王慶杰,劉正道,何 進(jìn),李洪文,李問(wèn)盈,何建懷,鄢雄磊
?
砍切式玉米秸稈還田機(jī)的設(shè)計(jì)與試驗(yàn)
王慶杰,劉正道,何 進(jìn),李洪文※,李問(wèn)盈,何建懷,鄢雄磊
(中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)
針對(duì)中國(guó)北方一年兩熟區(qū)玉米收獲后地表秸稈量大,甩刀式秸稈還田機(jī)粉碎長(zhǎng)度合格率低,影響后續(xù)小麥少免耕播種等問(wèn)題,基于四連桿機(jī)構(gòu)往復(fù)運(yùn)動(dòng)原理,利用地表作為支撐,提出了利用砍切對(duì)秸稈切段還田的思路,進(jìn)而研發(fā)出一種砍切式玉米秸稈還田機(jī)。為避免后續(xù)小麥播種時(shí)出現(xiàn)擁堵現(xiàn)象,設(shè)計(jì)秸稈切斷長(zhǎng)度不超過(guò)小麥窄行行距的一半(6 cm);通過(guò)理論計(jì)算和動(dòng)力學(xué)仿真分析,優(yōu)化了切刀的運(yùn)動(dòng)軌跡并確定切稈裝置各桿件尺寸并分析了機(jī)具切割功耗為28.39 kW;利用ANSYS軟件對(duì)切刀進(jìn)行有限元靜力分析,切刀力學(xué)性能滿足設(shè)計(jì)要求。田間對(duì)比試驗(yàn)結(jié)果表明,在玉米收獲后秸稈全量保留的條件下,與甩刀式秸稈還田機(jī)相比,砍切式秸稈還田機(jī)粉碎后秸稈平均長(zhǎng)度短0.73 cm,秸稈長(zhǎng)度不合格率小5個(gè)百分點(diǎn),秸稈長(zhǎng)度變異系數(shù)小0.218;機(jī)具運(yùn)行平穩(wěn)性試驗(yàn)表明砍切式玉米秸稈還田機(jī)振動(dòng)略大于甩刀式玉米秸稈還田機(jī),但差異不顯著,該機(jī)平穩(wěn)性滿足作業(yè)要求;切刀入土平均深度為7.71 cm,可明顯降低0~10 cm土層土壤容重;后續(xù)播種試驗(yàn)試驗(yàn)表明在砍切式秸稈還田機(jī)作業(yè)后地表進(jìn)行播種時(shí),播種機(jī)無(wú)擁堵現(xiàn)象且播種深度合格率比甩刀式大2.3個(gè)百分點(diǎn)。該文研究成果能夠?yàn)橹袊?guó)北方一年兩熟區(qū)玉米秸稈還田提供一種新型裝備,有利于促進(jìn)秸稈還田技術(shù)的推廣。
機(jī)械化;設(shè)計(jì);優(yōu)化;秸稈還田機(jī);砍切;粉碎長(zhǎng)度;四桿機(jī)構(gòu)
中國(guó)是世界主要糧食大國(guó),每年秸稈產(chǎn)量達(dá)7億多t,其中玉米秸稈產(chǎn)量(2.73億t)最大[1-2]。玉米秸稈含有豐富的農(nóng)作物生長(zhǎng)所需的各種營(yíng)養(yǎng)元素,是農(nóng)業(yè)生產(chǎn)中最主要的可再生資源[3]。近年來(lái)研究表明,作物秸稈直接還田有利于改善土壤結(jié)構(gòu)[4],提高土壤肥力[5],促進(jìn)土壤呼吸[6],增加作物產(chǎn)量[7],減少秸稈焚燒,簡(jiǎn)化作業(yè)工序,是實(shí)現(xiàn)農(nóng)業(yè)生產(chǎn)節(jié)本增效,促進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展的重要途徑。
中國(guó)玉米種植區(qū)域主要集中在東北一年一熟區(qū)和華北、西北小麥/玉米一年兩熟區(qū)。東北地區(qū)玉米收獲后秸稈在地表經(jīng)過(guò)長(zhǎng)期風(fēng)化、腐蝕、粉碎后力學(xué)性能減弱,且玉米為穴播,行距大,對(duì)秸稈粉碎質(zhì)量要求相對(duì)較低。一年兩熟區(qū)10月份玉米收獲后秸稈直接覆蓋還田免耕播種小麥,還田過(guò)程中玉米秸稈含水率高、韌性強(qiáng),粉碎難度大,且小麥播種行距小,粉碎秸稈長(zhǎng)短不一易造成機(jī)具堵塞、晾種等現(xiàn)象,影響小麥播種質(zhì)量[8-11]。
目前中國(guó)應(yīng)用較廣泛的秸稈還田機(jī)械主要通過(guò)高速旋轉(zhuǎn)的錘爪或甩刀,對(duì)秸稈進(jìn)行多次高速錘擊、切割和揉搓,將秸稈粉碎成絲瓤狀[12-13]。該秸稈粉碎方式刀軸轉(zhuǎn)速高,粉碎刀需與地表保持一定間隙,貼近地表的秸稈易出現(xiàn)漏粉現(xiàn)象,且秸稈在粉碎罩殼內(nèi)隨機(jī)受到錘擊和切割,粉碎長(zhǎng)度隨機(jī)性較大,粉碎長(zhǎng)度合格率不能達(dá)到小麥播種要求。目前國(guó)內(nèi)對(duì)甩刀結(jié)構(gòu)進(jìn)行了大量研究,設(shè)計(jì)了錘爪式[14]、Y型[15-16]、L型[17]、直刀型[18]等不同結(jié)構(gòu)的甩刀,在一定程度上提高了秸稈粉碎質(zhì)量,但其秸稈粉碎原理和方式未發(fā)生較大改變,仍存在漏粉、粉碎不均現(xiàn)象。鄭智旗等[19]設(shè)計(jì)了動(dòng)定刀支撐滑切式秸稈粉碎裝置并進(jìn)行了田間試驗(yàn),通過(guò)動(dòng)刀定刀組合與有支撐滑切相結(jié)合,可有效提高秸稈粉碎長(zhǎng)度合格率。
本文針對(duì)現(xiàn)有秸稈粉碎還田機(jī)應(yīng)用過(guò)程中存在漏粉、粉碎不均問(wèn)題,提出一種地面支撐砍切式玉米秸稈還田機(jī),以期解決華北、西北小麥/玉米一年兩熟區(qū)小麥播種前玉米秸稈切碎長(zhǎng)度不合要求的問(wèn)題。
砍切式玉米秸稈還田機(jī)主要由機(jī)架、壓輥、傳動(dòng)裝置、切稈裝置組成。其中壓輥位于機(jī)具最前端,其主要功能是將直立或倒伏的玉米秸稈按機(jī)具前進(jìn)方向壓倒、鋪放;傳動(dòng)裝置由變速箱和2個(gè)左右對(duì)稱(chēng)的傳動(dòng)鏈輪組成;切稈裝置由偏心輪盤(pán)、刀桿、切刀、搖桿組成,是機(jī)具的主要工作部件,位于壓輥之后,用于將順行鋪放好的秸稈砍切成段。該機(jī)整體結(jié)構(gòu)如圖1所示。
1.傳動(dòng)系統(tǒng) 2.機(jī)架 3.壓輥 4.切刀 5.切稈裝置 6.限深輪
該機(jī)與拖拉機(jī)采用三點(diǎn)懸掛。動(dòng)力傳遞路徑為:拖拉機(jī)后置動(dòng)力輸出軸-萬(wàn)向節(jié)-變速箱-鏈輪-偏心輪盤(pán)-刀桿。機(jī)具作業(yè)時(shí),壓輥將玉米秸稈沿機(jī)具前進(jìn)方向壓倒,使得秸稈與地面緊密接觸,切刀在偏心輪盤(pán)的帶動(dòng)下做往復(fù)運(yùn)動(dòng),將壓緊的玉米秸稈以及在玉米收獲、運(yùn)輸中被拖拉機(jī)壓入土壤的秸稈切成段狀,減少接茬小麥少免耕播種過(guò)程中產(chǎn)生的機(jī)具堵塞現(xiàn)象??城惺接衩捉斩掃€田機(jī)的主要技術(shù)參數(shù)如表1所示。
表1 砍切式玉米秸稈還田機(jī)主要技術(shù)參數(shù)
切稈裝置基于四桿機(jī)構(gòu)往復(fù)運(yùn)動(dòng)原理,實(shí)現(xiàn)切刀的上下往復(fù)運(yùn)動(dòng),將地表秸稈砍切成段。中國(guó)目前新研制的小麥免耕播種機(jī)多為寬窄行種植,窄行行距為12~14 cm[20-22],因此要求秸稈砍切長(zhǎng)度不超過(guò)小麥播種窄行行距的一半,即砍切后秸稈長(zhǎng)度≤6 cm。
機(jī)具在作業(yè)過(guò)程中切刀的運(yùn)動(dòng)軌跡如圖2所示,砍切后秸稈長(zhǎng)度、切刀切割頻率和機(jī)具前進(jìn)速度之間的關(guān)系為
式中為工作時(shí)間,s;為切刀切割頻率,Hz。
1.切刀運(yùn)動(dòng)軌跡 2.切刀 3.秸稈
1.Cutter trajectory 2.Cutter 3.Straw
注:為機(jī)具的前進(jìn)速度,km·h-1;為砍切后玉米秸稈長(zhǎng)度,cm。
Note:represents advancing speed of machine, km·h-1;represents the length of maize straws chopped, cm.
圖2 切刀運(yùn)動(dòng)軌跡
Fig.2 Cutter trajectory
該機(jī)的總傳動(dòng)比為
式中為拖拉機(jī)后置動(dòng)力輸出軸轉(zhuǎn)速,r/min。當(dāng)機(jī)具傳動(dòng)比一定時(shí),秸稈切斷后長(zhǎng)度隨機(jī)具前進(jìn)速度的增大而減小,取秸稈還田機(jī)正常作業(yè)速度為3~5 km/h,選用拖拉機(jī)后置輸出軸轉(zhuǎn)速為=540 r/min,為保證機(jī)具在最低正常作業(yè)速度(3 km/h)下滿足秸稈切斷長(zhǎng)度要求,取式(2)中=3 km/h,則機(jī)具的總傳動(dòng)比=0.648。
切稈裝置結(jié)構(gòu)如圖3所示,包括機(jī)架、偏心輪、刀桿和搖桿,計(jì)算過(guò)程將切稈裝置簡(jiǎn)化為四桿機(jī)構(gòu)模型如圖4所示。為保證機(jī)具運(yùn)動(dòng)的動(dòng)平衡,同一軸承座2側(cè)的偏心輪盤(pán)成180°相位差對(duì)稱(chēng)安裝。
1.機(jī)架 2.偏心圓盤(pán) 3.刀桿 4.搖桿 5.機(jī)架
注:A點(diǎn)為偏心輪盤(pán)的回轉(zhuǎn)中心,D點(diǎn)為搖桿與機(jī)架的鉸接點(diǎn),AB為偏心輪盤(pán),BC為刀桿,CD為搖桿。γmin為最小傳動(dòng)角,(°);ψ為搖桿的最大擺角,(°)。
工作過(guò)程中偏心輪盤(pán)(曲柄)繞點(diǎn)做圓周運(yùn)動(dòng),帶動(dòng)搖桿(搖桿)繞點(diǎn)作最大擺角為的往復(fù)搖擺運(yùn)動(dòng)。為避免機(jī)具出現(xiàn)上下跳動(dòng),盡量降低機(jī)具的振動(dòng),以保證機(jī)具工作的穩(wěn)定性,則設(shè)計(jì)該切稈裝置無(wú)急回特性,令其行程速比系數(shù)=1,即偏心輪盤(pán)(曲柄)2次與刀桿(連桿)共線時(shí)位置夾角=0°(點(diǎn)與1、23點(diǎn)共線),則切刀最大行程=2。
由張靜等[23]按最小傳動(dòng)角設(shè)計(jì)的曲柄搖桿機(jī)構(gòu)的解析方法可知,該機(jī)構(gòu)屬于型曲柄搖桿機(jī)構(gòu),取偏心輪偏心距=,刀桿長(zhǎng)=,搖桿長(zhǎng)=,偏心輪盤(pán)的回轉(zhuǎn)中心到搖桿與機(jī)架的鉸接點(diǎn)間的距離=,則有
根據(jù)曲柄搖桿機(jī)構(gòu)的無(wú)急回特性[24-25]可知,當(dāng)偏心輪盤(pán)與點(diǎn)2次共線時(shí)(點(diǎn)運(yùn)動(dòng)到3、4),刀桿33、44分別與搖桿3、4之間的夾角為最小傳動(dòng)角min和(180°?min),在三角形33中,由余弦定理可得
最終可得四桿機(jī)構(gòu)中各桿件尺寸關(guān)系為
在設(shè)計(jì)的過(guò)程中,為保證切刀以最大切割力切割秸稈,當(dāng)與垂直時(shí),切刀下行切割秸稈,當(dāng)點(diǎn)運(yùn)動(dòng)至最低點(diǎn)2,切刀達(dá)到最大入土深度。為盡量降低切刀對(duì)土壤的擾動(dòng),搖桿的擺角不宜過(guò)大,若將切刀運(yùn)動(dòng)軌跡近似為豎直方向的直線運(yùn)動(dòng),則切刀入土深度為
式中1為切刀入土深度,mm。為避免切刀運(yùn)動(dòng)過(guò)程中拖動(dòng)秸稈,則切刀在運(yùn)動(dòng)至上止點(diǎn)時(shí)應(yīng)與地面保持一定高度;同時(shí),為保證對(duì)壓入土壤中的秸稈進(jìn)行切削,則切刀應(yīng)具有一定的入土深度,則切刀行程為
式中2為切刀最大離地間隙。經(jīng)測(cè)量得在0~6 cm土層內(nèi)秸稈占被壓入土壤秸稈總量的98.7%,取1≥60 mm,地上0~10 cm內(nèi)秸稈占地上秸稈總量的97.24%,取2≥10 cm,則≥160 mm。為減小切刀切割過(guò)程對(duì)機(jī)具的沖擊,減少機(jī)具振動(dòng),取切刀行程=160 mm,則曲柄長(zhǎng)=/2=80 mm。在切刀行程一定的情況下,切刀最大擺角越小,切刀切稈過(guò)程垂直性越好,但機(jī)具長(zhǎng)度越大,綜合考慮取切刀最大擺角=20°,即搖桿長(zhǎng)=460.70 mm,此時(shí)機(jī)具總長(zhǎng)為1 100 mm。
由式(3)得min<(90°?/2)=80°。四桿機(jī)構(gòu)中傳動(dòng)角越大,機(jī)構(gòu)的傳動(dòng)性能越好,機(jī)械效率越高,對(duì)于高速機(jī)構(gòu),最小傳動(dòng)角一般不小于50°。由式(5)可得,當(dāng)min取不同值時(shí),四桿機(jī)構(gòu)各桿件長(zhǎng)度如表2所示。
表2 最小傳動(dòng)角取不同值時(shí)各桿長(zhǎng)度及切刀入土深度
注:為偏心輪偏心距,刀桿長(zhǎng)度,為搖桿長(zhǎng)度,為偏心輪盤(pán)的回轉(zhuǎn)中心到搖桿與機(jī)架的鉸接點(diǎn)間的距離。
Note:represents eccentric distance,represents the length of cutter holder,represents the length of rocker,represents the distance between the rotation center of eccentric wheel and the hinge point of rocker on frame.
切稈裝置在進(jìn)行往復(fù)運(yùn)動(dòng)的同時(shí)隨機(jī)具做水平方向的平動(dòng),通過(guò)三維軟件Pro/E的應(yīng)用程序?qū)λ臈U機(jī)構(gòu)進(jìn)行運(yùn)動(dòng)學(xué)分析,當(dāng)min取不同值時(shí)切刀在豎直方向速度變化規(guī)律如圖5所示。
圖5 最小傳動(dòng)角取不同值時(shí)切刀運(yùn)動(dòng)速度曲線
由圖5可知,當(dāng)min取不同值時(shí),切刀的運(yùn)動(dòng)速度變化規(guī)律基本相同,但隨min角度的增大,切刀在入土過(guò)程中加速度減小,最大運(yùn)動(dòng)速度減小,但速度和加速度隨min變化值不顯著。由表2可知,隨著最小傳動(dòng)角min的增大,偏心輪盤(pán)的回轉(zhuǎn)中心到搖桿與機(jī)架的鉸接點(diǎn)間的距離和刀桿的長(zhǎng)度增大;當(dāng)大于70°時(shí),長(zhǎng)度急劇增大,整個(gè)機(jī)構(gòu)力學(xué)性能變差。綜合考慮機(jī)具結(jié)構(gòu)的緊湊性和動(dòng)力學(xué)特性,取min=70°,則=267.38 mm,=526.63 mm。
在計(jì)算切削阻力時(shí),由于玉米秸稈關(guān)節(jié)和節(jié)間的剪切強(qiáng)度從根部到頂部依次遞減,含水率接近74%時(shí),所需剪切力范圍為919~2 233 N[26]。關(guān)節(jié)處的剪切強(qiáng)度略大于相鄰兩節(jié)間,精確計(jì)算切割阻力十分困難,本文在分析切割功耗過(guò)程中取中間值1 571 N。玉米株高為2 500 mm,株距為280 mm時(shí)每片切刀一次切割秸稈的根數(shù)為8或9根,則單個(gè)切刀砍切秸稈所受平均阻力為13 353.5 N。將切刀受力集中在切刀刀刃中點(diǎn)處,通過(guò)Pro/E動(dòng)態(tài)分析模塊對(duì)機(jī)構(gòu)進(jìn)行動(dòng)力學(xué)分析,測(cè)量結(jié)果得單個(gè)切刀工作過(guò)程中傳動(dòng)系統(tǒng)輸出軸平均轉(zhuǎn)矩為81.37 N·m,機(jī)具切割總功耗為
式中為切割功耗,kW;為機(jī)具刀組數(shù),4;為輸出軸轉(zhuǎn)矩,N·m。則總切割功耗為28.39 kW。
常用的切刀刀刃一般有2種:兩面刃(V型)和平刃。砍切過(guò)程中,平刃刀具單側(cè)受力,且易發(fā)生偏斜,而雙面刃刀具雙側(cè)受力,刀具加持機(jī)構(gòu)受力均勻,因此本文選取切刀刃口類(lèi)型為雙面刃。在砍切過(guò)程中切刀刃角越小,鋒利性越好,但刀身越薄,易出現(xiàn)缺口和卷刃。前人對(duì)切刀切割植物莖稈過(guò)程做了大量的研究,針對(duì)玉米秸稈[27]、龍眼樹(shù)枝[28]、小型桑樹(shù)[29]、甘蔗[30]等研究了不同刃角對(duì)切割性能的影響,均表明當(dāng)刃角在10~20°之間時(shí),切割性能最好。切刀砍切玉米秸稈時(shí)有一定的入土深度,考慮土壤及較硬土塊對(duì)切刀的沖擊,本文適當(dāng)增大了切刀刃口角度,取刃角為30°,切刀厚度為6 mm,并對(duì)刀刃部分進(jìn)行淬火和回火處理。玉米秸稈還田機(jī)的幅寬為2 400 mm(4行玉米),為避免切刀相互干涉,設(shè)計(jì)每片切刀的寬度為580 mm。
利用有限元軟件ANSYS對(duì)切稈裝置進(jìn)行強(qiáng)度分析,為確保強(qiáng)度要求,每次切割的秸稈根數(shù)確定為9根,且每根秸稈的切割部位所需剪切力都取植株根部關(guān)節(jié)處的最大剪切力2 233 N,則刀片的切割阻力為20 098 N。切刀材料選用耐磨性較高和抗沖擊韌性的65 Mn合金鋼,屈服強(qiáng)度為430 MPa,泊松比為0.3,彈性模量為210 MPa。利用有限元軟件ANSYS對(duì)切刀強(qiáng)度進(jìn)行校核,只考慮載荷最大的工況,其結(jié)果如圖6所示。
圖6 切刀應(yīng)力云圖
分析可知,最大點(diǎn)應(yīng)力產(chǎn)生在切刀兩側(cè)的螺栓孔附近,且最大應(yīng)力值為162 MPa,小于切刀本身的許用應(yīng)力(430 MPa)。
為測(cè)試所設(shè)計(jì)砍切式玉米秸稈還田機(jī)的田間作業(yè)性能,2017年10月在河北省邯鄲市雞澤縣開(kāi)展田間試驗(yàn),對(duì)比研究傳統(tǒng)甩刀式秸稈還田機(jī)(對(duì)照組)和砍切式秸稈還田機(jī)的作業(yè)性能及后續(xù)播種作業(yè)效果。雞澤縣屬于黃淮海小麥/玉米一年兩熟區(qū),試驗(yàn)地土壤類(lèi)型為壤土,0~10 cm深度內(nèi)土壤平均含水率為21.8%。玉米品種為登海605,收獲后玉米秸稈平均直徑為28.5 mm,平均含水率為76.49%,秸稈覆蓋量為1.37 kg/m2。試驗(yàn)選用江蘇清江JS-650輪式拖拉機(jī),拖拉機(jī)后置輸出軸轉(zhuǎn)速為540 r/min,前進(jìn)速度為4.15 km/h,測(cè)試過(guò)程如圖7所示。
圖7 田間性能試驗(yàn)
3.2.1 秸稈粉碎長(zhǎng)度不合格率
根據(jù)GB/T 24675.6-2009《保護(hù)性耕作機(jī)械秸稈粉碎還田機(jī)》標(biāo)準(zhǔn)要求,隨機(jī)選取10個(gè)面積為1 m2的測(cè)試樣點(diǎn),每個(gè)測(cè)試樣點(diǎn)隨機(jī)撿拾10根切碎秸稈并測(cè)量、記錄其長(zhǎng)度數(shù)據(jù)。以6 cm為秸稈切碎合格長(zhǎng)度上界,秸稈切碎長(zhǎng)度不合格率的計(jì)算公式為
式中n為樣點(diǎn)處秸稈長(zhǎng)度大于6 cm的秸稈數(shù),N為樣點(diǎn)處所測(cè)秸稈的總數(shù)。
3.2.2 機(jī)具運(yùn)行平穩(wěn)性
機(jī)具運(yùn)行平穩(wěn)性是衡量機(jī)具設(shè)計(jì)合理性的重要指標(biāo),機(jī)具運(yùn)行越平穩(wěn),砍切深度一致性越高,粉碎效果越好,駕駛機(jī)具也更加舒適。平穩(wěn)性指標(biāo)受到包括地表平整度、土壤緊實(shí)度、機(jī)具前進(jìn)速度、砍切入土深度和機(jī)具本身作業(yè)方式等多方面影響。平穩(wěn)性測(cè)量采用丹麥BK4370加速度傳感器(頻率范圍:0.1~12 600 Hz,電荷靈敏度:10 pc/ms2Hz)、丹麥BK2635電荷放大器(最大靈敏度10 V/pc)和美國(guó)FLUKE F15B+數(shù)字萬(wàn)用表(直流電壓精度0.5%),將加速度傳感器固定在機(jī)架上,分別測(cè)量機(jī)具水平和豎直方向的振動(dòng),每個(gè)方向取3個(gè)不同的測(cè)量點(diǎn),試驗(yàn)過(guò)程中記錄電壓值并將電壓值轉(zhuǎn)換為加速度值。
3.2.3 土壤物理性質(zhì)
為研究切刀砍切秸稈過(guò)程中對(duì)土壤的影響,分別測(cè)量試驗(yàn)前后土壤容重變化及切刀入土深度。機(jī)具作業(yè)后,沿機(jī)具前進(jìn)方向,每隔5 m設(shè)置一個(gè)取樣點(diǎn),共取10個(gè)取樣點(diǎn),測(cè)量土壤剖面;土壤容重采用環(huán)刀法測(cè)定。
3.2.4 播種作業(yè)效果
為了反映本文設(shè)計(jì)砍切式秸稈還田機(jī)和對(duì)照組(甩刀式)秸稈還田機(jī)作業(yè)后地表及秸稈情況對(duì)后續(xù)播種作業(yè)的影響,本文在秸稈還田試驗(yàn)后進(jìn)行了播種試驗(yàn),測(cè)試不同還田機(jī)類(lèi)型作業(yè)后播種質(zhì)量,測(cè)試選用河北農(nóng)哈哈2BMSF-7/14型小麥免耕播種機(jī),播種過(guò)程測(cè)試機(jī)具通過(guò)性能及播種后地表質(zhì)量。
3.3.1 秸稈切碎長(zhǎng)度不合格率
試驗(yàn)后分別測(cè)量秸稈切碎長(zhǎng)度結(jié)果如表3所示,由表3可知,與對(duì)照組相比,砍切式秸稈還田機(jī)的粉碎效果具有顯著優(yōu)勢(shì),主要表現(xiàn)為:1)砍切式秸稈還田機(jī)作業(yè)后秸稈長(zhǎng)度不合格率為6%,比甩刀式秸稈還田機(jī)小5個(gè)百分點(diǎn);2)切斷后秸稈平均長(zhǎng)度為4.51 cm,比對(duì)照組短0.73 cm;秸稈長(zhǎng)度變異系數(shù)為0.209,比對(duì)照組小0.218。
表3 秸稈粉碎質(zhì)量
3.3.2 機(jī)具運(yùn)行平穩(wěn)性試驗(yàn)
機(jī)具平穩(wěn)性試驗(yàn)結(jié)果如表4所示。試驗(yàn)結(jié)果表明:1)在豎直方向上,砍切式秸稈粉碎還田機(jī)的振動(dòng)強(qiáng)度大于甩刀式秸稈粉碎還田機(jī),但無(wú)顯著差異;2)2者在水平方向上的振動(dòng)較小,且無(wú)顯著差異;3)2種類(lèi)型還田機(jī)平穩(wěn)性均可滿足機(jī)具作業(yè)要求。砍切式秸稈還田機(jī)振動(dòng)主要由于切刀規(guī)律性砍切秸稈和土壤產(chǎn)生的豎直方向上的振動(dòng),振幅較大,但頻率較??;甩刀式秸稈還田機(jī)的振動(dòng)由高速旋轉(zhuǎn)的甩刀受到地面和秸稈沖擊產(chǎn)生,振動(dòng)頻率高,但振幅相對(duì)較小。
表4 機(jī)具振動(dòng)加速度數(shù)據(jù)
注:A1、A2、A3分別表示豎直方向上的3個(gè)測(cè)量點(diǎn),B1、B2、B3分別表示水平方向上的3個(gè)測(cè)量點(diǎn)。
Note: A1, A2 and A3 represent 3 measuring points in the vertical direction respectively. B1, B2 and B3 represent 3 measuring points in the horizontal direction respectively.
3.3.3 作業(yè)后土壤物理性質(zhì)
試驗(yàn)后測(cè)得砍切式秸稈還田機(jī)切土平均深度為7.71 cm,對(duì)照組還田機(jī)切刀未入土。不同深度土壤容重測(cè)量結(jié)果如圖8所示,砍切式秸稈還田機(jī)經(jīng)切刀高頻入土砍切作用后,0~10 cm深度的土壤容重明顯降低,其中0~5 cm深度土壤容重降低最為顯著,降低了25.4個(gè)百分點(diǎn),5~10 cm深度土壤容重降低較為顯著,降低了14.67個(gè)百分點(diǎn),土壤深度大于10 cm后,容重基本沒(méi)有變化;甩刀式秸稈還田機(jī)作業(yè)前后0~20 cm各土層土壤容重基本沒(méi)有變化。由于切刀的高頻入土切割作用,且刀片入土深度在7~8 cm范圍,使得深度在0~10 cm深度土層疏松而向上膨脹,土壤密度減小,容重降低,為后續(xù)播種作業(yè)提供良好的土壤環(huán)境;而甩刀式秸稈還田機(jī)作業(yè)過(guò)程僅對(duì)地表秸稈進(jìn)行粉碎,刀具不入土,作業(yè)前后土壤容重變化不大。
圖8 試驗(yàn)前后不同深度土壤容重對(duì)比
3.3.4 播種作業(yè)效果
分別在2種秸稈還田機(jī)作業(yè)后地表進(jìn)行播種試驗(yàn),試驗(yàn)結(jié)果如表5所示。試驗(yàn)結(jié)果表明在砍切式秸稈還田機(jī)作業(yè)后地表播種,無(wú)擁堵現(xiàn)象;在甩刀式秸稈還田機(jī)作業(yè)后地表播種時(shí)出現(xiàn)輕度堵塞,但隨機(jī)具前進(jìn),被擁堵秸稈自行后流,不需停機(jī)疏通。播種質(zhì)量測(cè)試表明在甩刀式秸稈還田機(jī)作業(yè)后地表播種時(shí)出現(xiàn)晾種現(xiàn)象,且播種深度合格率比砍切式小2.3個(gè)百分點(diǎn),主要由于在甩刀式秸稈還田機(jī)作業(yè)后地表播種時(shí)出現(xiàn)輕度擁土現(xiàn)象,影響播種質(zhì)量。
表5 播種質(zhì)量對(duì)比
1)基于四桿機(jī)構(gòu)往復(fù)運(yùn)動(dòng)原理,設(shè)計(jì)了一種砍切式玉米秸稈還田機(jī),該機(jī)能夠通過(guò)四桿機(jī)構(gòu)驅(qū)動(dòng)切刀實(shí)現(xiàn)地表支撐式秸稈砍切,一次作業(yè)可實(shí)現(xiàn)玉米秸稈的順行壓倒和垂直切割,同時(shí)保證玉米秸稈切段長(zhǎng)度符合后續(xù)小麥少免耕播種要求,提高后續(xù)播種質(zhì)量。
2)通過(guò)理論計(jì)算和仿真分析,對(duì)砍切式玉米秸稈還田機(jī)的切稈機(jī)構(gòu)進(jìn)行理論分析和運(yùn)動(dòng)模擬,確定該機(jī)搖桿的最大擺角為20°,最小傳動(dòng)角為70°,偏心輪偏心距為80 mm,刀桿長(zhǎng)267.375 mm,搖桿長(zhǎng)460.702 mm,偏心輪盤(pán)的回轉(zhuǎn)中心到搖桿與機(jī)架的鉸接點(diǎn)間的距離為526.627 mm。
3)通過(guò)田間對(duì)比試驗(yàn)表明,與甩刀式秸稈還田機(jī)相比,砍切式秸稈還田機(jī)粉碎后秸稈平均長(zhǎng)度小0.73 cm,秸稈長(zhǎng)度不合格率小5個(gè)百分點(diǎn),秸稈長(zhǎng)度變異系數(shù)小0.21,粉碎效果明顯優(yōu)于甩刀式;切刀入土平均深度為7.71 cm,可明顯降低0~10 cm土層土壤容重;機(jī)具豎直方向振動(dòng)幅度略大于甩刀式秸稈還田機(jī),但仍滿足機(jī)具作業(yè)要求。后續(xù)播種試驗(yàn)試驗(yàn)表明在砍切式秸稈還田機(jī)作業(yè)后地表進(jìn)行播種時(shí),播種無(wú)擁堵現(xiàn)象且播種深度合格率比甩刀式大2.3個(gè)百分點(diǎn)。
[1] 井良霄.干青玉米秸稈厭氧發(fā)酵特性與優(yōu)化工藝研究[D].楊凌:西北農(nóng)林科技大學(xué),2013.
Jing Liangxiao. Study on Anaerobic Digestion Properties and Process Technology Optimizations of Corn Stalks[D]. Yangling: Northwest Agriculture and Forestry University, 2013. (in Chinese with English abstract)
[2] 畢于運(yùn),王亞靜,高春雨. 中國(guó)主要秸稈資源數(shù)量及其區(qū)域分布[J]. 農(nóng)機(jī)化研究,2010,32(3):1-7.
Bi Yuyun, Wang Yajing, Gao Chunyu. Straw resource quantity and its regional distribution in China[J]. Journal of Agricultural Mechanization Research, 2010, 32(3): 1-7. (in Chinese with English abstract)
[3] 王金武,唐漢,王金峰. 東北地區(qū)作物秸稈資源綜合利用現(xiàn)狀與發(fā)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(5):1-21.
Wang Jinwu, Tang Han, Wang Jinfeng. Comprehensive utilization status and development analysis of crop straw resource in northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 1-21. (in Chinese with English abstract)
[4] 劉哲,韓霽昌,孫增慧,等. δ13C法研究砂姜黑土添加秸稈后團(tuán)聚體有機(jī)碳變化規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):179-187.
Liu Zhe, Han Jichang, Sun Zenghui, et al. Change law of organic carbon in lime concretion black soil aggregates with application of straw by δ13C method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 179-187. (in Chinese with English abstract)
[5] 朱強(qiáng)根,朱安寧,張佳寶,等. 保護(hù)性耕作下土壤動(dòng)物群落及其與土壤肥力的關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(2):70-76.
Zhu Qianggen, Zhu Anning, Zhang Jiabao, et al. Relation of agricultural soil fauna and soil fertility under conservation tillage systems[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 70-76. (in Chinese with English abstract)
[6] 趙亞麗,薛志偉,郭海斌,等.耕作方式與秸稈還田對(duì)土壤呼吸的影響及機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(19):155-165. Zhao Yali, Xue Zhiwei, Guo Haibin, et al. Effects of tillage and crop residue management on soil respiration and its mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 155-165. (in Chinese with English abstract)
[7] 周懷平,解文艷,關(guān)春林,等. 長(zhǎng)期秸稈還田對(duì)旱地玉米產(chǎn)量、效益及水分利用的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2013,19(2):321-330.
Zhou Huaiping, Xie Wenyan, Guan Chuanlin, et al. Effects of long-term straw-returning on corn yield, economic benefit and water use in arid farming areas[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 321-330. (in Chinese with English abstract)
[8] 張喜瑞,何進(jìn),李洪文,等. 小麥免耕播種機(jī)驅(qū)動(dòng)鏈?zhǔn)椒蓝卵b置設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(10):44-48.
Zhang Xirui, He Jin, Li Hongwen, et al. Design of the powered-chain anti-blocking mechanism for wheat no-till planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(10): 44-48. (in Chinese with English abstract)
[9] Brandelero E M, de Araujo A G, Ralisch R. Soil mobilization and seeding depth by no-till seeder mechanisms for residue management[J]. Engenharia Agricola, 2014, 34(2): 263-272.
[10] 盧彩云,趙春江,孟志軍,等. 基于滑板壓稈旋切式防堵裝置的秸稈摩擦特性研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(11):83-89.
Lu Caiyun, Zhao Chunjiang, Meng Zhijun, et al. Straw friction characteristic based on rotary cutting anti-blocking device with slide plate pressing straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 83-89. (in Chinese with English abstract)
[11] 張喜瑞,李洪文,何進(jìn),等. 旋轉(zhuǎn)撥刀式小麥免耕播種機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2012,34(3):149-151,158.
Zhang Xirui, Li Hongwen, He Jin, et al. Experiment and design of rotating and dialing knife type no-till wheat planter[J]. Journal of Agricultural Mechanization Research, 2012, 34(3): 149-151,158. (in Chinese with English abstract)
[12] 付雪高,李明,盧敬銘,等. 秸稈粉碎還田機(jī)甩刀的研究進(jìn)展[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2011(1):83-87.
Fu Xuegao, Li Ming, Lu Jingming, et al. Research on the cutter of straw crushing machine to field[J]. Chinese Agricultural Mechanization, 2011(1): 83-87. (in Chinese with English abstract)
[13] Johnson J M F, Acostamartinez V, Cambardella C A, et al. Crop and soil responses to using corn stover as a bioenergy feedstock: Observations from the northern US corn belt[J]. Agriculture, 2013, 3(1): 72-89.
[14] 姚燕,姬裕江. 基于錘爪式動(dòng)刀的小麥秸稈粉碎裝置試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2010,32(1):156-158.
Yao Yan, Ji Yujiang. Test study on smashing devices of sweat stalks[J]. Journal of Agricultural Mechanization Research, 2010, 32(1): 156-158. (in Chinese with English abstract)
[15] 潘佛雛,康建明,顏利民,等. Y型甩刀式秸稈粉碎還田機(jī)關(guān)鍵部件的設(shè)計(jì)與性能試驗(yàn)[J]. 農(nóng)業(yè)現(xiàn)代化研究,2015,36(5):912-915.
Pan Fuchu, Kang Jianming, Yan Limin, et al. Design and experiment to key components of Y type cutting device of smashed straw machine[J]. Research of Agricultural Modernization, 2015, 36(5): 912-915. (in Chinese with English abstract)
[16] 林靜,馬鐵,李寶筏. 1JHL-2 型秸稈深埋還田機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):32-40.
Lin Jing, Ma Tie, Li Baofa. Design and test of 1JHL-2 type straw deep burying and returning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 32-40. (in Chinese with English abstract)
[17] 蒲永鋒. 9YG-2.0型圓捆打捆機(jī)撿拾粉碎裝置參數(shù)設(shè)計(jì)與仿真分析[D]. 長(zhǎng)春:吉林大學(xué),2015.
Pu Yongfeng. Parameter Design and Simulation Analysis on Pick-crushing Device of 9YG-2.0 Round Baler[D]. Changchun: Jilin University, 2015. (in Chinese with English abstract)
[18] 孫宏宇,董玉平,吳云玉,等. 基于COSMOSWorks的還田機(jī)直刀有限元分析[J]. 農(nóng)機(jī)化研究,2011,33(1):69-71.
Sun Hongyu, Dong Yuping, Wu Yunyu, et al. Finite element analysis of straw machine straight knife based on COSMOSWorks[J]. Journal of Agricultural Mechanization Research, 2011, 33(1): 69-71. (in Chinese with English abstract)
[19] 鄭智旗,何進(jìn),李洪文,等. 動(dòng)定刀支撐滑切式秸稈粉碎裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(增刊1):108-116.
Zheng Zhiqi, He Jin, Li Hongwen, et al. Design and experiment of straw-chopping device with chopping and fixed knife supported slide cutting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Supp.1): 108-116. (in Chinese with English abstract)
[20] 吳紅丹,李洪文,梅峰,等. 一溝雙行小麥?zhǔn)┓什シN單體的設(shè)計(jì)與試驗(yàn)[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,12(2):50-53.
Wu Hongdan, Li Hongwen, Mei Feng, et al. Design and experimental study on a combined fertilizing and seeding opener for wheat of two rows in one furrow[J]. Journal of China Agricultural University, 2016, 12(2): 50-53. (in Chinese with English abstract)
[21] 劉正道. 小麥免耕播種關(guān)鍵技術(shù)研究與裝備研發(fā)[D]. 楊凌:西北農(nóng)林科技大學(xué),2016.
Liu Zhengdao. Research and Development of Key Technology and Equipment for Wheat No-tillage Drill[D]. Yangling: Northwest Agriculture and Forestry University, 2006. (in Chinese with English abstract)
[22] Wang Qingjie, Zhao Hongbo, He Jin, et al. Design and experiment of blades-combined no and minimum-till wheat planter under controlled traffic farming system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 12-17.
[23] 張靜,王占英,劉春東,等. 按最小傳動(dòng)角設(shè)計(jì)曲柄搖桿機(jī)構(gòu)的解析方法[J]. 機(jī)械設(shè)計(jì),2008,25(10):63-65.
Zhang Jing, Wang Zhanying, Liu Chundong, et al. Analytical method for designing crank-rocker mechanism according to minimum transmission angle[J]. Journal of Machine Design, 2008, 25(10): 63-65. (in Chinese with English abstract)
[24] 劉志剛,王德成,翟改霞,等. 往復(fù)式雙動(dòng)刀灌木收割機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(增刊2):102-106.
Liu Zhigang, Wang Decheng, Zhai Gaixia, et al. Design and experiment on reciprocating double knife shrub harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Supp.2): 102-106. (in Chinese with English abstract)
[25] 彭松林. 基于曲柄搖桿機(jī)構(gòu)的撲翼微飛行器的研究[D]. 上海:上海交通大學(xué),2010.
Peng Songlin. Study of Flapping Wing Micro Aerial Vehicle Based on Crank Rocker Mechanism[D]. Shanghai: Shanghai Jiao Tong University, 2010. (in Chinese with English abstract)
[26] 高欣.玉米秸稈力學(xué)特性試驗(yàn)研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2013.
Gao Xin. Experimental Study of Mechanical Properties of Corn Stalks[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese with English abstract)
[27] 袁洪方,王德成,王光輝,等. 秸稈鍘切揉搓裝置優(yōu)化設(shè)計(jì)與試驗(yàn)[J] .農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(增刊1):153-157.
Yuan Hongfang, Wang Decheng, Wang Guanghui, et al. Design and experiment of straw cutting and rubbing process device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(Supp.1): 153-157. (in Chinese with English abstract)
[28] 吳良軍,楊洲,段潔利,等.龍眼樹(shù)枝修剪機(jī)具刀片切割力的影響因素試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(24):8-14.
Wu Liangjun, Yang Zhou, Duan Jieli, et al. Experiment on influencing factors of cutting force of blades of trim tool for longan branch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 8-14. (in Chinese with English abstract)
[29] 賴仁盛,孫永厚,靳國(guó)才.小型桑樹(shù)伐條機(jī)切割部分試驗(yàn)研究[J].農(nóng)機(jī)化研究,2013,35(2):150-153.
Lai Rensheng, Sun Yonghou, Jin Guocai. Experimental investigation of the cutting part for mini-type mulberry branch cutting machine[J]. Journal of Agricultural Mechanization Research, 2013, 35(2): 150-153. (in Chinese with English abstract)
[30] 向家偉,楊連發(fā),李尚平.小型甘蔗收獲機(jī)切割器試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007, 23(11):158-163.
Xiang Jiawei, Yang Lianfa, Li Shangping. Experimental investigation of the base cutter for mini type sugarcane harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(11): 158-163. (in Chinese with English abstract)
Design and experiment of chopping-type maize straw returning machine
Wang Qingjie, Liu Zhengdao, He Jin, Li Hongwen※, Li Wenying, He Jianhuai, Yan Xionglei
(,,100083,)
In annual double cropping areas in northern China, the straw is directly returned to the field after maize harvest, and the wheat is sown by no-tillage planter. However, the high water content and strong toughness of maize straw result in the low qualification rate of traditional rotary flail knife type returning machine, which can easily lead to straw blocking and thereby affect wheat sowing quality. To address the above problems, in this paper, a chopping method based on the principle of four-bar linkage mechanism was put forward. The maize straw was chopped using ground as the support. A chopping-type straw returning machine, composed of the frame, pressure roller, transmission device and straw cutting device, was developed. The pressure roller was located at the front of the machine, and was designed to press the standing or lying straws forward in the direction of machine movement. The cutting device was at the back of the roller, and was designed to cut the lying parallel straw into segments. To avoid straw blocking, maize straw was chopped into segments with the length less than 6 cm, and the length was half of the narrow row spacing of wheat. Based on theoretical calculation and motion simulation, the size of 4-link mechanism of cutting device was designed and the cutters’ movement trajectory was optimized. In 4-link mechanism, the minimum transmission angle was 70°, the maximum swing angle of rocker was 20°, the eccentric distance of eccentric wheel was 80 mm, and the lengths of cutter holder (connecting rod) and rocker were 267.375 and 460.702 mm, respectively. The distance between the rotation center of eccentric wheel and the hinge point of rocker on frame was 526.627 mm. According to the finite element static analysis by using ANSYS software, the maximum stress of the cutter was calculated as 162 MPa generated near the bolt holes on both sides, which met the design requirements. The field performance experiment was conducted in Hebei Province to compare the chopping-type straw returning machine and traditional flail knife type machine. The comparison and research objects included the unqualified rate of straw length, working stability, soil physical property and the subsequent sowing operation effect. The experiment results showed that the average length of the straw with the designed machine was 4.8 cm, the unqualified rate was 6% and the coefficient of variation was 0.209, which were all superior to the traditional machine. The vibration of the designed one was slightly larger than that of traditional one with no significant difference, and both of the machines worked stably. The cutting depth of new cutter reached 7.71 cm averagely, and soil bulk density in 0-10 cm depth decreased obviously. The subsequent wheat seeding experiments were carried out, and the results showed that there was no straw blocking during seeding when the seeder operated on the surface on which the chop-cutting straw returning machine worked, and the coefficient of sowing depth was 92.5% and it was significantly higher than another one. This study provides a new equipment for the maize straw returning in the double cropping areas in northern China, and it is also conducive to the popularization of straw returning technology.
mechanization; design; optimization; straw returning machine; chopping-type; cutting length; 4-link mechanism
10.11975/j.issn.1002-6819.2018.02.002
S224.3
A
1002-6819(2018)-02-0010-08
2017-09-13
2017-12-30
公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)經(jīng)費(fèi)項(xiàng)目-作物秸稈還田技術(shù)(201503136)
王慶杰,副教授,博士生導(dǎo)師,主要從事保護(hù)性耕作技術(shù)與裝備研究。Email:wangqingjie@cau.edu.cn
李洪文,教授,博士生導(dǎo)師,主要從事保護(hù)性耕作技術(shù)與裝備研究。Email:lhwen@cau.edu.cn
王慶杰,劉正道,何 進(jìn),李洪文,李問(wèn)盈,何建懷,鄢雄磊. 砍切式玉米秸稈還田機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):10-17. doi:10.11975/j.issn.1002-6819.2018.02.002 http://www.tcsae.org
Wang Qingjie, Liu Zhengdao, He Jin, Li Hongwen, Li Wenying, He Jianhuai, Yan Xionglei. Design and experiment of chopping-type maize straw returning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 10-17. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.002 http://www.tcsae.org