李省天,漆正堂,丁樹哲
?
急性運(yùn)動(dòng)對(duì)血清游離mtDNA以及先天免疫信號(hào)通路的影響
李省天,漆正堂,丁樹哲
華東師范大學(xué) 青少年健康評(píng)價(jià)與干預(yù)教育部重點(diǎn)實(shí)驗(yàn)室,上海 200241
目的:探討不同強(qiáng)度急性運(yùn)動(dòng)對(duì)小鼠外周血液循環(huán)中游離mtDNA含量和骨骼肌免疫信號(hào)通路的影響。方法:32只7周齡雄性小鼠隨機(jī)分為4組:安靜組(SED,n=8),低強(qiáng)度運(yùn)動(dòng)組(R10,n=8),中強(qiáng)度運(yùn)動(dòng)組(R15,n=8),高強(qiáng)度運(yùn)動(dòng)組(R20,n=8)。分別按照10 m/min、15 m/min、20 m/min的速度進(jìn)行一次40 min的跑臺(tái)運(yùn)動(dòng),運(yùn)動(dòng)后即刻采集血液和腓腸肌,應(yīng)用PCR技術(shù)檢測(cè)小鼠血清mtDNA含量及骨骼肌免疫信號(hào)分子基因表達(dá)。結(jié)果:1)高強(qiáng)度運(yùn)動(dòng)使小鼠血清游離mtDNA含量顯著增加(<0.05),但中、低強(qiáng)度運(yùn)動(dòng)組小鼠血清游離mtDNA與安靜組無(wú)顯著性差異;2)中低強(qiáng)度運(yùn)動(dòng)可使線粒體相關(guān)免疫信號(hào)分子(AIM2、NLRP3、TLR9、STING、MAVS)表達(dá)增加,其中,低強(qiáng)度運(yùn)動(dòng)組AIM2和STING的表達(dá)存在顯著性差異,而中等強(qiáng)度運(yùn)動(dòng)組均存在顯著性差異(<0.05),但高強(qiáng)度運(yùn)動(dòng)組免疫信號(hào)分子表達(dá)均下降,TLR9的表達(dá)存在顯著性差異。結(jié)論:1)急性高強(qiáng)度運(yùn)動(dòng)可使血清游離mtDNA顯著提高,并抑制先天性免疫反應(yīng),但血清游離mtDNA的來(lái)源是否來(lái)自骨骼肌尚需進(jìn)一步實(shí)驗(yàn)證明;2)中、低強(qiáng)度急性運(yùn)動(dòng)對(duì)血清游離mtDNA含量無(wú)顯著性影響,但可提高機(jī)體的先天性免疫能力,原因可能是細(xì)胞內(nèi)游離mtDNA含量的增加。
急性運(yùn)動(dòng);線粒體DNA;先天性免疫;AIM2; NLRP3;TLR9;STING;MAVS
先天性免疫是人類在漫長(zhǎng)進(jìn)化過程中獲得的一種遺傳特性,宿主通過模式識(shí)別受體(PatternRecognition Receptors,PRRs)識(shí)別病原體相關(guān)分子(PAMPs Pathogen-associated Molecular Patterns)和損傷相關(guān)分子(Damage-associated Molecular Patterns, DAMPs)引起免疫反應(yīng)。病原相關(guān)分子(PAMPs)主要有DNA(CpG-DNA)、雙鏈RNA、單鏈RNA、脂蛋白、表面糖蛋白和生物膜成分等[38]。損傷相關(guān)分子(DAMPs)是在組織或細(xì)胞受到損傷或其他情況時(shí),釋放出的一類被Toll樣受體和NOD樣受體[Nucleotide Oligomerization Domain(NOD)-like Receptor, NLR]識(shí)別進(jìn)而誘導(dǎo)免疫應(yīng)答發(fā)生的物質(zhì)。隨著線粒體相關(guān)病毒感受器(Mitochondrial-associated Viral Sensor, MAVS)的發(fā)現(xiàn),線粒體與先天免疫的關(guān)系開始引起重視。隨后發(fā)現(xiàn)的NLRP3、TLR9、STING、AIM2等免疫分子也與線粒體功能密切相關(guān)[11,20,29,33,36]。運(yùn)動(dòng)具有抗炎作用,其抗炎機(jī)制包括降低內(nèi)臟脂肪含量、增加骨骼肌中抗炎因子的產(chǎn)生和釋放,或者減少中性粒細(xì)胞與白細(xì)胞中TLRs(Toll-like Receptors)的表達(dá)[16]。線粒體DNA(Mitochondrial DNA,mtDNA)是組織或細(xì)胞受損時(shí)釋放入血的一種DAMP,參與先天免疫過程。有研究發(fā)現(xiàn),專業(yè)男性運(yùn)動(dòng)員血液中mtDNA含量低于正常男性,說(shuō)明規(guī)律運(yùn)動(dòng)可降低血液中mtDNA,對(duì)于抗炎癥反應(yīng)有積極作用[22]。此外,有證據(jù)表明,mtDNA作為DAMPs被免疫細(xì)胞識(shí)別引起免疫反應(yīng),因此線粒體也被稱為機(jī)體先天性免疫的觸發(fā)器[4]。
為了進(jìn)一步探求不同運(yùn)動(dòng)強(qiáng)度急性運(yùn)動(dòng)對(duì)骨骼肌先天免疫信號(hào)通路的影響,本研究設(shè)計(jì)了不同強(qiáng)度的急性運(yùn)動(dòng)方案,探討運(yùn)動(dòng)后即刻血清游離mtDNA的變化,并提出骨骼肌釋放的mtDNA可以激活細(xì)胞內(nèi)免疫蛋白信號(hào)分子的假設(shè)。
C57BL/6雄性小鼠32只,7周齡,體重19~22 g,由上海斯萊克實(shí)驗(yàn)動(dòng)物有限公司提供。國(guó)家標(biāo)準(zhǔn)嚙齒類動(dòng)物常規(guī)飼料和墊料均由上海生工生物技術(shù)有限公司提供,實(shí)驗(yàn)小鼠自由飲水飲食,每周更換墊料2~3次,飼養(yǎng)環(huán)境溫度20℃~23℃,相對(duì)濕度50%~70%,保持通風(fēng)。小鼠隨機(jī)分為4組:安靜組(SED)、低強(qiáng)度運(yùn)動(dòng)組(R10)、中強(qiáng)度運(yùn)動(dòng)組(R15)、高強(qiáng)度運(yùn)動(dòng)組(R20),每組均8只小鼠。
安靜組(SED)安靜飼養(yǎng),與運(yùn)動(dòng)組對(duì)照同步處死,運(yùn)動(dòng)組運(yùn)動(dòng)后即刻處死。立刻采取眼球取血的方式提取小鼠血液,隨后斷頸處死,并迅速取出完整的下肢腓腸肌,用錫紙包裹迅速置于液氮速凍,之后轉(zhuǎn)到-80℃超低溫冰箱保存,待測(cè)。
取血清,基因組抽提試劑盒抽提循環(huán)DNA(碧云天D0063),依據(jù)說(shuō)明書進(jìn)行操作。線粒體DNA的含量用PCR進(jìn)行檢測(cè),6 μL反應(yīng)體系:1X SYBR Green Master Mix,200 nmol/L引物,2μL血清DNA樣品。引物序列如下:ND F 5‘TCCGAGCATCTTATCCACGC3’,R5‘GTATGGTGGTAC TCCCGCTG3’;CYTb F5‘GGCTACGTCCTTCCATGAGG 3’,R5‘AGGTGAACGATTGCTAGGGC3’;COX F5‘AACA TGAAACCCCCAGCCAT3’,R5‘CTCCTCCAGCGGGATCA AAG3’。循環(huán)參數(shù):95°C 10 min,進(jìn)行40個(gè)循環(huán)(95°C 15s和58°C 1 min ),采集數(shù)據(jù)[17]。
取完整腓腸肌,對(duì)腓腸肌中線粒體相關(guān)免疫蛋白進(jìn)行mRNA表達(dá)的檢測(cè),RNA抽取參照Trizol(Invitrogen)試劑盒說(shuō)明書進(jìn)行。取RNA樣品5 μL,以oligo Dt為隨機(jī)引物反轉(zhuǎn)錄,進(jìn)行cDNA合成。10 μL反應(yīng)體系中含有:5×RT Buffer 2 μL,RT Enzyme Mix 0.5 μL,Primer Mix 0.5 μL,RNA 5 μL,Nuclease-free Water 2 μL。反應(yīng)條件:37 ℃,15 min;然后95℃,5 min;-20 ℃冰箱保存。
cDNA樣品按以下反應(yīng)體系進(jìn)行:SYBR green PCR Master Mix(TOYOBO)10 μL,上下游引物各0.8 μL,DEPC水6.4 μL,cDNA模板2 μL,總反應(yīng)體積20 μL。引物序列如下:TLR9 F 5’CTGGTGTGGAACATCATTC3’;R 5’CTT TCCATTGCTGTCCCTTC3’;NLRP3 F5’AGGCTCAATTCT ATCCTCTGTG3’, R5’CTTTCCAGTTCCTTAGCCCC3’;ST INGF5’TCTGCAAGAGAAGGGCTTTG3’, R5’AAGTACGG CAAAGCTGTGTG3’;MAVS F5’GCAACTGCTTTATCTCA TTTCC3’,R 5’AACCCTAACCTTCCTGCGAG3’;AIM2 F 5’GAATTCTAATTCTCAGCCATGC3’,R5’ACAGAAGGCTTCGAGTGCTG3’。反應(yīng)條件,Step1:預(yù)變性(95℃,45 s);Step2:40個(gè)循環(huán)(95℃,15 s;57℃,60 s;80℃,45 s);Step3:建立PCR產(chǎn)物溶解曲線,變性(95℃,15 s),退火(56℃,60 s),從56 ℃緩慢加熱到95℃,15 s;每1℃收集熒光一次。熔解曲線只顯示一個(gè)主波峰,說(shuō)明其擴(kuò)增特異性高,符合Real-Time PCR的技術(shù)要求。反應(yīng)結(jié)束后PCR儀輸出各反應(yīng)孔的CT值,GADPH基因?yàn)閮?nèi)參,根據(jù)公式2-ΔCT計(jì)算待測(cè)樣品目的基因相對(duì)表達(dá)進(jìn)行分析。
本研究通過監(jiān)測(cè)ND、CYTb、COX這3種mtDNA片段在小鼠血清中含量來(lái)反應(yīng)游離mtDNA在外周血液循環(huán)中的存在情況。結(jié)果顯示,3種mtDNA片段在SED組、R10組和R15組中的含量水平無(wú)差異,而R20組中3種mtDNA片段含量顯著增加(<0.05,圖1)。
圖1 小鼠血清ND1,CYTb,COX的DNA相對(duì)含量示意圖(n=8)
Figure1. Changes of ND1 DNA, CYTb DNA, COX DNA Relative Content in Serum of C57BL
注:*表示與SED組比<0.05。下同。
與SED組比,R10組中免疫蛋白mRNA表達(dá)水平均有所提高,其中,STING mRNA表達(dá)顯著上調(diào)(<0.01);R15組TLR9、AIM2、MAVS以及NLRP3 mRNA表達(dá)顯著提高(<0.05);R20組中免疫蛋白含量表達(dá)均有所下降,其中,TLR9 mRNA表達(dá)顯著降低(<0.05)。提示,中、低強(qiáng)度運(yùn)動(dòng)可明顯促進(jìn)骨骼肌中免疫信號(hào)分子的表達(dá)水平,而高強(qiáng)度運(yùn)動(dòng)組則對(duì)其產(chǎn)生了負(fù)面影響。
圖2 小鼠骨骼肌免疫信號(hào)分子mRNA相對(duì)含量示意圖(n=6)
Figure2. Changes of mRNA of Immune Signaling Molecule in C57BL
骨骼肌作為一個(gè)內(nèi)分泌器官參與了體內(nèi)很多生理反應(yīng),其中包括先天性免疫反應(yīng)。運(yùn)動(dòng)對(duì)先天性免疫的影響程度取決于運(yùn)動(dòng)的方式和強(qiáng)度[15]。急性運(yùn)動(dòng)會(huì)導(dǎo)致骨骼肌內(nèi)環(huán)境紊亂,引發(fā)肌纖維修復(fù)、重塑和再生長(zhǎng),致使肌纖維類型成分改變、衛(wèi)星細(xì)胞活化和成肌細(xì)胞分化,以此來(lái)適應(yīng)運(yùn)動(dòng)訓(xùn)練。在這一過程中骨骼肌與免疫系統(tǒng)之間的交流也越來(lái)越明顯,有研究證明,肌纖維收縮可改變?cè)摬课谎装Y環(huán)境,聚集白細(xì)胞來(lái)適應(yīng)骨骼肌修復(fù)、重塑和再生長(zhǎng)的過程[5]。Chatterjee等[7]以果蠅的間接飛行肌肉(Indirect Flight Muscles,IFM)為模型,發(fā)現(xiàn)殘翅果蠅無(wú)法產(chǎn)生有效的體液免疫應(yīng)答,并在以斑馬魚為脊椎動(dòng)物模型代表的實(shí)驗(yàn)中證實(shí)了骨骼肌可以增強(qiáng)先天性免疫的觀點(diǎn)。
線粒體是對(duì)細(xì)胞環(huán)境異常敏感的細(xì)胞器,細(xì)菌、病毒、氧化應(yīng)激等刺激因素均可使線粒體受損,可導(dǎo)致mtDNA釋放到細(xì)胞質(zhì)基質(zhì)甚至?xí)M(jìn)入到外周血液循環(huán)中誘發(fā)免疫炎癥反應(yīng)。外周循環(huán)DNA可以作為許多疾病確診及發(fā)展過程中的診斷指標(biāo)[3],有研究在癌癥患者的血液中發(fā)現(xiàn)了突變的mtDNA[9,12,23,24]。Zhang等[35]發(fā)現(xiàn),無(wú)菌創(chuàng)傷造成的類似敗血病的全身系統(tǒng)性炎癥是細(xì)胞受損后導(dǎo)致線粒體DAMPs釋放進(jìn)入外周血液循環(huán)引發(fā)先天性免疫造成的。孢疹病毒會(huì)引起mtDNA應(yīng)激增強(qiáng)抗病毒信號(hào)和Ⅰ型干擾素分泌,證明mtDNA是抗病毒反應(yīng)中的觸發(fā)器[31]。Chang等[6]對(duì)絕經(jīng)后婦女的研究發(fā)現(xiàn),規(guī)律運(yùn)動(dòng)可以增加白細(xì)胞內(nèi)mtDNA的拷貝數(shù),并有研究發(fā)現(xiàn),排球運(yùn)動(dòng)員血液游離mtDNA含量要低于正常人[22]。
本研究通過不同強(qiáng)度急性運(yùn)動(dòng)實(shí)驗(yàn),發(fā)現(xiàn)R20組(高強(qiáng)度運(yùn)動(dòng)組)血液中mtDNA含量明顯升高,其他3組無(wú)顯著性變化,提示,急性高強(qiáng)度運(yùn)動(dòng)可引起線粒體失調(diào)。目前,關(guān)于mtDNA進(jìn)入外周血液循環(huán)的機(jī)制還不清楚,可能的機(jī)制有3種:1)線粒體損傷導(dǎo)致線粒體膜通透性改變,致使mtDNA從線粒體通透性轉(zhuǎn)換孔(Mitochondrial Permeability Transition Pore,mPTP)進(jìn)入細(xì)胞質(zhì)基質(zhì);2)運(yùn)動(dòng)引起肌細(xì)胞分泌外泌體,mtDNA包裹在外泌體中被釋放到細(xì)胞外[26];3)溶酶體中核酸酶活性降低無(wú)法完全降解自噬體內(nèi)的mtDNA,或細(xì)胞凋亡致使mtDNA進(jìn)入外周循環(huán)[32]。急性大強(qiáng)度運(yùn)動(dòng)可造成肌細(xì)胞損傷[2],R20組(高強(qiáng)度運(yùn)動(dòng)組)血清游離mtDNA含量的明顯提高可能由于骨骼肌細(xì)胞損傷/凋亡引起的。
先天性免疫細(xì)胞識(shí)別PAMP的PRR有4類:TLR(Toll-like Receptor)、RLR(RIG-I Like Receptor)、NLR(NOD-like Receptor)和DNA受體AIM2(Absent in Melanoma 2)。TLR9是先天性免疫和適應(yīng)性免疫的紐帶,它的天然配體是病毒和細(xì)菌基因組中的非甲基化胞嘧啶-磷酸-鳥嘌呤二核苷酸序列(CPG-DNA)[13],在脊椎動(dòng)物的基因組中CpGDNA片段非常少見,且大多數(shù)處于甲基化狀態(tài),而線粒體中的DNA恰巧含有大量未甲基化的CpGDNA片段,當(dāng)mtDNA進(jìn)入細(xì)胞質(zhì)或釋放到細(xì)胞外時(shí)可被TLR9識(shí)別誘導(dǎo)細(xì)胞進(jìn)行免疫應(yīng)答,所以,mtDNA與TLR9可能與自身免疫性疾病和腫瘤的發(fā)生密切相關(guān)。在NLR家族中,NLRP3是一種能夠識(shí)別多種外來(lái)病原體和內(nèi)在危險(xiǎn)信號(hào)的PRR[8],mtDNA釋放到細(xì)胞基質(zhì)中可激活NLRP3炎癥小體[21,29],若減少線粒體中mtDNA的數(shù)量則可以降低NLRP3的活化,這進(jìn)一步證明了mtDNA在激活NLRP3炎癥小體過程中有直接作用[29]。MAVS即線粒體抗病毒信號(hào)蛋白(Mitochondrial Antiviral Signaling),是2005年由4個(gè)獨(dú)立的研究小組通過不同的方法鑒定的RLR(Retinic Acid-induced Gene I-like Recptor,RLR)下游的接頭蛋白,分別命名為MAVS、VISA(Virus-induced Signaling Adapter)、IPS-1(Interferon-β Promoter Stimulator 1)和Cardif(CARD Adapter Inducing IFN-β)[14,20,34]。MAVS基因敲除小鼠的實(shí)驗(yàn)表明,MAVS是RIG-I(Retinin Acid-Induced Gene I)和MDA5(Melanoma Differentiation-Associated Gene-5)共同的唯一接頭蛋白[30],MAVS的發(fā)現(xiàn)揭示了線粒體在RLR信號(hào)傳導(dǎo)中的重要地位。2008年,兩個(gè)獨(dú)立的研究小組報(bào)道了RLR信號(hào)通路中MAVS下游的接頭蛋白,分別命名為MITA(Mediator of IRF3 Activation)和STING(Stimulator of Interferon Gene)[10,37]。免疫共沉淀實(shí)驗(yàn)表明,STING的N端與MAVS的C端相互作用,使STING通過MAVS與RLR相互作用,實(shí)現(xiàn)RLR所介導(dǎo)的信號(hào)傳導(dǎo)。West等[30]研究表明,在誘導(dǎo)基因或者皰疹病毒感染情況下會(huì)導(dǎo)致線粒體轉(zhuǎn)錄因子A(TFAM)的缺損,降低mtDNA穩(wěn)定性造成線粒體擬核的丟失,進(jìn)入到細(xì)胞質(zhì)中的mtDNA會(huì)通過cGAS-cGAMP-STING信號(hào)通路來(lái)激活先天性免疫反應(yīng)。AIM2(Absent in Melanoma 2,AIM2)是一種主要定位在細(xì)胞質(zhì)的蛋白質(zhì),體外實(shí)驗(yàn)顯示,AIM2可與DNA直接結(jié)合,并與DNA狀態(tài)有關(guān):1)只結(jié)合雙鏈DNA,不結(jié)合單鏈DNA;2)與DNA長(zhǎng)度呈正相關(guān),雙鏈DNA越長(zhǎng),AIM2的活性越高,誘發(fā)的免疫反應(yīng)越強(qiáng)烈;3)DNA無(wú)特異性,病毒、細(xì)菌、哺乳動(dòng)物甚至人工合成的雙鏈DNA均可通過AIM2誘導(dǎo)先天性免疫[1]。線粒體DNA作為體內(nèi)的DAMPs,在細(xì)胞受損線粒體應(yīng)激等情況下會(huì)泄露到細(xì)胞質(zhì)中,與AIM2結(jié)合引發(fā)先天性免疫。
急性大強(qiáng)度運(yùn)動(dòng)可以引起一系列包括炎癥反應(yīng)和氧化應(yīng)激在內(nèi)的不良反應(yīng),但其發(fā)生機(jī)制尚未明確。目前關(guān)于骨骼肌與先天性免疫的研究鮮有報(bào)道,研究主要集中在先天性免疫與癌癥和心臟疾病等方向。有研究結(jié)果表明,中等強(qiáng)度運(yùn)動(dòng)可使T淋巴細(xì)胞產(chǎn)生積極性免疫應(yīng)答,提高機(jī)體免疫功能,而力竭運(yùn)動(dòng)和過度訓(xùn)練則抑制免疫細(xì)胞產(chǎn)生免疫應(yīng)答。肥胖病人機(jī)體常處在慢性炎癥狀態(tài),不同強(qiáng)度運(yùn)動(dòng)在提高胰島素敏感性的同時(shí)可顯著降低機(jī)體炎癥水平,表明運(yùn)動(dòng)影響炎癥相關(guān)信號(hào)通路[25]。對(duì)大鼠進(jìn)行急性不同強(qiáng)度的訓(xùn)練發(fā)現(xiàn),急性大強(qiáng)度運(yùn)動(dòng)引起的線粒體應(yīng)激會(huì)通過線粒體自噬激活NLRP3炎癥小體觸發(fā)心肌的炎癥反應(yīng)[18]。McCarthy等[19]對(duì)美式橄欖球運(yùn)動(dòng)員高血壓發(fā)病機(jī)制的研究發(fā)現(xiàn),肌肉損傷引起的DAMPs(HMGB1和mtDNA)進(jìn)入外周循環(huán)激活免疫細(xì)胞內(nèi)TLR9信號(hào)通路誘發(fā)先天性免疫反應(yīng)。以上研究提示,大強(qiáng)度運(yùn)動(dòng)引起炎癥反應(yīng)與線粒體密切相關(guān)。
本研究結(jié)果顯示,R15組(中等強(qiáng)度運(yùn)動(dòng))顯著提高了NLRP3、AIM2、STING、MAVS、TLR9等線粒體相關(guān)免疫蛋白的表達(dá),促使機(jī)體產(chǎn)生積極免疫應(yīng)答,與前人研究結(jié)果一致;R10組(低強(qiáng)度運(yùn)動(dòng))顯示免疫蛋白的表達(dá)均有所提高,但只有AIM2和STING具有顯著性差異,提示,急性低強(qiáng)度運(yùn)動(dòng)對(duì)先天性免疫系統(tǒng)可發(fā)揮積極影響;R20組(高強(qiáng)度運(yùn)動(dòng))顯示免疫蛋白的表達(dá)均下降,其中TLR9具有顯著性差異,提示,急性高強(qiáng)度運(yùn)動(dòng)抑制了線粒體相關(guān)免疫蛋白的表達(dá),對(duì)先天性免疫系統(tǒng)產(chǎn)生了消極影響。研究結(jié)果似乎并未證明假設(shè)的成立,R20組血清游離mtDNA存在顯著性提高而免疫蛋白的表達(dá)卻呈下降的現(xiàn)象,表明R20組骨骼肌內(nèi)可能出現(xiàn)明顯的細(xì)胞凋亡現(xiàn)象致使血清游離mtDNA含量提高,抑制骨骼肌內(nèi)先天性免疫功能。R10組與R15組血清游離mtDNA含量與安靜組并未產(chǎn)生顯著性差異,但線粒體相關(guān)免疫蛋白的表達(dá)均成提高的趨勢(shì),其中R15組存在顯著性差異,表明低強(qiáng)度運(yùn)動(dòng)和中等強(qiáng)度運(yùn)動(dòng)可能通過增加細(xì)胞質(zhì)內(nèi)游離mtDNA發(fā)揮增強(qiáng)先天性免疫的功能。綜上,本研究證明,急性高強(qiáng)度運(yùn)動(dòng)可使血清游離mtDNA顯著提高,并抑制先天性免疫反應(yīng),但血清游離mtDNA的來(lái)源是否來(lái)自骨骼肌尚需進(jìn)一步實(shí)驗(yàn)證明;中、低強(qiáng)度急性運(yùn)動(dòng)對(duì)血清游離mtDNA含量無(wú)顯著性影響,但可提高機(jī)體的先天性免疫能力,原因可能是細(xì)胞內(nèi)游離mtDNA含量的增加。
不同強(qiáng)度的急性運(yùn)動(dòng)對(duì)先天性免疫通路產(chǎn)生不同影響,中、低強(qiáng)度運(yùn)動(dòng)對(duì)先天性通路的激活可產(chǎn)生正向影響,原因可能是胞內(nèi)游離mtDNA含量增加。
高強(qiáng)度運(yùn)動(dòng)對(duì)先天性通路激活產(chǎn)生負(fù)向影響,原因可能是細(xì)胞受損或凋亡增加,而血清游離mtDNA含量的顯著增加是由此引起的。
[1] 郭曉強(qiáng), 李文婕, 辛啟亮. AIM2:一種先天免疫系統(tǒng)中的細(xì)胞質(zhì)雙鏈DNA感應(yīng)蛋白[J]. 生命的化學(xué), 2009(05):683-686.
[2] 王力先. 高強(qiáng)度運(yùn)動(dòng)訓(xùn)練對(duì)專業(yè)運(yùn)動(dòng)員免疫功能的影響及葫蘆素E潛在免疫調(diào)節(jié)作用研究[D]. 廣州:暨南大學(xué), 2015.
[3] ANKER P, MULCAHY H, STROUN M. Circulating nucleic acids in plasma and serum as a noninvasive investigation for cancer: time for large-scale clinical studies?[J]. Int J Cancer, 2003,103(2):149-152.
[4] ARNOULT D, SOARES F, TATTOLI I,. Mitochondria in innate immunity[J]. EMBO Rep, 2011,12(9):901-910.
[5] BEITER T, HOENE M, PRENZLER F,. Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks[J]. Exerc Immunol Rev, 2015,21:42-57.
[6] CHANG Y K, KIM D E, CHO S H,. Association between leukocyte mitochondrial DNA copy number and regular exercise in postmenopausal women[J]. Korean J Fam Med, 2016,37(6):334-339.
[7] CHATTERJEE A, ROY D, PATNAIK E,. Muscles provide protection during microbial infection by activating innate immune response pathways in drosophila and zebrafish[J]. Dis Model Mech, 2016,9(6):697-705.
[8] GURUNG P, LUKENS J R, KANNEGANTI T D. Mitochondria: diversity in the regulation of the NLRP3 inflammasome[J]. Trends Mol Med, 2015,21(3):193-201.
[9] HIBI K, NAKAYAMA H, YAMAZAKI T,. Detection of mitochondrial DNA alterations in primary tumors and corresponding serum of colorectal cancer patients[J]. Int J Cancer, 2001,94(3):429-431.
[10] ISHIKAWA H, BARBER G N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling[J]. Nature, 2008,455(7213):674-678.
[11] JABIR M S, HOPKINSs L, RITCHIE N D. Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy[J]. Autophagy, 2015,11(1):166-182.
[12] JERONIMO C, NOMOTO S, CABALLERO O L,. Mitochondrial mutations in early stage prostate cancer and bodily fluids[J]. Oncogene, 2001,20(37):5195-5198.
[13] KASASHIMA K, SUMITANI M, ENDO H. Human mitochondrial transcription factor A is required for the segregation of mitochondrial DNA in cultured cells[J]. Exp Cell Res, 2011,317(2):210-220.
[14] KAWAI T, TAKAHASHI K, SATO S,. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction[J]. Nat Immunol, 2005,6(10):981-988.
[15] KRUGER K, MOOREN F C, PILAT C. The immunomodulatory effects of physical activity[J]. Curr Pharm Des, 2016,22(24):3730-3748.
[16] LANCASTER G I, KHAN Q, DRYSDALE P,. The physiological regulation of toll-like receptor expression and function in humans[J]. J Physiol, 2005,563(Pt 3):945-955.
[17] LI L, HANN H W, WAN S,. Cell-free circulating mitochondrial DNA content and risk of hepatocellular carcinoma in patients with chronic HBV infection[J]. Sci Rep, 2016,6:23992.
[18] LI H, MIAO W, MA J,. Acute exercise-Induced mitochondrial stress triggers an inflammatory response in the myocardium via NLRP3 inflammasome activation with mitophagy[J]. Oxid Med Cell Longev, 2016,2016:1987149.
[19] MCCARTHY C G, WEBB R C. The toll of the gridiron: damage-associated molecular patterns and hypertension in American football[J]. FASEB J, 2016,30(1):34-40.
[20] MEYLAN E, CURRAN J, HOFMANN K,. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus[J]. Nature, 2005,437(7062):1167-1172.
[21] NAKAHIRA K, HASPEL J A, RATHINAM V A,Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome[J]. Nat Immunol, 2011,12(3):222-230.
[22] NASI M, CRISTANI A, PINTI M,. Decreased Circulating mtDNA Levels in Professional Male Volleyball Players[J]. Int J Sports Physiol Perform, 2016,11(1):116-121.
[23] NOMOTO S, YAMASHITA K, KOSHIKAWA K,. Mitochondrial D-loop mutations as clonal markers in multicentric hepatocellular carcinoma and plasma[J]. Clin Cancer Res, 2002,8(2):481-487.
[24] OKOCHI O, HIBI K, UEMURA T,. Detection of mitochondrial DNA alterations in the serum of hepatocellular carcinoma patients[J]. Clin Cancer Res, 2002,8(9):2875-2878.
[25] RINGSEIS R, EDER K, MOOREN F C,. Metabolic signals and innate immune activation in obesity and exercise[J]. Exerc Immunol Rev, 2015,21:58-68.
[26] SAFDAR A, SALEEM A, TARNOPOLSKY M A. The potential of endurance exercise-derived exosomes to treat metabolic diseases[J]. Nat Rev Endocrinol, 2016,12(9):504-517.
[27] SCHEFER V, TALAN M I. Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity[J]. Exp Gerontol, 1996,31(3):387-392.
[28] SETH R B, SUN L, EA C K,. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3[J]. Cell, 2005,122(5):669-682.
[29] SHIMADA K, CROTHER T R, KALIN J,. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis[J]. Immunity, 2012,36(3):401-414.
[30] SUN Q, SUN L, LIU H H,. The specific and essential role of MAVS in antiviral innate immune responses[J]. Immunity, 2006,24(5):633-642.
[31] WEST A P, KHOURY-HANOLD W, STARON M,Mitochondrial DNA stress primes the antiviral innate immune response[J]. Nature, 2015,520(7548):553-557.
[32] WEST A P, SHADEL G S. Mitochondrial DNA in innate immune responses and inflammatory pathology[J]. Nat Rev Immunol, 2017,17(6):363-375.
[33] WHITE M J, MCARTHUR K, METCALF D,. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production[J]. Cell, 2014,159(7):1549-1562.
[34] XU L G, WANG Y Y, HAN K J,. VISA is an adapter protein required for virus-triggered IFN-beta signaling[J]. Mol Cell, 2005,19(6):727-740.
[35] ZHANG Q, RAOOF M, CHEN Y,. Circulating mitochondrial DAMPs cause inflammatory responses to injury[J]. Nature, 2010,464(7285):104-107.
[36] ZHANG Q, ITAGAKI K, HAUSER C J. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase[J]. Shock, 2010,34(1):55-59.
[37] ZHONG B, YANG Y, LI S,. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation[J]. Immunity, 2008,29(4):538-550.
[38] ZHU J, MOHAN C. Toll-like receptor signaling pathways--therapeutic opportunities[J]. Mediat Inflamm, 2010,2010:781235.
Effects of Acute Exercise on Circulating mtDNA and Innate Immune Signaling Pathways
LI Xing-tian, QI Zheng-tang, DING Shu-zhe
East China University, Shanghai 200241China.
Objective: To discuss the effects of acute exercise with different intensity on circulating mitochondrial DNA (mtDNA) and immune signaling molecules in skeletal muscle of rats. Methods: The mice were randomly divided into rest group (SED, n=8), low intensity group (R10, n=8), medium intensity group (R15, n=8), high intensity group (R20, n=8). The speed of treadmill running is 10m/min for R10, 15m/min for R15, 20 m/min for R20, Each run 40 minutes. Quantitative real time PCR was used to detect the content of mtDNA and skeletal muscle MAVS, NLRP3, TLR9, STING as well as AIM2 mRNA genes expression in each group. Results: 1 )The content of mtDNA in R20 groups improved significantly (P<0.05) ; 2 )The immune molecules’ expression improved in R15 and R10 groups ,but in R15 group improved more obviously (P<0.05) ; however ,the immune molecules’ expression in R20 all declined. Conclusion: The data suggest that acute heavy exercise can make the serum circulating mtDNA increased significantly and inhibit immune response, while the source of the serum free mtDNA from skeletal muscle still needs further experimental proof. The moderate and low intensity acute exercise has no significant effect on serum free mtDNA content, but it can improve the innate immunity ability of the body, which may be the increase of free mtDNA content in the cell.
G804.2
A
1002-9826(2018)01-0123-06
10.16470/j.csst.201801017
2017-03-10;
2017-12-21
國(guó)家自然科學(xué)基金資助項(xiàng)目(316712141)。
李省天,女,在讀碩士研究生,主要研究方向?yàn)檫\(yùn)動(dòng)適應(yīng)與線粒體信號(hào)調(diào)控,E-mail:1838006723@qq.com。