein promotes neuroin fl ammation after intracerebral hemorrhage in rats[J/OL].Neuroscience,2013,228:190-199. https://doi.org/10.1016/j.neuroscience.2012.10.023
[10] HE Y,XU L,LI B,et al. Macrophage-Inducible C-Type Lectin/Spleen Tyrosine Kinase Signaling Pathway Contributes to Neuroin fl ammation After Subarachnoid Hemorrhage in Rats[J]. Stroke,2015,46(8):2277-2286.
[11] YAMASAKI S,ISHIKAWA E,SAKUMA M,et al.Mincle is an ITAM-coupled activating receptor that senses damaged cells[J]. Nat Immunol,2008,9(10):1179-1188.
[12] YASUKAWA S,MIYAZAKI Y,YOSHII C,et al. An ITAM-Syk-CARD9 signalling axis triggers contact hypersensitivity by stimulating IL-1 production in dendritic cells[J/OL]. Nat Commun,2014,5:3755. http://dx.doi.org/10.1038/ncomms4755
[13] DE RIVERO VACCARI J C,BRAND F J 3RD,BERTI A F,et al. Mincle signaling in the innate immune response after traumatic brain injury[J]. J Neurotrauma,2015,32(4):228-236.
[14] SUZUKI Y,NAKANO Y,MISHIRO K,et al.Involvement of Mincle and Syk in the changes to innate immunity after ischemic stroke[J/OL]. Sci Rep,2013,3:3177. http://dx.doi.org/10.1038/srep03177
[15] BROWN G D. Sensing necrosis with Mincle[J]. Nat Immunol,2008,9(10):1099-1100.
[16] KINGETER L M,LIN X. C-type lectin receptorinduced NF-κB activation in innate immune and in fl ammatory responses[J]. Cell Mol Immunol,2012,9(2):105-112.
[17] HARDISON S E,BROWN G D. C-type lectin receptors orchestrate antifungal immunity[J]. Nat Immunol,2012,13(9):817-822.
[18] MATSUMOTO M,TANAKA T,KAISHO T,et al. A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages[J]. J Immunol,1999,163(9):5039-5048.
[19] FLORNES L M,BRYCESON Y T,SPURKLAND A,et al. Identi fication of lectin-like receptors expressed by antigen presenting cells and neutrophils and their mapping to a novel gene complex[J].Immunogenetics,2004,56(7):506-517.
[20] MCKIMMIE C S,ROY D,F(xiàn)ORSTER T,et al.Innate immune response gene expression pro files of N9 microglia are pathogen-type speci fic[J]. J Neuroimmunol,2006,175(1-2):128-141.
[21] KAWATA K,ILLARIONOV P,YANG G X,et al.Mincle and human B cell function[J]. J Autoimmun,2012,39(4):315-322.
[22] RIBBING C,ENGBLOM C,LAPPALAINEN J,et al. Mast cells generated from patients with atopic eczema have enhanced levels of granule mediators and an impaired Dectin-1 expression[J]. Allergy,2011,66(1):110-119.
[23] RICHARDSON M B,WILLIAMS S J. MCL and Mincle:C-type lectin receptors that sense damaged self and pathogen-associated molecular patterns[J/OL]. Front Immunol,2014,5:288. https://doi.org/10.3389/ fimmu.2014.00288
[24] OSTROP J,LANG R. Contact,Collaboration,and Con fl ict:Signal Integration of Syk-Coupled C-Type Lectin Receptors[J]. J Immunol,2017,198(4):1403-1414.
[25] TURNER J,GONZALEZ-JUARRERO M,ELLIS D L,et al. In vivo IL-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice[J].J Immunol,2002,169(11):6343-6351.
[26] YAMASAKI S,MATSUMOTO M,TAKEUCHI O,et al. C-type lectin Mincle is an activating receptor for pathogenic fungus,Malassezia[J]. Proc Natl Acad Sci USA,2009,106(6):1897-1902.
[27] ISHIKAWA T,ITOH F,YOSHIDA S,et al.Identi fication of distinct ligands for the C-type lectin receptors Mincle and Dectin-2 in the pathogenic fungus Malassezia[J]. Cell Host Microbe,2013,13(4):477-488.
[28] BUGARCIC A,HITCHENS K,BECKHOUSE A G,et al. Human and mouse macrophage-inducible C-type lectin(Mincle)bind Candida albicans[J].Glycobiology,2008,18(9):679-685.
[29] NAKAMURA N,SHIMAOKA Y,TOUGAN T,et al. Isolation and expression pro filing of genes upregulated in bone marrow-derived mononuclear cells of rheumatoid arthritis patients[J]. DNA Res,2006,13(4):169-183.
[30] XU S,HUO J,LEE K G,et al. Phospholipase Cgamma2 is critical for Dectin-1-mediated Ca2+fl ux and cytokine production in dendritic cells[J]. J Biol Chem,2009,284(11):7038-7046.
[31] GOODRIDGE H S,SIMMONS R M,UNDERHILL D M. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells[J]. J Immunol,2007,178(5):3107-3115.
[32] TASSI I,CELLA M,CASTRO I,et al. Requirementof phospholipase C-gamma2(PLCgamma2)for Dectin-1-induced antigen presentation and induction of TH1/TH17 polarization[J]. Eur J Immunol,2009,39(5):1369-1378.
[33] GROSS O,GEWIES A,F(xiàn)INGER K,et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity[J]. Nature,2006,442(7103):651-656.
[34] WERNINGHAUS K,BABIAK A,GROSS O,et al. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation[J]. J Exp Med,2009,206(1):89-97.
[35] SAIJO S,IKEDA S,YAMABE K,et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans[J]. Immunity,2010,32(5):681-691.
[36] HARA H,ISHIHARA C,TAKEUCHI A,et al. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Tolllike receptors[J]. Nat Immunol,2007,8(6):619-629.
[37] GRINGHUIS S I,DEN DUNNEN J,LITJENS M,et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk[J]. Nat Immunol,2009,10(2):203-213.
[38] DAS B K,XIA L,PALANDJIAN L,et al.Characterization of a protein complex containing spliceosomal proteins SAPs 49,130,145,and 155[J].Mol Cell Biol,1999,19(10):6796-6802.
[39] LIU H,SUN X,ZOU W,et al. Scalp acupuncture attenuates neurological de ficits in a rat model of hemorrhagic stroke[J/OL]. Complement Ther Med,2017,32:85-90. https://doi.org/10.1016/j.ctim.2017.03.014
[40] ARUMUGAM T V,MANZANERO S,F(xiàn)URTADO M,et al. An atypical role for the myeloid receptor Mincle in central nervous system injury[J]. J Cereb Blood Flow Metab,2017,37(6):2098-2111.
[41] XIE Y,GUO H,WANG L,et al. Human albumin attenuates excessive innate immunity via inhibition of microglial Mincle/Syk signaling in subarachnoid hemorrhage[J/OL]. Brain Behav Immun,2017,60:346-360. https://doi.org/10.1016/j.bbi.2016.11.004