李 偉,季磊磊,施衛(wèi)東,楊勇飛,平元峰,張文全
?
基于Hilbert-Huang變換的混流泵流動(dòng)誘導(dǎo)振動(dòng)試驗(yàn)
李 偉,季磊磊,施衛(wèi)東,楊勇飛,平元峰,張文全
(江蘇大學(xué)國(guó)家水泵及系統(tǒng)工程研究中心,鎮(zhèn)江 212013)
混流泵水力誘導(dǎo)的機(jī)組振動(dòng)是混流泵運(yùn)行失穩(wěn)的重要因素之一,為了研究混流泵水力激振誘導(dǎo)的機(jī)組振動(dòng)情況,基于本特利408數(shù)據(jù)采集系統(tǒng),測(cè)量獲得了空載和負(fù)載工況下混流泵泵體和泵體基座不同位置處的振動(dòng)信號(hào),通過(guò)希爾伯特-黃變換對(duì)原始振動(dòng)信號(hào)進(jìn)行經(jīng)驗(yàn)篩分分解,獲得了不同模函數(shù)分量的頻譜分布。研究結(jié)果表明,相比空載運(yùn)行,混流泵負(fù)載工況運(yùn)行時(shí)水力誘導(dǎo)的機(jī)組振動(dòng)明顯加劇,但在不同方向上,水力激振引起的振動(dòng)各不相同。方向上2個(gè)工況下的振動(dòng)頻譜分布基本相似,而在方向、方向和混流泵底座上,負(fù)載工況下波形的頻帶分布變窄,能量分布較為集中,且方向的原始振幅要明顯大于方向,約為方向原始振幅的2倍?;炝鞅秘?fù)載工況運(yùn)行時(shí),低頻振動(dòng)占據(jù)主要振動(dòng)能量分布,使得不同模函數(shù)分量的主頻向低頻方向移動(dòng),水力誘導(dǎo)混流泵機(jī)組的振動(dòng)以中低頻振動(dòng)為主。該研究可為有效降低或防止混流泵水力誘導(dǎo)的機(jī)組振動(dòng)惡化提供參考。
泵;振動(dòng);信號(hào)分析;混流泵;空載;希爾伯特-黃變換
混流泵廣泛應(yīng)用于農(nóng)業(yè)排灌、城市供排水、礦山、大型水利工程等領(lǐng)域。在混流泵機(jī)組的運(yùn)行過(guò)程中,總是存在著不同程度的振動(dòng),一方面是由于軸向平衡共振、轉(zhuǎn)子不平衡、安裝原因?qū)е碌臋C(jī)械振動(dòng),另一方面很多已經(jīng)確定的振動(dòng)問(wèn)題都與流動(dòng)的大尺度振蕩有關(guān)。當(dāng)這些振動(dòng)超過(guò)一定限度時(shí),就會(huì)對(duì)設(shè)備造成不同程度的危害,不僅降低水泵效率,而且縮短了機(jī)組零部件的使用壽命,嚴(yán)重時(shí)甚至導(dǎo)致機(jī)組被迫停機(jī)[1-5]。
隨著水力機(jī)械單機(jī)容量和尺寸的增加,人們對(duì)流動(dòng)誘導(dǎo)機(jī)組振動(dòng)的研究越來(lái)越重視,許多文獻(xiàn)探討了非定常流動(dòng)誘導(dǎo)的水力機(jī)械系統(tǒng)穩(wěn)定性問(wèn)題[6-9]。在水輪機(jī)領(lǐng)域,張松松[10]研究了不同工況下額定功率為500 kW的小型混流式水輪發(fā)電機(jī)組的振動(dòng)問(wèn)題,研究發(fā)現(xiàn)在負(fù)荷變動(dòng)的過(guò)程中,發(fā)電機(jī)內(nèi)部磁拉力不平衡,機(jī)組的軸線不直和對(duì)中不良,以及導(dǎo)葉開(kāi)度變化造成的水力不平衡是導(dǎo)致軸心軌跡出現(xiàn)大范圍偏移的主要原因。Shi等[11]采用數(shù)值模擬的方法研究了非定常流動(dòng)下導(dǎo)葉式水輪機(jī)內(nèi)部的壓力脈動(dòng)特性,發(fā)現(xiàn)渦室內(nèi)壓力脈動(dòng)的時(shí)域特性呈明顯的周期性變化;壓力脈動(dòng)的主頻集中在低頻區(qū)域,并且是葉片通過(guò)頻率的2倍。孟龍等[12]發(fā)現(xiàn)機(jī)組同時(shí)存在轉(zhuǎn)子質(zhì)量不平衡問(wèn)題及間隙過(guò)大問(wèn)題,根據(jù)軸心軌跡特性逐步調(diào)整上導(dǎo)及水導(dǎo)間隙。
然而,混流泵作為水力機(jī)械的一種,由于水力不穩(wěn)定誘導(dǎo)機(jī)組振動(dòng)的研究文獻(xiàn)較少,大部分學(xué)者僅單純的關(guān)注了泵內(nèi)非定常流場(chǎng)結(jié)構(gòu)或僅單一的研究了泵不穩(wěn)定運(yùn)行時(shí)的振動(dòng)特征[13-15]。施衛(wèi)東等[16]研究了高比轉(zhuǎn)速混流泵不同工況下的葉輪進(jìn)出口等位置的壓力脈動(dòng)時(shí)域和頻域特性,研究結(jié)果表明混流泵最大壓力脈動(dòng)發(fā)生在葉輪進(jìn)口前,泵運(yùn)行偏離最優(yōu)工況越遠(yuǎn),葉輪進(jìn)口處壓力系數(shù)幅值越大。劉建瑞等[17]研究發(fā)現(xiàn)在相同流量下,徑向間隙越小,監(jiān)測(cè)點(diǎn)頻域振幅越大。李偉等[18]發(fā)現(xiàn)流量工況的改變影響了轉(zhuǎn)子系統(tǒng)的不平衡量和不對(duì)中程度,并且隨著遠(yuǎn)離設(shè)計(jì)流量點(diǎn),不平衡量引起的軸系工頻振動(dòng)和不對(duì)中引起的水平方向振動(dòng)不斷加劇。Wang等[19]研究發(fā)現(xiàn),隨著流量的增大,壓力脈動(dòng)的峰值逐漸減小,不同監(jiān)測(cè)點(diǎn)處壓力脈動(dòng)的主頻為葉片通過(guò)頻率和其倍頻,而不同監(jiān)測(cè)點(diǎn)處的振動(dòng)頻率為軸頻和其倍頻。
在振動(dòng)信號(hào)的處理方面,希爾伯特-黃變換(Hilbert-Huang transform,HHT)是在傅立葉變換、小波變換等方法的基礎(chǔ)上構(gòu)建的一種信號(hào)時(shí)頻分析理論,它引入了固有模態(tài)和經(jīng)驗(yàn)篩分(empirical mode decomposition,EMD)概念,能夠?qū)⒄駝?dòng)信號(hào)分解為有限的具有實(shí)際物理意義的本征模函數(shù),并對(duì)每個(gè)本征模函數(shù)進(jìn)行Hilbert變換,得到每個(gè)本征模函數(shù)的瞬時(shí)頻譜,常用來(lái)對(duì)機(jī)械故障進(jìn)行診斷[20-22]。本文以導(dǎo)葉式混流泵為研究對(duì)像,在前期研究其內(nèi)部流動(dòng)和軸系振動(dòng)的基礎(chǔ)上[23-24],基于本特利408數(shù)據(jù)采集系統(tǒng)和希爾伯特-黃變換,對(duì)比分析了混流泵空載和負(fù)載運(yùn)行時(shí)的振動(dòng)特性,探索混流泵水力非定常特性誘導(dǎo)的機(jī)組振動(dòng),為降低或防止混流泵運(yùn)行中的機(jī)組振動(dòng)惡化提供參考。
本文研究的導(dǎo)葉式混流泵模型的參數(shù)如下:流量opt=380 m3/h,揚(yáng)程=6m,轉(zhuǎn)速=1 450 r/min,比轉(zhuǎn)速s=480。葉片數(shù)=4,導(dǎo)葉葉片數(shù)d=7。葉輪進(jìn)口直徑in=92 mm,出口直徑out=121 mm試驗(yàn)用混流泵模型泵如圖1所示。
圖1 混流泵模型
試驗(yàn)測(cè)量在江蘇大學(xué)國(guó)家水泵及系統(tǒng)工程技術(shù)研究中心的250 mm不銹鋼軸(混)流泵閉式試驗(yàn)臺(tái)上進(jìn)行,該試驗(yàn)臺(tái)專門用于混流泵、軸流泵模型泵段及模型裝置試驗(yàn),試驗(yàn)裝置系統(tǒng)如圖2所示。
1.增壓泵 2.渦輪流量計(jì) 3.出口閘閥 4.水箱 5.進(jìn)口閘閥 6.伸縮管 7.排氣孔 8.進(jìn)口測(cè)壓段 9.試驗(yàn)泵段 10.扭矩儀 11.電機(jī) 12.排氣孔 13.出口測(cè)壓段 14.橡膠軟接頭
在試驗(yàn)泵段進(jìn)、出口位置各安置一個(gè)麥克公司生產(chǎn)壓力變送器以便進(jìn)行揚(yáng)程的測(cè)量,壓力變送器為WT-1151型電容式壓力變送器;進(jìn)口測(cè)量用壓力變送器測(cè)量范圍為±100 kPa,精度為0.2;出口測(cè)量用壓力變送器測(cè)量范圍為0~600 kPa,精度為0.2。流量測(cè)量采用上海自儀九生產(chǎn)的公稱壓力為1.6 MPa,精度為0.5的LWGY-250型渦輪流量計(jì)。采用上海良標(biāo)智能終端股份有限公司生產(chǎn)的精度為0.2級(jí)的ZJ型轉(zhuǎn)矩轉(zhuǎn)速測(cè)量?jī)x測(cè)量模型泵的軸轉(zhuǎn)速、轉(zhuǎn)矩和軸功率,轉(zhuǎn)矩轉(zhuǎn)速測(cè)量?jī)x測(cè)量誤差為±0.2%。測(cè)試系統(tǒng)達(dá)到1級(jí)精度要求。
按照試驗(yàn)要求搭建好實(shí)驗(yàn)臺(tái)并連接好數(shù)據(jù)采集和檢測(cè)系統(tǒng)。將本特利加速度傳感器接入本特利408數(shù)據(jù)采集系統(tǒng)。試驗(yàn)采用本特利公司生產(chǎn)的200350加速度傳感器進(jìn)行振動(dòng)信號(hào)的采集,該傳感器靈敏度系數(shù)為100,頻率范圍0.5~10 kHz,傳感器頭部有電磁鐵,使用時(shí)直接將傳感器貼于待測(cè)位置即可。為了獲得混流泵泵體在不同方向上的振動(dòng)特性,在泵體環(huán)形渦室的對(duì)稱中心處、靠近轉(zhuǎn)軸處和泵體基座上設(shè)置了傳感器進(jìn)行監(jiān)測(cè),傳感器的現(xiàn)場(chǎng)布置如圖3所示。傳感器輸出的信號(hào)由本特利408數(shù)據(jù)采集系統(tǒng)進(jìn)行采集和后處理,該系統(tǒng)由408動(dòng)態(tài)信號(hào)處理儀器(DSPi)以及ADRE Sxp軟件構(gòu)成。其中,ADRE Sxp軟件可進(jìn)行各種信號(hào)的幅值分析、頻譜分析、變化趨勢(shì)分析等,還可通過(guò)自選擇濾波繪制伯德圖和頻譜圖以及軸心軌跡等各種試驗(yàn)結(jié)果分析曲線。
1.模型泵 2.電機(jī) 3. Y方向振動(dòng)傳感器(CH2) 4.底座上振動(dòng)傳感器(CH4) 5. X方向振動(dòng)傳感器(CH1) 6. Z方向振動(dòng)傳感器(CH3) 7.本特利408數(shù)據(jù)采集系統(tǒng) 8.壓力變送器
首先,進(jìn)行額定負(fù)載工況下的試驗(yàn)。在試驗(yàn)開(kāi)始階段,將出口閥門全開(kāi),先啟動(dòng)泵類產(chǎn)品測(cè)試系統(tǒng)并調(diào)試好軟件,開(kāi)始記錄數(shù)據(jù),再啟動(dòng)電機(jī),調(diào)節(jié)出口閥門,使流量計(jì)讀數(shù)達(dá)到設(shè)計(jì)工況點(diǎn)并且穩(wěn)定在380 m3/h,轉(zhuǎn)速穩(wěn)定在1 450 r/min時(shí),分別獲取能量性能參數(shù),隨后啟動(dòng)并觸發(fā)本特利408數(shù)據(jù)采集系統(tǒng),開(kāi)始記錄泵體的振動(dòng)信號(hào)。關(guān)閉電源停機(jī),待管路內(nèi)流體重新穩(wěn)定,重新將出口閥門全開(kāi),進(jìn)行上述3次重復(fù)性試驗(yàn),并記錄試驗(yàn)數(shù)據(jù)。在相同運(yùn)行條件下進(jìn)行空載試驗(yàn),關(guān)閉混流泵上下游管道閥門,并將泵體內(nèi)的水排盡,振動(dòng)信號(hào)采集方法與負(fù)載試驗(yàn)時(shí)相同。
HHT變換是基于信號(hào)局部特征,自適應(yīng)地篩選出模函數(shù)分量,克服了小波變換中選擇小波基的困難[25]。同時(shí),它可以在時(shí)間和頻率同時(shí)達(dá)到很高的精度,克服了傳統(tǒng)的傅里葉變換只能得到信號(hào)某一段時(shí)間內(nèi)頻率的均值,無(wú)法準(zhǔn)確描述頻率-時(shí)間變化的缺陷。HHT變換通過(guò)生成復(fù)解析信號(hào),得到復(fù)平面上具有明確解析意義的瞬時(shí)頻率[26-28]。故本文采用Hilbert-Huang變換對(duì)獲得的振動(dòng)信號(hào)進(jìn)行處理。
EMD是用波動(dòng)上、下包絡(luò)平均值確定“瞬時(shí)平衡位置”的方法,分解過(guò)程相當(dāng)于對(duì)原始信號(hào)進(jìn)行分頻濾波,最終得到不同頻段的特征信號(hào)。對(duì)于任意時(shí)間序列()經(jīng)過(guò)EMD分解,可以得到一系列模函數(shù)分量,其表達(dá)式如式(1)所示。
式中本征模式函數(shù)1()、2()、···、c()分別表示原始信號(hào)中所有頻率下由高頻到低頻的信號(hào)成分;余量r()表示信號(hào)的趨勢(shì)項(xiàng)或漂移。
在任意的某一時(shí)間序列()時(shí),Hilbert-Huang變換()可表示為
構(gòu)造解析函數(shù)
式中()和()分別稱為信號(hào)()的瞬時(shí)振幅和瞬時(shí)相位。其中
由瞬時(shí)相位可得信號(hào)的瞬時(shí)頻率()
在進(jìn)行Hilbert-Huang變換之后,各模函數(shù)分量可以轉(zhuǎn)化為信號(hào)對(duì)應(yīng)的以時(shí)間為變量的瞬時(shí)振幅和瞬時(shí)頻率。由于Hilbert-Huang變換對(duì)局部特性的要求較高,所以應(yīng)去除所分析信號(hào)在頻域中的虛假成分。以時(shí)間和頻率為自變量,振幅為因變量,就能得到Hilbert-Huang幅值譜(,),即
式中表示取實(shí)部;a(),ω()是以時(shí)間為變量函數(shù),可以構(gòu)成時(shí)間、頻率、幅值的三維時(shí)頻譜圖。
獲得混流泵模型3組試驗(yàn)外特性數(shù)據(jù),如圖4所示。通過(guò)試驗(yàn)結(jié)果可知,所進(jìn)行的3次試驗(yàn)所得的揚(yáng)程和效率曲線基本一致,揚(yáng)程的最大誤差在3%以內(nèi)而效率誤差在2%以內(nèi),證明了本次試驗(yàn)可重復(fù)性好,試驗(yàn)所得結(jié)果可靠性高。
測(cè)試得到了混流泵在設(shè)計(jì)流量工況和空載運(yùn)行下泵體的(CH1)、(CH2)、(CH3)3個(gè)方向上的振動(dòng)信號(hào)以及泵體底座上的振動(dòng)信號(hào)(CH4),通過(guò)對(duì)4個(gè)加速度傳感器所得信號(hào)進(jìn)行希爾伯特-黃變換,得到了不同傳感器所對(duì)應(yīng)的EMD分解圖(未全部標(biāo)出),如圖5所示。
注:Q為試驗(yàn)流量工況,m3·h-1;Qopt為設(shè)計(jì)流量工況,m3·h-1。
由圖5可知,從原始信號(hào)可以看出,在負(fù)載工況下,各個(gè)傳感器所采集的信號(hào)的幅值均有所增加,尤其是泵體上方向、方向和底座上的振動(dòng)明顯增大,而在方向上,振動(dòng)增加不明顯,從2個(gè)流量工況下方向傳感器對(duì)應(yīng)的EMD分解圖可以看出,和空載運(yùn)行時(shí)相似,混流泵在設(shè)計(jì)流量工況下運(yùn)行時(shí),方向上各個(gè)模函數(shù)分量的曲線較為相似,說(shuō)明混流泵在運(yùn)行時(shí),水力激振對(duì)方向上的振動(dòng)影響較小,這和混流泵的安裝形式和出口方向有關(guān)。從2個(gè)流量工況下方向和方向傳感器對(duì)應(yīng)的原始振動(dòng)信號(hào)和其EMD分解圖可以看出,混流泵在空載運(yùn)行時(shí),其泵體在2個(gè)方向上的振動(dòng)幅值較小,而當(dāng)混流泵運(yùn)行在負(fù)載工況時(shí),2個(gè)方向上的振幅均明顯增大,呈條帶狀分布,并且方向的原始振幅要明顯大于方向,約為方向原始振幅的2倍。同時(shí),方向EMD分解圖上對(duì)應(yīng)的各模函數(shù)分量和剩余項(xiàng)的振幅也均要大于相應(yīng)的方向上的各分量幅值。
在泵體底座上,雖然傳感器所測(cè)方向和方向相同,但其原始振動(dòng)的幅值卻略小于方向的振幅,這是由于泵體底座和試驗(yàn)臺(tái)的接觸面積較大,泵體上振動(dòng)傳遞到底座上有所減弱,因而振幅相對(duì)較小。由于在負(fù)載工況下方向上的振幅明顯增大,因此,對(duì)比方向上空載工況和負(fù)載工況下的各模函數(shù)分量和剩余項(xiàng)的振幅可知,隨時(shí)間的變化,負(fù)載工況下各模函數(shù)分量的振幅在一段時(shí)間內(nèi)存在周期性,各個(gè)波峰值和波谷值出現(xiàn)的頻次較高且相鄰波峰值和波谷值的差值相差不大,而空載工況下各模函數(shù)分量的振幅在不同時(shí)間段內(nèi)會(huì)出現(xiàn)極值,并且波峰值和波谷值相差較大。因此,在負(fù)載工況下,混流泵泵體的整體振動(dòng)幅值明顯增加,而在空載運(yùn)行下,雖然整泵的振幅較小,但會(huì)出現(xiàn)振動(dòng)極值。綜上所述,混流泵在負(fù)載運(yùn)行時(shí),其水力誘導(dǎo)的機(jī)組振動(dòng)明顯加劇,EMD分解圖上各模函數(shù)分量上和剩余項(xiàng)的振幅也明顯增加,但在不同方向上,水力激振引起的振動(dòng)幅值各不相同。
圖5 振動(dòng)信號(hào)EMD分解圖
獲得了不同模函數(shù)分量的頻譜分布(未全部標(biāo)出),如圖6所示。混流泵空載和額定工況載荷下振動(dòng)原始信號(hào)頻譜較為復(fù)雜,除主頻信號(hào)及前幾階分頻信號(hào)外,其余信號(hào)大多被寬頻信號(hào)所覆蓋,難以看出其頻譜信號(hào)特征。經(jīng)EMD分解后,各階模函數(shù)的頻譜分布由模函數(shù)1到殘余項(xiàng)11,主頻呈逐漸降低趨勢(shì)。結(jié)合圖5可知EMD成功的將振動(dòng)信號(hào)按頻率高低按降序分解出來(lái),其中殘余項(xiàng)11與模函數(shù)11頻率分布主要集中于零附近,其所對(duì)應(yīng)模函數(shù)信號(hào)周期性也不明顯,可判定此兩項(xiàng)為分解中產(chǎn)生的虛假分量[29],對(duì)于混流泵振動(dòng)信號(hào)分析不具有參考意義。模函數(shù)9附近模量的頻譜主要成分為軸頻(24.16 Hz)以下的低頻信號(hào),這部分信號(hào)主要對(duì)應(yīng)于葉輪與導(dǎo)葉內(nèi)部液體回流以及漩渦結(jié)構(gòu)等低頻流動(dòng)現(xiàn)象。模函數(shù)5~模函數(shù)7模量的頻譜能量較高且分布較為集中,對(duì)應(yīng)信號(hào)主要來(lái)源于轉(zhuǎn)子的轉(zhuǎn)動(dòng)以及葉輪與導(dǎo)葉葉片之間的動(dòng)靜干涉。模函數(shù)1~模函數(shù)3模量的頻譜主要反應(yīng)機(jī)械的高頻信號(hào),根據(jù)文獻(xiàn)[30]中結(jié)論,這部分信號(hào)對(duì)機(jī)組的不穩(wěn)定以及故障較為敏感。
混流泵在空載時(shí),在不同位置處的頻譜分布基本相似,原始信號(hào)頻譜分布的幅值約為0。而混流泵在負(fù)載工況時(shí),各個(gè)傳感器的頻譜分布各不相同。在方向上,2個(gè)工況下混流泵的振動(dòng)頻譜分布基本相似,不同模函數(shù)分量的頻譜分布也基本一致,說(shuō)明水力激振對(duì)方向上的振動(dòng)影響較小。相比混流泵空載時(shí)的頻譜分布,在負(fù)載工況下,方向上原始信號(hào)對(duì)應(yīng)的頻譜幅值波動(dòng)較大,頻譜分布較為雜亂,分頻成分較多,隨著模函數(shù)分量的增大,各分量下波形的主頻從高頻向低頻移動(dòng)。同時(shí),對(duì)比2個(gè)工況相對(duì)應(yīng)的模函數(shù)分量可知,在不同模函數(shù)分量下,負(fù)載工況波形的頻域分布范圍略有縮減。對(duì)比方向上空載工況和負(fù)載工況下的各模函數(shù)分量和剩余項(xiàng)的頻譜分布可知,在模函數(shù)1~模函數(shù)3分量下,各個(gè)模函數(shù)分量的振動(dòng)頻譜出現(xiàn)明顯區(qū)別,在空載工況下,3個(gè)分量下的振動(dòng)幅值在600 Hz附近有最高值,而在負(fù)載工況下,這3個(gè)模函數(shù)分量下的振動(dòng)極值從900向300 Hz方向偏移,在其他模函數(shù)分量下,振動(dòng)頻譜的極值均出現(xiàn)在200 Hz內(nèi),說(shuō)明混流泵在負(fù)載工況下,水力誘導(dǎo)振動(dòng)以中、低頻振動(dòng)為主。在方向上的振動(dòng)頻譜分布和方向趨勢(shì)類似,均是隨著模函數(shù)分量的增大,頻域波形的主頻從高頻向低頻移動(dòng)。同時(shí),相比空載工況,在相同分量下,波形的頻帶分布變窄,能量分布較為集中,說(shuō)明水力誘導(dǎo)的機(jī)組振動(dòng)加劇了泵體的振動(dòng),并且水力振動(dòng)使得振動(dòng)主頻向低頻移動(dòng),這是水力誘導(dǎo)泵體振動(dòng)最直觀的體現(xiàn)。在原始振動(dòng)波形的頻譜分布中,在200~600 Hz內(nèi)振動(dòng)頻譜的幅值較高,說(shuō)明該頻段內(nèi),振動(dòng)的能量分布較多,水力誘導(dǎo)泵體振動(dòng)較強(qiáng)。在泵體底座上,從原始信號(hào)的頻譜分布可以看出,在0~400 Hz內(nèi),負(fù)載工況下原始波形頻譜分布的幅值較高,約為其他頻率下幅值的2倍,說(shuō)明水力因素導(dǎo)致的混流泵底座的振動(dòng)基本是低頻振動(dòng)。綜上所述,混流泵在負(fù)載運(yùn)行時(shí),水力誘導(dǎo)振動(dòng)對(duì)泵體的影響較為明顯,低頻振動(dòng)占據(jù)主要振動(dòng)能量分布,使得不同模函數(shù)分量的主頻向低頻方向移動(dòng),水力誘導(dǎo)混流泵機(jī)組的振動(dòng)以中、低頻振動(dòng)為主。
圖6 不同模函數(shù)分量的頻譜分布
1)通過(guò)對(duì)原始振動(dòng)信號(hào)進(jìn)行希爾伯特-黃變換可知,混流泵在負(fù)載運(yùn)行時(shí),水力誘導(dǎo)的機(jī)組振動(dòng)明顯加劇,但在不同方向上,水力激振引起的振動(dòng)各不相同,方向、方向和底座上的振動(dòng)明顯增大,而在方向上,振動(dòng)增加不明顯。
2)混流泵空載運(yùn)行時(shí),在不同位置處的頻譜分布基本相似,原始信號(hào)頻譜分布的幅值約為0。而在負(fù)載工況運(yùn)行時(shí),方向上2個(gè)工況下的振動(dòng)頻譜分布基本相似,在方向、方向和混流泵底座上,波形的頻帶分布變窄,能量分布較為集中,水力誘導(dǎo)的機(jī)組振動(dòng)加劇了泵體的振動(dòng)。
3)混流泵在負(fù)載運(yùn)行時(shí),低頻振動(dòng)占據(jù)主要振動(dòng)能量分布,使得不同模函數(shù)分量的主頻向低頻方向移動(dòng)。水力誘導(dǎo)混流泵機(jī)組的振動(dòng)以中低頻振動(dòng)為主。因此,減弱混流泵負(fù)載運(yùn)行時(shí)的中低頻振動(dòng)是提高混流泵運(yùn)行穩(wěn)定性的關(guān)鍵。
[1] 呂海平. 臥式離心泵受力與軸的振動(dòng)對(duì)泵體破壞分析[J]. 才智,2012,2012(17):49-50.
Lü Haiping. Failure analysis of horizontal centrifugal pump force and shaft vibration on pump body[J].Intelligence, 2012, 2012(17): 49-50. (in Chinese with English abstract)
[2] Christopher S, Kumaraswamy S. Study of noise and vibration signal for a radial flow pump during performance test[J]. Fluid Mechanics and Fluid Power-Contemporary Research, 2017,12: 853-861.
[3] Li W, Shi W, Xu Y, et al. Effects of guide vane thickness on pressure pulsation of mixed-flow pump in pumped-storage power station[J]. Journal of Vibroengineering, 2013, 15(3): 1177-1185.
[4] 李偉, 季磊磊, 施衛(wèi)東,等.不同流量工況下混流泵壓力脈動(dòng)試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2016, 47(12):70-76.
Li Wei, Ji Leilei, Shi Weidong, et al. Experiment on pressure fluctuation in mixed-flow pump under different flow rate conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 70-76. (in Chinese with English abstract)
[5] Li W, Ji L, Shi W, et al. Vibration characteristics of the impeller at multi-conditions in mixed-flow pump under the action of fluid-structure interaction[J]. Journal of Vibroengineering, 2016, 18(5): 3213-3224 .
[6] 潘羅平,高明. 水輪機(jī)水力穩(wěn)定性的分析[J]. 長(zhǎng)春工程學(xué)院學(xué)報(bào):自然科學(xué)版,2002,3(4):41-43.
Pan Luoping, Gao Ming. Analysis of hydraulic stability of hydraulic turbine[J]. Journal of Changchun Institute of Technology: Natural Science Edition, 2002, 3(4): 41-43. (in Chinese with English abstract)
[7] 陶星明,劉光寧. 高比速混流式水輪機(jī)的水力穩(wěn)定性問(wèn)題[J]. 大電機(jī)技術(shù),2003(4):46-48.
Tao Xingming, Liu Guangning. Hydraulic stability problem of high specific speed mixed flow turbine[J]. Large motor technology, 2003(4): 46-48. (in Chinese with English abstract)
[8] 劉麗娜,潘偉峰,麻志成. 混流式水輪機(jī)低負(fù)荷運(yùn)行水力穩(wěn)定性的研究[J]. 水電自動(dòng)化與大壩監(jiān)測(cè),2015(2):20-23. Liu Lina, Pan Weifeng, Ma Zhicheng. Study on hydraulic stability of mixed flow turbine at low load[J]. Hydropower Automation and Dam Monitoring, 2015(2): 20-23. (in Chinese with English abstract)
[9] 成立,吳璐璐,劉超. 大型軸流泵水力不穩(wěn)定區(qū)研究[J]. 灌溉排水學(xué)報(bào),2010,29(2):102-104.
Cheng Li, Wu Lulu, Liu Chao. Study on hydraulic instability zone of large axial flow pump[J]. Journal of Irrigation and Drainage, 2010, 29(2): 102-104. (in Chinese with English abstract)
[10] 張松松. 小型混流式水輪發(fā)電機(jī)組振動(dòng)試驗(yàn)與分析[D]. 邯鄲:河北工程大學(xué),2014.
Zhong Songsong. Vibration Test and Analysis of Small Mixed Flow Turbine[D]. Handan:Hebei University of Engineering, 2014. (in Chinese with English abstract)
[11] Shi F X, Yang J H, Wang X H. Analysis on characteristic of pressure fluctuation in hydraulic turbine with guide vane[J]. International Journal of Fluid Machinery and Systems, 2016, 9(3): 237-244.
[12] 孟龍,劉孟,支發(fā)林,等. 機(jī)械不平衡及軸瓦間隙對(duì)水輪機(jī)運(yùn)行穩(wěn)定性的影響分析[J]. 機(jī)械工程學(xué)報(bào),2016,52(3):49-55.
Meng Long, Liu Meng, Zhi Faling, et al. Analysis of the effect of mechanical imbalances and bush clearance on the stability of hydraulic turbines[J]. Journal of Mechanical Engineering, 2016, 52(3): 49-55. (in Chinese with English abstract)
[13] 李偉,季磊磊,施衛(wèi)東,等. 混流泵非均勻輪緣間隙流場(chǎng)數(shù)值計(jì)算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(10):66-72.
Li Wei, Ji Leilei, Shi Weidong, et al. Numerical calculation of the flow field in the nonuniform rim clearance of mixed flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery 2016, 47(10): 66-72. (in Chinese with English abstract)
[14] 李偉. 導(dǎo)葉式混流泵多工況內(nèi)部流場(chǎng)的PIV測(cè)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):82-88.
Li Wei. PIV measurement of the internal flow field in multiple conditions of guide vane mixed flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 82-88. (in Chinese with English abstract)
[15] 季磊磊,李偉,施衛(wèi)東,等. 導(dǎo)葉式混流泵內(nèi)部非定常流動(dòng)特性數(shù)值模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(增刊1):155-162,188.
Ji Leilei, Li Wei, Shi Weidong, et al. Numerical simulation of unsteady flow in guide vane mixed flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(Supp.1):155-162,188. (in Chinese with English abstract)
[16] 施衛(wèi)東,鄒萍萍,張德勝,等. 高比轉(zhuǎn)速斜流泵內(nèi)部非定常壓力脈動(dòng)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(4):147-152. Shi Weidong, Zou Pingping, Zhang Deisheng, et al. Unsteady pressure pulsation characteristics in high specific speed slanted flow pump[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 147-152. (in Chinese with English abstract)
[17] 劉建瑞,鄭俊峰,付登鵬,等. 混流泵徑向間隙對(duì)內(nèi)部非定常流場(chǎng)影響的分析[J]. 流體機(jī)械,2014(3):19-23.
Liu Jianrui, Zhen Junfemg, Fu Dengpeng, et al. Analysis of the influence of radial clearance on unsteady flow field in mixed flow pump[J]. Fluid machinery, 2014(3): 19-23. (in Chinese with English abstract)
[18] 李偉,季磊磊,施衛(wèi)東,等. 變流量工況對(duì)混流泵轉(zhuǎn)子軸心軌跡的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(4):91-97.
Li Wei, Ji Leilei, Shi Weidong, et al. Effects of variable flow conditions on rotor axis orbit of mixed flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 91-97. (in Chinese with English abstract)
[19] Wang K, Liu H, Zhou X, et al. Experimental research on pressure fluctuation and vibration in a mixed flow pump[J]. Journal of Mechanical Science and Technology, 2016, 30(1): 179-184.
[20] 薛延剛,羅興錡,王瀚,等. 基于改進(jìn)HHT方法提取水輪機(jī)動(dòng)態(tài)特征信息研究[J]. 水力發(fā)電學(xué)報(bào),2011,30(4):214-221.
Xue Yangang, Luo Xingqi, Wang Han, et al. Study on dynamic feature extraction of hydraulic turbine based on improved HHT method[J]. Journal of Hydroelectric Power Generation, 2011, 30(4): 214-221. (in Chinese with English abstract)
[21] 梁興,劉梅清,劉志勇,等. 立式混流泵異常振動(dòng)測(cè)試分析[J]. 排灌機(jī)械工程學(xué)報(bào),2013,31(5):373-378.
Liao Xing, Liu Meiqing, Liu Zhiyong, et al. Test and analysis of abnormal vibration of vertical mixed flow pump[J]. Drainage and Irrigation Machinery Engineering, 2013, 31(5): 373-378. (in Chinese with English abstract)
[22] 楊國(guó)安,王澤棟. 基于改進(jìn)希爾伯特-黃的泵閥故障診斷新方法[J]. 北京化工大學(xué)學(xué)報(bào):自然科學(xué)版,2008,35(4):81-85.
Yang Guoan, Wang Zeidong. A new method for fault diagnosis of pump valve based on improved Hilbert-Huang[J]. Journal of Beijing University of Chemical Technology: Natural Science Edition, 2008, 35(4): 81-85. (in Chinese with English abstract)
[23] Li W, Zhou L, Shi W, et al. PIV experiment of the unsteady flow field in mixed-flow pump under part loading condition[J]. Experimental Thermal and Fluid Science, 2017, 83(2017): 191-199.
[24] 李偉,季磊磊,施衛(wèi)東,等. 混流泵起動(dòng)過(guò)程轉(zhuǎn)子軸心軌跡的試驗(yàn)研究[J]. 機(jī)械工程學(xué)報(bào),2016, 52(22):168-177.
Li Wei, Ji Leilei, Shi Weidong, et al. Experimental study on the rotor axis orbit in the starting process of mixed flow pump[J]. Journal of Mechanical Engineering, 2016, 52(22): 168-177. (in Chinese with English abstract)
[25] Zhu K P,Wong Y S,Hong G S. Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results[J]. International Journal of Machine Tools & Manufacture, 2009, 49(2009): 537-553.
[26] Zhang Y, Tang B, Xiao X. Time-frequency interpretation of multi-frequency signal from rotating machinery using an improved Hilbert–Huang transform[J]. Measurement, 2016, 82(2016): 221-239.
[27] Interpretation of mechanical signals using an improved Hilbert–Huang transform[J]. Mechanical Systems & Signal Processing, 2008, 22(5): 1061-1071.
[28] Babu T R, Srikanth S, Sekhar A S. Hilbert–Huang transform for detection and monitoring of crack in a transient rotor[J]. Mechanical Systems & Signal Processing, 2008, 22(4): 905-914.
[29] 劉美汝. 基于HHT的主泵飛輪振動(dòng)監(jiān)測(cè)系統(tǒng)研究[D]. 哈爾濱:哈爾濱工程大學(xué),2015.
Liu Meiru. Research on the Vibration Monitoring System of the Main Pump Flywheel based on HHT[D]. Harbin:Harbin Engineering University, 2015. (in Chinese with English abstract)
[30] 王若. 火箭發(fā)動(dòng)機(jī)渦輪泵實(shí)時(shí)故障檢測(cè)方法研究[D]. 成都:電子科技大學(xué),2013.
Wang Ruo. Research on Real Time Fault Detection Method for Turbopump of Rocket Engine[D]. Chengdu: University of Electronics Technology, 2013. (in Chinese with English abstract)
Experiment of flow induced vibration of mixed-flow pump based on Hilbert-Huang transform
Li Wei, Ji Leilei, Shi Weidong, Yang Yongfei, Ping Yuanfeng, Zhang Wenquan
(,,212013,)
The vibration induced by flow is one of the important factors to the instability of the mixed-flow pump. With the increase of the capacity and the size of mixed-flow pumps, the vibration of the hydraulic components attracts more attention from researchers and engineers. In order to study the vibration of mixed-flow pump induced by hydrodynamic force, based on the Bentley 408 data acquisition system, vibration signals in 3 directions (,and) on the base under unloaded and designed flow conditions of the mixed-flow pump are tested and then analyzed using Hilbert-Huang transform (HHT). The original vibration signal is decomposed by EMD (empirical mode decomposition) using the Hilbert-Huang transform, and the spectral distribution of the different mode function components is obtained. The decomposed signal contains intrinsic modulus with 11 different orders and one residual. The acquired intrinsic modulus represents vibration signal with different frequencies, except the Intrinsic mode function 11 and the residual, which show no periodic characteristics. The results show that the vibration under loaded condition is significantly increased compared with the unloaded operating condition, but the vibrations caused by the hydraulic excitation differ in different directions. When the mixed-flow pump is working under designed operating condition, the low frequency vibration occupies the main vibration energy distribution, making the main mode of the different mode function components move to the low frequency direction, and the hydraulic induced vibration is dominated by the middle and low frequency vibration. In thedirection, the vibration spectrum distribution is similar in the 2 cases, while in theanddirection and on the base of mixed-flow pump the frequency distribution of the waveform is narrowed and the energy distribution is concentrated under loaded condition. Under both loaded and unloaded conditions, the main frequency of the spectrum moves toward the low frequency region with the increase of the modulus order. The difference of the frequency spectrum under loaded and unloaded conditions is more obvious for the intrinsic modulus with lower order, namely Intrinsic mode function 1-3. Under unloaded condition, frequency spectrum of the Intrinsic mode function 1-3 reaches the highest value near 600 Hz; while under loaded operating condition, the position for the peak values moves from 900 to 300 Hz for the spectrum of the intrinsic modulus of the first 3 orders. For the other intrinsic moduli, the peak of the frequency spectrum is distributed below 200 Hz, which indicates that the vibration induced by flow is mainly composed of low and middle frequency vibrations. Compared with the frequency spectrum of vibration signal under unloaded condition, the distribution of vibration spectrum under loaded operating condition is narrower, and the power distribution of the vibration is more concentrated, indicating that the vibration induced by flow increases the vibration of the pump and the hydraulic vibration makes the main frequency of the pump vibration move toward the low frequency region in the frequency spectrum. In the original spectrum under loaded operating condition, the amplitude of the vibration spectrum is higher in the region of 200-600 Hz, which indicates that the vibration power is high in this frequency section, and the vibration caused by hydraulic force is greater there. According to the original vibration signal on the base of the pump, it was found that in the frequency region from 0 to 400 Hz, the amplitude of the vibration spectrum under loaded operating condition is 2 times higher than that of other frequencies, which indicates that low frequency vibration occupies the vibration on the base of the mixed-flow pump. The research results have important engineering application value and theoretical guidance for effectively reducing or preventing the vibration of mixed-flow pumps.
pumps; vibrations; signal analysis; mixed-flow pump; unloaded condition; Hilbert-Huang transform
10.11975/j.issn.1002-6819.2018.02.007
TH313
A
1002-6819(2018)-02-0047-08
2017-07-02
2017-12-08
國(guó)家自然科學(xué)基金項(xiàng)目(51679111、51579118);江蘇省自然科學(xué)基金項(xiàng)目(BK20161472);江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目(PAPD)
李 偉,博士,研究員,博士生導(dǎo)師,主要研究方向?yàn)榱黧w機(jī)械(泵)的優(yōu)化設(shè)計(jì)、流場(chǎng)計(jì)算和動(dòng)力學(xué)特性研究。Email:lwjiangda@ujs.edu.cn
李 偉,季磊磊,施衛(wèi)東,楊勇飛,平元峰,張文全. 基于Hilbert-Huang變換的混流泵流動(dòng)誘導(dǎo)振動(dòng)試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):47-54. doi:10.11975/j.issn.1002-6819.2018.02.007 http://www.tcsae.org
Li Wei, Ji Leilei, Shi Weidong, Yang Yongfei, Ping Yuanfeng, Zhang Wenquan. Experiment of flow induced vibration of mixed-flow pump based on Hilbert-Huang transform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 47-54. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.007 http://www.tcsae.org