陳忠彥 鐘瑞霞 秦雅靜
[摘要] 輕型顱腦創(chuàng)傷(mTBI)發(fā)生率居高不下,成為世界性公共健康問(wèn)題。臨床上迫切需要更好的實(shí)踐指南以規(guī)范mTBI診療,進(jìn)而為mTBI患者提供安全返回工作崗位的時(shí)間表。影像學(xué)檢查在mTBI診斷方面尚不敏感,開(kāi)發(fā)一套能夠反映mTBI潛在病理生理學(xué)的生物標(biāo)志物將有助于mTBI的臨床診斷和預(yù)后評(píng)估。本文基于mTBI的病理解剖及病理生理學(xué),系統(tǒng)闡述血腦屏障破壞、軸索損傷、神經(jīng)炎性反應(yīng)及基因生物標(biāo)志物研究進(jìn)展,旨在發(fā)現(xiàn)一些可在臨床上推廣的生物標(biāo)志物,推動(dòng)mTBI的客觀診斷及個(gè)性化治療。
[關(guān)鍵詞] 輕型顱腦創(chuàng)傷;生物標(biāo)志物;病理學(xué);診斷
[中圖分類號(hào)] R446 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2018)09(c)-0021-05
[Abstract] The incidence of mild traumatic brain injury (mTBI) has remained high and has become a worldwide public health problem. There is a pressing need for better practice guidelines in clinic to standardize mTBI clinics, thereby providing mTBI patients with a timetable to return to work safe. Imaging studies are not yet sensitive to the diagnosis of mTBI, and the development of a set of biomarkers that can reflect the underlying pathophysiology of mTBI, that will contribute to clinical diagnosis and prognostic of mTBI. Based on the pathological anatomy and pathophysiology of mTBI, this article systematically elaborates the advancements of blood-brain barrier disruption, axonal injury, neuroinflammation, and gene biomarkers, in order to discover some promising biomarkers that are availible in clinic and promote mTBI objective diagnosis and personalized treatment.
[Key words] Mild traumatic brain injury; Biomarkers; Pathology; Diagnosis
輕型顱腦創(chuàng)傷(mild traumatic brain injury,mTBI)是世界性的公共健康問(wèn)題,全球每年新增5200萬(wàn)~5600萬(wàn)mTBI患者[1]。mTBI通常影響患者執(zhí)行、學(xué)習(xí)和記憶功能[2]。若在第一次mTBI未處理之前再次發(fā)生mTBI將使損傷作用加重,導(dǎo)致認(rèn)知功能明顯減退、需要更長(zhǎng)恢復(fù)時(shí)間等[3]。影像學(xué)檢查無(wú)法在事故現(xiàn)場(chǎng)完成,且一般影像學(xué)檢查在mTBI診斷方面尚不敏感。因此,開(kāi)發(fā)一套能夠反映mTBI潛在病理生理學(xué)的生物標(biāo)志物將有助于mTBI的臨床診斷和預(yù)后評(píng)估。本文綜述源于mTBI多因素病理學(xué)研究的生物標(biāo)志物研究進(jìn)展,旨在發(fā)現(xiàn)一些可在臨床上推廣的生物標(biāo)志物,推動(dòng)mTBI的客觀診斷及個(gè)性化治療。
1 mTBI的病理解剖及病理生理學(xué)
神經(jīng)元?jiǎng)?chuàng)傷性損傷的病理生理是“一個(gè)過(guò)程,而不是一個(gè)事件”[4]。(1)“剪切”使軸索發(fā)生特殊的離斷:mTBI后一般不會(huì)立即發(fā)生軸索斷開(kāi),過(guò)量的神經(jīng)遞質(zhì)釋放引起細(xì)胞環(huán)境紊亂可導(dǎo)致漸進(jìn)式的“次級(jí)軸索切斷”。這個(gè)過(guò)程只在mTBI患者很少部分軸索中發(fā)生,且大多數(shù)軸索隨著時(shí)間推移而修復(fù)。(2)“拉伸”導(dǎo)致軸索功能和結(jié)構(gòu)上的改變:動(dòng)物實(shí)驗(yàn)顯示,神經(jīng)元拉伸<4 mm,軸索無(wú)任何形態(tài)學(xué)改變;拉伸=5 mm產(chǎn)生視覺(jué)誘發(fā)電位;拉伸=6 mm可致收縮球和軸索腫脹等形態(tài)學(xué)改變。人類神經(jīng)元軸索雖有顯著的拉伸能力(約65%),一旦受到拉伸亦可出現(xiàn)結(jié)構(gòu)改變和代謝功能障礙。(3)“變速”事件可引起向心性的機(jī)械牽張力,大腦受到的作用力大小將導(dǎo)致不同結(jié)果:①結(jié)構(gòu)或功能上沒(méi)有明顯改變;②功能或代謝改變;③最終軸索的結(jié)構(gòu)改變。
神經(jīng)遞質(zhì)過(guò)量釋放和離子通道功能紊亂被認(rèn)為是腦部受到生物力學(xué)損傷的結(jié)果。過(guò)量的興奮性神經(jīng)遞質(zhì)釋放導(dǎo)致神經(jīng)元進(jìn)一步去極化,伴隨著鉀離子流出和持續(xù)性的鈣離子流入,離子平衡被打斷[5]。Na+-K+泵代償性功能亢進(jìn)以試圖恢復(fù)神經(jīng)元膜電位,這一耗能過(guò)程使大腦局部代謝率增加。線粒體內(nèi)鈣離子堆積會(huì)使代謝障礙并最終導(dǎo)致能量衰竭,軸索內(nèi)鈣超載已被證明會(huì)破壞神經(jīng)絲和微管,從而損害神經(jīng)元的連接性[6]。以上這些變化被認(rèn)為是短期或長(zhǎng)期mTBI癥狀的基礎(chǔ)。
2 血腦屏障破壞
在mTBI中,血腦屏障(blood-brain barrier,BBB)功能障礙既可能是急性的病理改變,也可能是未完全修復(fù)的慢性損傷結(jié)局[7]。原發(fā)性損傷后,BBB破壞將增加腦血管通透性,進(jìn)而使中樞神經(jīng)系統(tǒng)(central nervous system,CNS)蛋白暴露于炎癥細(xì)胞而產(chǎn)生CNS自身抗體。隨后的損傷可能使這些自身抗體進(jìn)入CNS,進(jìn)而破壞小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞和神經(jīng)元本身[8]。
2.1 BBB功能障礙的生物標(biāo)志物
目前尚無(wú)可靠的技術(shù)來(lái)直接和無(wú)創(chuàng)地檢測(cè)BBB的完整性和功能。因此,本文將討論腦脊液(cerebrospinal fluid,CSF)和血液中可反映BBB功能障礙的外周標(biāo)志物。
2.1.1 CSF/血清白蛋白比值 CSF/血清白蛋白比值已用于檢查重型TBI(severe TBI,sTBI)患者的BBB功能情況,并且仍然是BBB完整性的標(biāo)準(zhǔn)生物標(biāo)志物。Blennow等[9]研究發(fā)現(xiàn),sTBI患者中CSF/血清白蛋白比值升高,血液中的白蛋白進(jìn)入腦脊液表明BBB已損傷。但此類變化尚未見(jiàn)于腦震蕩或mTBI,這提示mTBI患者的BBB基本保持完整或是短暫的損傷。因此,CSF/血清白蛋白比值對(duì)mTBI相關(guān)的BBB損傷檢測(cè)不夠敏感。Shahim等[10]發(fā)現(xiàn)患有腦震蕩后遺癥的運(yùn)動(dòng)員CSF/血清白蛋白比值沒(méi)有改變??傮w而言,CSF/血清白蛋白比值檢測(cè)mTBI的方法缺乏實(shí)用性,未來(lái)需更多相關(guān)研究或使用更加靈敏的技術(shù),如質(zhì)譜或蛋白組學(xué)。
2.1.2 緊密連接蛋白(tight junction protein,TJP) Cummins等[11]研究發(fā)現(xiàn),TJP水平在BBB損傷中降低。由于TJP并非大腦中特有,故作為mTBI的診斷生物標(biāo)志物有其局限性[12]。腦組織特異性TJP家族的其他蛋白可能被證明是更具有特異性的BBB損傷相關(guān)生物標(biāo)志物,此領(lǐng)域值得進(jìn)一步研究。
2.1.3 S100B 正常情況下,S100B集中在CNS中,當(dāng)BBB破壞時(shí)將發(fā)生泄露,致使血清中的S100B增加[13]。雖然S100B的確切功能尚不清楚,但其作為BBB破壞的標(biāo)志物的敏感性與CSF/血清白蛋白比值相當(dāng)[7],血清中S100B水平已被試驗(yàn)性地用于急診室篩查mTBI患者。一項(xiàng)納入1560例mTBI患者的臨床研究顯示,初始血清S100B水平具有較高的陰性預(yù)測(cè)值(99.7%)[13]。血清S100B水平對(duì)于不便暴露于CT掃描環(huán)境下的患者具有很大潛力,但缺乏特異性、周圍血外源性S100B等原因限制了S100B的診斷價(jià)值。
2.1.4 血漿可溶性朊病毒蛋白 細(xì)胞朊病毒蛋白(PrPc)是完全位于質(zhì)膜的細(xì)胞外結(jié)構(gòu)域內(nèi)的糖蛋白,mTBI后的BBB破壞會(huì)致其釋放[14]。Kochanek等[15]研究顯示,朊病毒蛋白基因(PRNP)的轉(zhuǎn)錄在爆炸所致mTBI大鼠模型中上調(diào),血清水平PrPc升高。Pham等[14]研究表明,mTBI患者傷后24 h內(nèi)血漿PrPc明顯上升。休假期間的運(yùn)動(dòng)員PrPc水平也有所增加,這提示PrPc可能在mTBI后持續(xù)升高。
3 軸索損傷
雖然mTBI后軸索一般不會(huì)立即斷裂,但由于過(guò)量的神經(jīng)遞質(zhì)釋放引起的上述細(xì)胞環(huán)境紊亂可導(dǎo)致繼發(fā)性軸索斷裂[16]。這種局灶性軸索變性可以通過(guò)脫髓鞘導(dǎo)致進(jìn)一步的損傷。
3.1 軸索損傷的生物標(biāo)志物
3.1.1 Tau蛋白 Tau蛋白基因翻譯后需經(jīng)歷包括甲基化和糖化等修飾,mTBI可能改變這種修飾過(guò)程[17]。Choe等[18]研究發(fā)現(xiàn),mTBI后的tau過(guò)度磷酸化(p-tau)使微管不穩(wěn)定并改變軸索運(yùn)輸,導(dǎo)致神經(jīng)元功能受損。動(dòng)物模型顯示,mTBI與p-tau沉積增加之間存在聯(lián)系,這與神經(jīng)行為異常有關(guān)[18]。在慢性創(chuàng)傷性腦病晚期患者中已經(jīng)觀察到整個(gè)腦組織中廣泛的tau過(guò)度磷酸化,這被認(rèn)為是反復(fù)經(jīng)歷mTBI的后遺癥。由于顳葉癲癇和阿爾茨海默癥(Alzheimer′s Disease,AD)等疾病中也有類似的病理改變,故p-tau單獨(dú)作為mTBI特異性標(biāo)志物具有局限性。Rubenstein等[19]研究發(fā)現(xiàn),p-tau與總tau的比例可作為不同程度急性TBI的良好診斷和預(yù)后指標(biāo)。
3.1.2 去泛素化酶-泛素羧基端酯酶L1(ubiquitin carboxyl-terminal hydrolase isoenzyme L1,UCHL1) UCHL1是去泛素化酶家族成員之一,在神經(jīng)元胞質(zhì)中高度表達(dá)[20]。UCHL1占大腦總可溶性蛋白的1%~2%,另存在于周圍神經(jīng)系統(tǒng)的神經(jīng)肌肉接頭處[21]。關(guān)于UCHL1的研究呈現(xiàn)出了相互矛盾的結(jié)果:Kou等[22]研究發(fā)現(xiàn),患者血清UCHL1升高,但與白質(zhì)損傷不成正比;Papa等[23]研究顯示,在傷后1 h內(nèi)可在血清中檢測(cè)到UCHL1,且與損傷嚴(yán)重程度相關(guān)。與此相反,Puvenna等[24]研究發(fā)現(xiàn),mTBI患者與對(duì)照組之間的血清UCHL1水平無(wú)顯著差異。
3.1.3 神經(jīng)絲(neurofilaments,NFs) NFs在軸索中被發(fā)現(xiàn),而軸索對(duì)mTBI誘發(fā)的損傷極其敏感,所以NFs變化有潛力成為mTBI觸發(fā)的軸索損傷相關(guān)的良好生物標(biāo)志物[25]。NFs包含輕鏈、中鏈和重鏈三種成分,其中重鏈可被磷酸化(pNFH),并可保護(hù)NFs免于變性[26]。Gatson等[26]研究發(fā)現(xiàn),血清pNFH水平在傷后第1、3天升高,且在此兩個(gè)時(shí)間點(diǎn)均具有高敏感性和特異性。
3.1.4 神經(jīng)元特異性烯醇化酶(neuron-specific enolase,NSE) NSE在神經(jīng)元細(xì)胞體中含量豐富,且有希望成為神經(jīng)元損傷的生物標(biāo)志物。NSE最初在TBI和昏迷患者的血清及CSF中被發(fā)現(xiàn),CSF中NSE水平與TBI嚴(yán)重程度成正比,并與中度或重度TBI患者死亡率增加相關(guān)[27]。由于NSE對(duì)溶血反應(yīng)敏感、NSE亦存在于紅細(xì)胞和內(nèi)分泌細(xì)胞中[28],故CSF樣品中血液污染物有可能使NSE水平失準(zhǔn),從而限制NSE在臨床上的應(yīng)用。
3.1.5 中間絲蛋白膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP) 與NSE不同,GFAP幾乎只在星形膠質(zhì)細(xì)胞中表達(dá),盡管在人睪丸間質(zhì)細(xì)胞中也有發(fā)現(xiàn)。McMahon等[29]研究指出,CNS中的GFAP水平可改進(jìn)TBI預(yù)后預(yù)測(cè)模型,并可能作為顱內(nèi)損傷的生物標(biāo)志物。GFAP比S100B具有更高的確診率,Bogoslovsky等[30]研究報(bào)告顯示其在篩選mTBI患者方面有極好的準(zhǔn)確性。
3.1.6 髓磷脂堿性蛋白(myelin basic protein,MBP) MBP為少突膠質(zhì)細(xì)胞的成分,是CNS中第二豐富的蛋白質(zhì)。Berger等[31]發(fā)現(xiàn),mTBI兒童患者的血清MBP初始水平與對(duì)照組無(wú)顯著差異,而患者和對(duì)照組之間的MBP峰值水平存在顯著差異。MBP水平在傷后48~72 h內(nèi)并未迅速增加,但MBP的峰值水平會(huì)持續(xù)升高至傷后2周,這對(duì)預(yù)測(cè)未來(lái)TBI后可能發(fā)生的嚴(yán)重并發(fā)癥——顱內(nèi)出血(intracranial hemorrhage,ICH)具有特異性。此類生物標(biāo)志物尤其適用于無(wú)法向醫(yī)護(hù)人員表達(dá)mTBI事件過(guò)程或癥狀的兒童群體。
3.1.7 血影蛋白降解產(chǎn)物(spectrin breakdown products,SBDP) 細(xì)胞骨架蛋白αⅡ-血影蛋白存在于軸索和神經(jīng)元突觸前端。當(dāng)細(xì)胞受損時(shí),其被切割形成SBDP[32]。Siman等[33]研究發(fā)現(xiàn),mTBI患者組中的血漿N-末端αⅡ-血影蛋白片段(N-terminal αⅡ-spectrin fragment,SNTF)(一種被鈣蛋白酶切割的SBDP)升高。在這些患者中,血漿SNTF升高對(duì)傷后3個(gè)月的認(rèn)知能力具有100%的敏感性和75%的特異性。Berger等[34]研究發(fā)現(xiàn),mTBI曲棍球運(yùn)動(dòng)員初始血清SNTF升高,隨著mTBI癥狀消失而恢復(fù)到基線。SBDP有可能成為重返賽場(chǎng)的生物標(biāo)志物,并作為持續(xù)性腦震蕩后癥狀的預(yù)測(cè)指標(biāo)。
3.1.8 中性粒細(xì)胞明膠酶相關(guān)脂質(zhì)運(yùn)載蛋白(neutrophil gelatinase-associated lipocalin,NGAL) 盡管在大腦和周圍神經(jīng)中檢測(cè)到了NGAL的表達(dá),但它目前被認(rèn)為是原發(fā)性和繼發(fā)性腎損傷的生物標(biāo)志物[35]。此外,NGAL在如ICH等腦血管疾病動(dòng)物模型的CNS中上調(diào)[36]。Zhao等[37]研究發(fā)現(xiàn),動(dòng)物TBI模型中海馬區(qū)NGAL表達(dá)增加,并在傷后第1天出現(xiàn)高峰。人類TBI患者血清中NGAL較對(duì)照組明顯升高,sTBI患者表現(xiàn)得更為明顯[38]。
4 神經(jīng)炎性反應(yīng)
代謝紊亂和神經(jīng)元損傷的高峰期會(huì)引發(fā)以局部小膠質(zhì)細(xì)胞浸潤(rùn)和外周免疫細(xì)胞積聚為特征的炎性反應(yīng)。小膠質(zhì)細(xì)胞受刺激后產(chǎn)生局部細(xì)胞因子、蛋白酶和反應(yīng)性自由基等物質(zhì),從而進(jìn)一步促進(jìn)炎癥級(jí)聯(lián)反應(yīng)。mTBI后BBB通透性的增加也使外周免疫細(xì)胞積聚[39]。目前雖尚未清楚這些炎性反應(yīng)是否對(duì)神經(jīng)元存活有益,但mTBI后炎性反應(yīng)提示,免疫級(jí)聯(lián)反應(yīng)可能包含潛在的生物標(biāo)志物。
4.1 白細(xì)胞介素(IL)和其他急性期炎性反應(yīng)蛋白
Goodman等[40]研究報(bào)道,TBI后CSF中炎性蛋白濃度增加,如IL-6、IL-8和IL-10。Berger等[41]對(duì)16例兒童mTBI患者的初步研究顯示,IL-6和金屬蛋白酶(MMP)9濃度增加對(duì)mTBI診斷的敏感性為81%,特異性為94%。
4.2 海蟾蜍毒素(marinobufagenin,MBG)
由于mTBI導(dǎo)致BBB通透性增加,導(dǎo)致先前無(wú)法進(jìn)入的MBG升高。MBG是一種強(qiáng)心類固醇物質(zhì),在人類對(duì)抗腎動(dòng)脈狹窄時(shí)也反應(yīng)性釋放[42]。MBG不僅引發(fā)炎癥而且還維持炎性反應(yīng)。因此,MBG水平已被認(rèn)為是mTBI的潛在生物標(biāo)志物。Oliver等[43]研究顯示,腦震蕩運(yùn)動(dòng)員尿液中的MBG水平顯著升高,通常在傷后2~5 d達(dá)到高峰,并與神經(jīng)認(rèn)知癥狀相關(guān)。
5 基因生物標(biāo)志物
潛在的遺傳變異可能有助于了解個(gè)體受傷的易感性以及傷后發(fā)生繼發(fā)性后遺癥的可能性。在此,筆者簡(jiǎn)要討論編碼載脂蛋白E(APOE)和腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF)兩種可能的基因生物標(biāo)志物。
5.1 APOE
APOE基因是神經(jīng)退行性疾病研究的共同目標(biāo),而ε4等位基因已被證明是AD發(fā)展的最大危險(xiǎn)因素之一[44]。最近對(duì)APOE的研究已經(jīng)擴(kuò)展到確定APOE突變與發(fā)生mTBI風(fēng)險(xiǎn)之間的關(guān)系。然而,研究結(jié)果矛盾的:Lawrence等[45]研究表明,APOE ε4等位基因的存在與mTBI診斷無(wú)關(guān),但ε4等位基因的存在可能使mTBI后遺癥長(zhǎng)期存在的風(fēng)險(xiǎn)增加,尤其是認(rèn)知障礙和疲勞感。此外,早期mTBI可能會(huì)增加晚年患AD的風(fēng)險(xiǎn)[44]。
5.2 BDNF
BDNF已經(jīng)證實(shí)與多種類型的神經(jīng)變性相關(guān)聯(lián)。Lawrence等[45]研究指出,BDNF等位基因可能與發(fā)生mTBI風(fēng)險(xiǎn)增加相關(guān),且正在研究其與mTBI后潛在的記憶缺陷的關(guān)系。Dretsch等[46]研究顯示,攜帶有次要等位基因rs1157659的患者海馬出現(xiàn)萎縮且功能連接性較對(duì)照組減少,而這將增加記憶問(wèn)題。
6 總結(jié)
綜上所述,mTBI生物標(biāo)志物現(xiàn)狀大致可概括為以下幾點(diǎn):①有關(guān)mTBI生物標(biāo)志物的文獻(xiàn)始終缺乏跨研究的確認(rèn)和重復(fù);②只有少數(shù)針對(duì)mTBI臨床背景的研究,未能在臨床廣泛推廣;③年齡、性別和潛在生理機(jī)制的異質(zhì)性可能會(huì)掩蓋或擴(kuò)大生物標(biāo)志物對(duì)mTBI的重要性。基于當(dāng)前問(wèn)題,明細(xì)未來(lái)努力方向,即①擴(kuò)大樣本量、增加研究并考慮臨床適用性,著眼于床邊、戰(zhàn)場(chǎng)、賽場(chǎng)邊的篩選測(cè)試;②在臨床前和臨床模型中交替研究,考慮生物標(biāo)志物的相對(duì)重要性,如p-Tau和總Tau的比例;③開(kāi)發(fā)不同標(biāo)志物的聯(lián)合效用。
[參考文獻(xiàn)]
[1] Feigin VL,Theadom A,Barker-Collo S,et al. Incidence of traumatic brain injury in New Zealand:a population-based study [J]. Lancet Neurol,2013,12(1):53-64.
[2] Stuss DT. Traumatic brain injury:relation to executive dysfunction and the frontal lobes [J]. Curr Opin Neurol,2011, 24(6):584-589.
[3] McCrory P. Traumatic brain injury:revisiting the AAN guidelines on sport-related concussion [J]. Nat Rev Neurol,2013,9(7):361-362.
[4] Hadanny A,Efrati S. Treatment of persistent post-concussion syndrome due to mild traumatic brain injury:current status and future directions [J]. Expert review of neurotherapeutics,2016,16(8):875-887.
[5] Giza CC,Hovda DA. The new neurometabolic cascade of concussion [J]. Neurosurgery,2014,75(Suppl 4):S24-S33.
[6] Vagnozzi R,Signoretti S,Cristofori L,et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury:a multicentre,proton magnetic resonance spectroscopic study in concussed patients [J]. Brain,2010,133(11):3232-3242.
[7] Vagnozzi R,Signoretti S,Tavazzi B,et al. Temporal window of metabolic brain vulnerability to concussion:a pilot 1H-magnetic resonance spectroscopic study in concussed athletes—part Ⅲ [J]. Neurosurgery,2008,62(6):1286-1295.
[8] Giza CC,Hovda DA. The neurometabolic cascade of concussion [J]. J Athl Train,2001,36(3):228-235.
[9] Blennow K,Hampel H,Weiner M,et al. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease [J]. Nat Rev Neurol,2010,6(3):131-144.
[10] Shahim P,Tegner Y,Marklund N,et al. Astroglial activation and altered amyloid metabolism in human repetitive concussion [J]. Neurology,2017,88(15):1400-1407.
[11] Cummins PM. Occludin:one protein,many forms [J]. Mol Cell Biol,2012,32(2):242-250.
[12] Saitou M,Ando-Akatsuka Y,Itoh M,et al. Mammalian occludin in epithelial cells:its expression and subcellular distribution [J]. Eur J Cell Biol,1997,73(3):222-231.
[13] Marchi N,Rasmussen P,Kapural M,et al. Peripheral markers of brain damage and blood-brain barrier dysfunction [J]. Restor Neurol Neurosci,2003,21(3-4):109-121.
[14] Pham N,Akonasu H,Shishkin R,et al. Plasma soluble prion protein,a potential biomarker for sport-related concussions:a pilot study [J]. PLoS One,2015,10(2):e0117286.
[15] Kochanek PM,Dixon CE,Shellington DK,et al. Screening of biochemical and molecular mechanisms of secondary injury and repair in the brain after experimental blast-induced traumatic brain injury in rats [J]. J Neurotrauma,2013,30(11):920-937.
[16] Büki A,Povlishock JT. All roads lead to disconnection?—Traumatic axonal injury revisited [J]. Acta Neurochir (Wien),2006,148(2):181-193.
[17] Wang Y,Mandelkow E. Tau in physiology and pathology [J]. Nat Rev Neurosci,2016,17(1):5-21.
[18] Choe MC. The pathophysiology of concussion [J]. Curr Pain Headache Rep,2016,20(6):42.
[19] Rubenstein R,Chang B,Yue JK,et al. Comparing plasma phospho tau,total tau,and phospho tau-total tau ratio as acute and chronic traumatic brain injury biomarkers [J]. JAMA Neurol,2017,74(9):1063-1072.
[20] Wilkinson KD,Lee KM,Deshpande S,et al. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase [J]. Science,1989,246(4930):670-673.
[21] Jeter CB,Hergenroeder GW,Hylin MJ,et al. Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion [J]. J Neurotrauma,2013,30(8):657-670.
[22] Kou Z,Gattu R,Kobeissy F,et al. Combining biochemical and imaging markers to improve diagnosis and characterization of mild traumatic brain injury in the acute setting:results from a pilot study [J]. PLoS One,2013,8(11):e80296.
[23] Papa L,Lewis LM,Silvestri S,et al. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention [J]. J Trauma Acute Care Surg,2012,72(5):1335-1344.
[24] Puvenna V,Brennan C,Shaw G,et al. Significance of ubiquitin carboxy-terminal hydrolase L1 elevations in athletes after sub-concussive head hits [J]. PLoS One,2014,9(5):e96296.
[25] Johnson VE,Stewart W,Smith DH. Axonal pathology in traumatic brain injury [J]. Exp Neurol,2013,246:35-43.
[26] Gatson JW,Barillas J,Hynan LS,et al. Detection of neurofilament-H in serum as a diagnostic tool to predict injury severity in patients who have suffered mild traumatic brain injury [J]. J Neurosurg,2014,121(5):1232-1238.
[27] B?觟hmer AE,Oses JP,Schmidt AP,et al. Neuron-specific enolase,S100B,and glial fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury [J]. Neurosurgery,2011,68(6):1624-1630.
[28] Olsson B,Zetterberg H,Hampel H,et al. Biomarker-based dissection of neurodegenerative diseases [J]. Prog Neurobiol,2011,95(4):520-534.
[29] McMahon PJ,Panczykowski DM,Yue JK,et al. Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging [J]. J Neurotrauma,2015,32(8):527-533.
[30] Bogoslovsky T,Wilson D,Chen Y,et al. Increases of plasma levels of glial fibrillary acidic protein,tau,and amyloid β up to 90 days after traumatic brain injury [J]. J Neurotrauma,2017,34(1):66-73.
[31] Berger RP,Adelson PD,Pierce MC,et al. Serum neuron-specific enolase,S100B,and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children [J]. J Neurosurg,2005,103(1 Suppl):61-68.
[32] Kulbe JR,Geddes JW. Current status of fluid biomarkers in mild traumatic brain injury [J]. Exp Neurol,2016,275 Pt 3:334-352.
[33] Siman R,Giovannone N,Hanten G,et al. Evidence that the blood biomarker SNTF predicts brain imaging changes and persistent cognitive dysfunction in mild TBI patients [J]. Front Neurol,2013,4:190.
[34] Berger RP,Hayes RL,Richichi R,et al. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and αⅡ-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI [J]. J Neurotrauma,2012,29(1):162-167.
[35] Mishra J,Ma Q,Prada A,et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury [J]. J Am Soc Nephrol,2003,14(10):2534-2543.
[36] Dong M,Xi G,Keep RF,et al. Role of iron in brain lipocalin 2 upregulation after intracerebral hemorrhage in rats [J]. Brain Res,2013,1505:86-92.
[37] Zhao J,Xi G,Wu G,et al. Deferoxamine attenuated the upregulation of lipocalin-2 induced by traumatic brain injury in rats [J]. Acta Neurochir Suppl,2016,121:291-294.
[38] Zhao J,Chen H,Zhang M,et al. Early expression of serum neutrophil gelatinase-associated lipocalin(NGAL)is associated with neurological severity immediately after traumatic brain injury [J]. J Neurol Sci,2016,368:392-398.
[39] Habgood MD,Bye N,Dziegielewska KM,et al. Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice [J]. Eur J Neurosci,2007,25(1):231-238.
[40] Goodman JC,Van M,Gopinath SP,et al. Pro-inflammatory and pro-apoptotic elements of the neuroinflammatory response are activated in traumatic brain injury [J]. Acta Neurochir Suppl,2008,102:437-439.
[41] Berger RP,Ta′asan S,Rand A,et al. Multiplex assessment of serum biomarker concentrations in well-appearing children with inflicted traumatic brain injury [J]. Pediatr Res,2009,65(1):97-102.
[42] Tian J,Haller S,Periyasamy S,et al. Renal ischemia regulates marinobufagenin release in humans [J]. Hypertension,2010,56(5):914-919.
[43] Oliver J,Abbas K,Lightfoot JT,et al. Comparison of neurocognitive testing and the measurement of marinobufagenin in mild traumatic brain injury:a preliminary report [J]. J Exp Neurosci,2015,9:67-72.
[44] Liu CC,Kanekiyo T,Xu H,et al. Apolipoprotein E and Alzheimer disease:risk,mechanisms and therapy [J]. Nat Rev Neurol,2013,9(2):106-118.
[45] Lawrence DW,Comper P,Hutchison MG,et al. The role of apolipoprotein E episilon(ε)-4 allele on outcome following traumatic brain injury:a systematic review [J]. Brain Inj,2015,29(9):1018-1031.
[46] Dretsch MN,Williams K,Emmerich T,et al. Brain-derived neurotropic factor polymorphisms,traumatic stress,mild traumatic brain injury,and combat exposure contribute to postdeployment traumatic stress [J]. Brain Behav,2016,6(1):e00392
(收稿日期:2018-04-08 本文編輯:金 虹)