汪小旵,李成光,楊振杰,孫國(guó)祥,施印炎,趙 博
?
移動(dòng)式土壤旋耕蒸汽消毒機(jī)的研制
汪小旵1,2,李成光1,楊振杰1,孫國(guó)祥1,2,施印炎1,趙 博1
(1. 南京農(nóng)業(yè)大學(xué)工學(xué)院,南京 210031; 2.江蘇省現(xiàn)代設(shè)施技術(shù)與裝備工程實(shí)驗(yàn)室,南京 210031)
為解決土壤連作障礙等引起的蔬菜種植問題,設(shè)計(jì)了一種可在旋耕作業(yè)的同時(shí)進(jìn)行土壤蒸汽消毒的機(jī)具。機(jī)具主要由旋耕裝置、蒸汽發(fā)生器、補(bǔ)水裝置、蒸汽輸送系統(tǒng)、消毒罩、可拆卸消毒毛管等組成。通過熱量平衡分析得出,在土壤寬120 cm、深15 cm時(shí),土壤消毒到60 ℃時(shí)所需蒸汽功率為87.78 kW,而當(dāng)土壤蒸汽消毒機(jī)蒸汽發(fā)生器出口壓強(qiáng)為0.6 MPa,溫度為158.86 ℃時(shí),能提供的蒸汽功率為97.35 kW,系統(tǒng)損耗為0.61 kW,可滿足土壤消毒的熱量需求。田間試驗(yàn)表明:當(dāng)蒸汽發(fā)生器出口蒸汽壓強(qiáng)為0.6 MPa,溫度為158.86 ℃,機(jī)具旋耕行走速度為0.035 m/s,消毒毛管管徑15 mm,間距為180 mm時(shí),深度15 cm土壤消毒后溫度在58.9~70.6 ℃之間,可滿足土壤旋耕消毒的溫度要求。
土壤;農(nóng)業(yè)機(jī)械;設(shè)計(jì);連作障礙;移動(dòng)式;旋耕;蒸汽消毒
蔬菜種植由于復(fù)種指數(shù)高,再加上肥料的大量使用,極易導(dǎo)致土壤連作障礙、理化性能失衡和土壤板結(jié)等問題[1-4]。優(yōu)質(zhì)土壤是蔬菜種植的重要保障,土壤消毒是防止土壤連作障礙等問題的有效辦法[5-9],其中土壤蒸汽消毒是將高溫水蒸汽通入土壤中,將土壤中的細(xì)菌以及大部分雜草高溫滅殺[10-16]。蒸汽消毒的同時(shí),在水蒸汽的疏通下土壤孔隙也隨之增大,并通過土壤孔隙將殘留的氮磷鹽帶到有效耕作層下方。因此,土壤蒸汽消毒不僅無藥害殘留、不會(huì)產(chǎn)生有害生物抗藥性問題,還增加了土壤的通透性與排水性,有利于改善土壤板結(jié)[17-24]。
土壤蒸汽消毒法首先由德國(guó)人Frank于1888年發(fā)明,1893年由美國(guó)人Rudd首次商業(yè)化使用[25]。蒸汽消毒一般有以下幾種方法:地表覆膜蒸汽消毒法(湯姆斯法)[26],即在地表鋪設(shè)一層帆布或者抗熱塑料膜,在開口處通入蒸汽以達(dá)到消毒目的,其蒸汽利用效率較低;侯德森(Hodeson)管道法[27],即在地下40 cm深處鋪設(shè)一層管道網(wǎng),并在管網(wǎng)上每間隔一段距離開設(shè)一個(gè)蒸汽出口,其蒸汽利用效率較高,消毒比較徹底,但管道鋪設(shè)成本較大,且不利于后期田間的耕作;負(fù)壓蒸汽消毒法[28],即在地下埋設(shè)多孔的聚丙烯管道,用風(fēng)機(jī)產(chǎn)生負(fù)壓將地表的蒸汽吸入地下,該法使得土壤深層中的溫度比地表覆膜高,蒸汽利用消毒效率較好,但工藝流程較為復(fù)雜;金屬罩注射式消毒方法[29],該方法通過安裝在拖拉機(jī)后面的蒸汽注入管注入土壤蒸汽,逐塊面積分次作業(yè),作業(yè)效率相對(duì)較低。
為提高工作效率,在牽引式鍋爐[30]設(shè)計(jì)的基礎(chǔ)上,結(jié)合蔬菜整地旋耕復(fù)式作業(yè),本文設(shè)計(jì)了一種移動(dòng)式土壤旋耕蒸汽消毒機(jī)。該機(jī)將旋耕裝置和蒸汽消毒裝置有機(jī)結(jié)合,在土壤旋耕的同時(shí)完成消毒作業(yè),以期為土壤蒸汽消毒提供一種新模式。
根據(jù)相應(yīng)的技術(shù)設(shè)計(jì)要求,確定整機(jī)的主要技術(shù)參數(shù)如表1所示。消毒機(jī)的整體結(jié)構(gòu)如圖1所示,主要由燃油蒸汽發(fā)生器、旋耕裝置、補(bǔ)水裝置、蒸汽輸送系統(tǒng)、末端執(zhí)行機(jī)構(gòu)組成。其中A為蒸汽發(fā)生器的蒸汽出口,B為消毒機(jī)箱的蒸汽入口,A、B通過耐高溫高壓的鋼絲軟管連接構(gòu)成蒸汽輸送系統(tǒng)。
1.燃燒器 2.控制箱 3.水位計(jì) 4.蒸汽鍋爐 5.前托架 6.拖拉機(jī) 7.前滾輪 8.旋耕軸 9.旋耕機(jī) 10.消毒毛管 11.限位輪 12.消毒罩 13.消毒支管 14.液壓桿 15.懸掛架 16.外置水箱
當(dāng)拖拉機(jī)牽引機(jī)具向前消毒作業(yè)時(shí),旋耕機(jī)通過三點(diǎn)懸掛機(jī)構(gòu)與配套拖拉機(jī)聯(lián)接,拖拉機(jī)輸出軸動(dòng)力通過萬向節(jié)與中央變速箱傳動(dòng)軸聯(lián)接,并將動(dòng)力傳遞給旋耕機(jī)。中央變速箱將動(dòng)力傳遞給側(cè)邊傳動(dòng)箱從而帶動(dòng)旋耕刀軸旋轉(zhuǎn),刀軸上的刀片旋切土壤和雜草,被旋切的土壤與雜草沿著旋耕刀的切線方向向后上方拋灑,與擋泥罩碰撞后落入正下方土壤上。
表1 蒸汽消毒機(jī)主要技術(shù)參數(shù)
消毒罩通過液壓缸及兩側(cè)固定機(jī)構(gòu)與旋耕機(jī)相連,當(dāng)拖拉機(jī)牽引旋耕機(jī)進(jìn)行旋耕作業(yè)時(shí),同時(shí)調(diào)節(jié)液壓控制系統(tǒng)將消毒罩放下,使得末端消毒毛管插入旋耕后的土壤,打開蒸汽閥門進(jìn)行移動(dòng)式消毒作業(yè)。消毒深度由液壓桿伸縮進(jìn)行調(diào)節(jié),限位輪控制調(diào)節(jié)深度上限。
蒸汽發(fā)生器采用LSS0.12-0.7Y/Q蒸汽鍋爐,理論產(chǎn)汽量為0.12 t/h,其產(chǎn)生的飽和水蒸汽的放熱分為潛熱放熱與顯熱放熱。
以0.6 MPa下的飽和水蒸汽為參照,查表可知0.6 MPa下的飽和水蒸汽溫度為158.86 ℃,比焓為2 756.72 kJ/kg,故其降到60 ℃時(shí)潛熱放熱量為
顯熱放熱量為
式中Q為總放熱量,Q為潛熱放熱量,Q為顯熱放熱量,kJ/s;為飽和水蒸汽溫度,℃;h為水蒸汽焓值,kJ/kg;C為水的比熱容,kJ/(kg×℃);為水蒸汽密度,kg/m3;u為水蒸汽流速,m/s。已知產(chǎn)汽量為0.12 t/h,蒸汽軟管直徑為25 mm,則由式(4)可得飽和水蒸汽的流速u為16.47 m/s。
故理論總放熱量為
旋耕消毒作業(yè)機(jī)作業(yè)幅寬為120 cm,作業(yè)速度按照0.032 m/s計(jì)算,每根消毒管的消毒輻射范圍為5 cm,消毒深度為15 cm,以10根消毒毛管計(jì)算單位時(shí)間土壤加熱到60 ℃所需熱量計(jì)算,則所需要熱量為
式中Q為土壤達(dá)到預(yù)期溫度所吸收需要的熱量,kJ/s;C為土壤的比熱容,kJ/(kg×℃);ρ為土壤密度1 270 kg/m3,Δv為每根消毒毛管消毒所輻射到的土壤體積,m3;為單位時(shí)間內(nèi)所需消毒土壤的總質(zhì)量,kg。結(jié)合式(6)、式(7)可知土壤所需蒸汽功率為87.78 kW。
蒸汽管道熱損失有很多因素和條件,如果詳細(xì)計(jì)算需要很多數(shù)據(jù),忽略其他傳熱與熱損耗,采用管道在空氣中熱損失(3%/100 m·h)來計(jì)算,即總流量等于管損來估算[31]。
則蒸汽在管道中的熱損失為
式中Q為單位長(zhǎng)度的熱損失,W/m,T為管內(nèi)維持溫度158.86 ℃,T為環(huán)境溫度25 ℃,0為保溫層外徑35 mm,1為保溫層內(nèi)徑25 mm,為保溫材料的導(dǎo)熱系數(shù),查表可知為0.033 W/(m·℃)參考民用建筑熱工設(shè)計(jì)規(guī)范(GB 50176-1993),為保溫層外表面向大氣的傳熱系數(shù),查表可知為6.69 W/(m2·℃)。通過計(jì)算得出蒸汽在管道中的熱損失為61.1 W/m。則10 m蒸汽管道內(nèi)的熱損失為0.61 kW。總發(fā)熱量減去管道熱損失,可知高溫水蒸汽提供的熱功率為96.74 kW。則土壤獲得熱功率為96.74>87.78 kW。飽和水蒸汽提供的熱量能夠滿足土壤消毒加熱到60 ℃所需熱量。
消毒機(jī)整體采用三點(diǎn)懸掛方式和拖拉機(jī)相連,消毒機(jī)的旋耕裝置的軸連接前置傳動(dòng)箱的動(dòng)力,拖拉機(jī)動(dòng)力傳遞至變速箱動(dòng)力輸入軸,再由傳動(dòng)分配箱分配至旋耕刀輥。輸出軸旋耕刀軸的傳動(dòng)形式采用的是側(cè)邊傳動(dòng)。側(cè)邊傳動(dòng)可更加便利的拆裝傳動(dòng)裝置,并且側(cè)傳動(dòng)箱的制作工藝簡(jiǎn)單,相對(duì)于中間傳動(dòng)時(shí)搭載笨重的鑄件傳動(dòng)箱能夠大幅減輕整機(jī)的重量,另外側(cè)邊傳動(dòng)可以將待消毒區(qū)域充分旋耕以保護(hù)后方消毒支管。圖2為旋耕消毒機(jī)的傳動(dòng)系統(tǒng)示意圖,其中中央傳動(dòng)為一級(jí)變速,側(cè)邊傳動(dòng)為二級(jí)變速。拖拉機(jī)動(dòng)力輸出軸經(jīng)過十字萬向節(jié)傳遞給中央變速箱中的圓錐齒輪減速并改變方向后,傳遞給側(cè)邊傳動(dòng)箱中的齒輪,再由側(cè)傳動(dòng)箱中的刀軸齒輪帶動(dòng)刀軸旋轉(zhuǎn)。作業(yè)時(shí)旋耕刀輥攜帶切削的深層土壤、殘留根茬、粉碎刀輥拋擲的混合物等越過刀輥上方并向后方拋擲,經(jīng)滾輪平整形成上細(xì)下粗的待消毒層。
機(jī)具配套動(dòng)力采用的是黃海金馬654拖拉機(jī),其動(dòng)力輸出軸轉(zhuǎn)速為540~720 r/min所設(shè)計(jì)的旋耕刀軸轉(zhuǎn)速為220~300 r/min左右。各級(jí)齒輪數(shù):1為13,2為19,3為15,4為13,5為10,6為25。旋耕機(jī)構(gòu)的各級(jí)傳動(dòng)比見式(9)、式(10)。
1.中央變速箱 2.萬向節(jié) 3.圓錐齒輪 4.側(cè)邊傳動(dòng)箱 5.側(cè)邊傳動(dòng)齒輪 6.旋耕刀 7.旋耕刀軸
中央傳動(dòng)為單級(jí)圓錐傳動(dòng),其中一級(jí)傳動(dòng)比為
側(cè)邊傳動(dòng)齒輪傳動(dòng)比為
故拖拉機(jī)傳動(dòng)軸與旋耕機(jī)傳動(dòng)軸之間的傳動(dòng)比為
由于配套黃海金馬654拖拉機(jī)的輸出軸轉(zhuǎn)速為540~720 r/min,結(jié)合式(11)可以計(jì)算出旋耕刀軸的轉(zhuǎn)速為
消毒罩及其中的末端消毒毛管整體機(jī)構(gòu)通過液壓伸縮桿與前部旋耕裝置相聯(lián)接,通過拖拉機(jī)上的液壓開關(guān)控制消毒機(jī)構(gòu)的收放,控制消毒毛管在土壤中的消毒深度。消毒作業(yè)時(shí)上方消毒罩可封住蒸汽,減少熱量散失。消毒罩整體機(jī)構(gòu)如圖3所示。
1.傳動(dòng)軸 2.液壓桿3.四邊形支架4.消毒罩5.消毒毛管6.滾軸7.三腳架 8.上支架
消毒罩的升降主要由中部的液壓桿和四邊形支架兩側(cè)的絲桿螺母進(jìn)行調(diào)節(jié)。兩邊的絲桿螺母在固定消毒罩兩側(cè)的同時(shí)還可以調(diào)節(jié)消毒罩與地面的法線角度,確保消毒罩在作業(yè)時(shí)末端與土壤保持垂直工作狀態(tài)。
為減少消毒毛管在土壤中移動(dòng)消毒作業(yè)時(shí)的阻力,在前排毛管的作業(yè)方向的加裝了一排犁形破土裝置如圖4所示,破土犁之間的間距根據(jù)消毒毛管的布置間距來對(duì)應(yīng)調(diào)整,通過機(jī)構(gòu)上端的固定螺母與上梁固定。其中犁長(zhǎng)40 cm,厚度1 cm,末端是一個(gè)邊長(zhǎng)5 cm的等邊倒三角犁。在消毒作業(yè)時(shí)該裝置通過下方犁形面將前方土層破開,形成一排阻力較小的寬松通道便于后方的消毒毛管在土壤中移動(dòng)。該機(jī)構(gòu)既減少了毛管的前進(jìn)阻力,也可防止土壤層中雜草對(duì)消毒支管的纏繞,同時(shí)還能有效地減少蒸汽噴口處土壤的堵塞和堆積。消毒罩的下方裝有2個(gè)限位輪,確保消毒深度不超過25 cm,從而可以有效地保護(hù)消毒毛管不被深層硬質(zhì)土塊刮變形。
1.支架 2.毛管 3.犁形破土裝置
消毒環(huán)形支管通過支管上部的螺紋接口與蒸汽軟管相連,并將軟管輸送的高溫蒸汽傳輸?shù)礁鱾€(gè)消毒毛管。消毒支管由2根長(zhǎng)120 cm、直徑25 mm金屬管環(huán)形聯(lián)通,在支管下方每間隔60 mm處設(shè)有內(nèi)螺紋結(jié)構(gòu)的接口,用以裝配不同管徑的消毒毛管,并且可以調(diào)整毛管之間的間距以便后期試驗(yàn)確定較優(yōu)組合方案。通過與環(huán)形支管連接的消毒毛管一共設(shè)計(jì)4種直徑類型,分別為5、10、15、20 mm(參照標(biāo)準(zhǔn)SLDI 233A12-98)。消毒毛管管壁厚度選為2 mm(參照標(biāo)準(zhǔn)GB/T 20801.1-2006),每根消毒毛管的長(zhǎng)度為400 mm,在距消毒毛管末端2 cm處以層間距5 cm分布3層孔徑為3 mm消毒孔,每層3個(gè)消毒孔呈120°向后方分布(圖5)。相鄰毛管之間的間距也分別設(shè)有180、240、300 mm的3種分布方式,毛管通過過渡接頭與環(huán)形支管相連。
1.環(huán)形支管 2.支管接口 3.過渡接口 4.消毒毛管
2017年6月在江蘇省鹽城市試驗(yàn)田(120°14′40″E,33°23′12″N)內(nèi)進(jìn)行了移動(dòng)式土壤旋耕消毒機(jī)作業(yè)性能試驗(yàn)。試驗(yàn)動(dòng)力采用黃海金馬654拖拉機(jī),標(biāo)定功率為47.8 kW,作業(yè)機(jī)具行走速度為0.032~0.085 m/s。該試驗(yàn)田土壤為沙壤土,其容重為1.27 g/cm3,砂粒質(zhì)量分?jǐn)?shù)為86.7%,含水率為22.9%,孔隙率為34%。
選取10塊長(zhǎng)度為10 m的區(qū)域作為試驗(yàn)區(qū)域,作業(yè)幅寬以120 cm為基準(zhǔn),在試驗(yàn)區(qū)域內(nèi)隨機(jī)選取120 cm×120 cm正方形區(qū)域進(jìn)行5點(diǎn)采樣,即確定方形區(qū)域上對(duì)角線的中點(diǎn)作為中心采樣點(diǎn),再在對(duì)角線上選擇4個(gè)與中心樣點(diǎn)距離相等的點(diǎn)作為采樣點(diǎn),采樣深度為15 cm,每組試驗(yàn)重復(fù)3次,結(jié)果為3次試驗(yàn)的平均值。
試驗(yàn)選取水蒸汽的壓力、機(jī)具行走速度、消毒毛管直徑以及管間距4個(gè)性能參數(shù)對(duì)進(jìn)行田間試驗(yàn)驗(yàn)證(圖6)。整機(jī)調(diào)試發(fā)現(xiàn),當(dāng)蒸汽壓力達(dá)到0.2 MPa時(shí),消毒毛管才有較為充足的消毒蒸汽產(chǎn)生,故試驗(yàn)蒸汽壓力選取0.2、0.3、0.4、0.5和0.6 MPa共5個(gè)水平,其中每個(gè)壓力水平下對(duì)應(yīng)的飽和水蒸汽溫度分別為120.24、133.56、143.64、151.87和158.86 ℃;行走速度選取0.032、0.035、0.041和0.062 m/s共4個(gè)水平;消毒毛管直徑選取了5、10、15和20 mm共4個(gè)水平;管間距則采用了180、240和300 mm共3個(gè)水平。試驗(yàn)通過對(duì)比單因素在不同水平下消毒溫度效果以選出最優(yōu)組合。其中單因素試驗(yàn)一共選取3組來進(jìn)行對(duì)比分析。第1組為管徑15 mm,管間距180 mm,行走速度選取0.032、0.035、0.041和0.062 m/s共4個(gè)水平,蒸汽壓強(qiáng)選取0.2、0.3、0.4、0.5和0.6 MPa共5個(gè)水平進(jìn)行分析試驗(yàn);第2組選行走速度為0.035 m/s,管間距為180 mm,消毒毛管直徑選取5、10、15和20 mm共4個(gè)水平,蒸汽壓力選取0.2、0.3、0.4、0.5和0.6 MPa共5個(gè)水平進(jìn)行分析試驗(yàn);第3組為管徑15 mm,行走速度0.035 m/s,管間距則采用180、240和300 mm共3個(gè)水平,蒸汽壓強(qiáng)選取0.2、0.3、0.4、0.5和0.6 MPa共5個(gè)水平進(jìn)行分析試驗(yàn)。通過3組組合分析試驗(yàn)選出每個(gè)因素中的最優(yōu)值。
a. 消毒作業(yè)a. Disinfection operationb. 溫度采集b. Temperature collection
Fig6 Plot experiment of mobile soil rotary steam disinfection machine
第1組試驗(yàn)數(shù)據(jù)如表2所示??梢钥闯鲈诠軓脚c管距不變的情況下,消毒溫度隨著作業(yè)速度的增加而明顯降低。作業(yè)速度為0.032和0.035 m/s,蒸汽壓力為0.6 MPa時(shí),土壤溫度分別為69.4和58.9 ℃,可滿足土壤消毒的溫度要求[32-33]。
表2 不同機(jī)具行走速度及蒸汽壓強(qiáng)下的土壤溫度
注:管徑15 mm,管距180 mm。
Note: Tube diameter is 15 mm, and tube distance is 180 mm.
但在試驗(yàn)中發(fā)現(xiàn)當(dāng)作業(yè)行走速度為0.032 m/s時(shí),旋耕機(jī)工作時(shí)旋耕轉(zhuǎn)速過低,嚴(yán)重影響旋耕作業(yè)性能,因此在第2組和第3組試驗(yàn)中機(jī)具作業(yè)行走速度選取為0.035 m/s。
表3 不同管徑及蒸汽壓強(qiáng)下的土壤溫度
注:機(jī)具行走速度0.035 m×s-1,管距180 mm。
Note: Walking speed is 0.035 m×s-1, and tube distance is 180 mm.
第2組試驗(yàn)數(shù)據(jù)如表3所示。試驗(yàn)發(fā)現(xiàn)5 mm管徑的消毒毛管由于韌性較低,在消毒作業(yè)時(shí)易被土壤折彎,而20 mm管徑在消毒時(shí)蒸汽液化比較嚴(yán)重,在消毒作業(yè)時(shí)從消毒毛管中出來的水蒸氣會(huì)迅速液化,而液化的水會(huì)將與其接觸的土壤間隙填滿而不利于熱量的傳遞,對(duì)消毒效果影響較大。從表3中可以看出管徑為10和15 mm下的消毒溫度較高,其中管徑為15 mm時(shí)消毒溫度最高,溫度達(dá)到70.6 ℃。0.6 MPa壓力下,管徑為15 mm的消毒溫度不僅比10 mm下的溫度高出了11.71%,也比20 mm下的溫度高出了15.55%,因此,為保證消毒溫度最高,15 mm管徑是最優(yōu)選擇。
第3組試驗(yàn)數(shù)據(jù)如表4所示??梢钥闯霎?dāng)作業(yè)速度和管徑不變的情況下,消毒溫度隨著管距的增大而減小。當(dāng)管距為180 mm,蒸汽壓力為0.6 MPa時(shí),消毒溫度達(dá)到最高。
表4 不同管距及蒸汽壓強(qiáng)下的土壤溫度
注:機(jī)具行走速度0.035 m·s-1,管徑為15 mm。
Note: Walking speed is 0.035 m·s-1, and tube diameter is 15 mm.
綜合表2、表3、表4的試驗(yàn)數(shù)據(jù)可以發(fā)現(xiàn)管徑為15 mm消毒后溫度最高;管間距越小消毒溫度越高;在保證旋耕質(zhì)量的前提下,機(jī)具作業(yè)行走速度為0.035 m/s時(shí),旋耕消毒整機(jī)作業(yè)性能較好且相對(duì)較為穩(wěn)定。當(dāng)作業(yè)速度再次提高時(shí),蒸汽與待消毒土壤的接觸時(shí)間變短,消毒機(jī)的消毒效果大大減弱,溫度達(dá)不到預(yù)期要求的60 ℃。并且在過高的作業(yè)速度下,后方消毒的末端執(zhí)行機(jī)構(gòu)收到的阻力較大易于發(fā)生形變或脫落,同時(shí)旋耕機(jī)前側(cè)堆土較多,因此最優(yōu)組合為機(jī)具作業(yè)行走速度0.035 m/s;管徑15 mm;管間距180 mm;蒸汽壓0.6 MPa,蒸汽出口溫度158.86 ℃。
本文將土壤旋耕作業(yè)與土壤蒸汽消毒技術(shù)有機(jī)結(jié)合,研制了移動(dòng)式土壤旋耕蒸汽消毒機(jī),確定了主要機(jī)構(gòu)與工作參數(shù),設(shè)計(jì)了關(guān)鍵部件,并對(duì)機(jī)具的作業(yè)性能進(jìn)行了理論分析,對(duì)作業(yè)效果進(jìn)行了試驗(yàn)驗(yàn)證。
1)通過熱量平衡分析得出,在土壤幅寬120 cm,深度15 cm時(shí),土壤消毒到60 ℃時(shí)所需蒸汽功率為87.78 kW,而當(dāng)土壤蒸汽消毒機(jī)蒸汽發(fā)生器出口壓強(qiáng)為0.6 MPa,溫度為158.86 ℃時(shí),能提供蒸汽功率為97.35 kW,系統(tǒng)損耗為0.61 kW,滿足土壤消毒的熱量需求。
2)通過田間試驗(yàn)確認(rèn)了最優(yōu)組合,即當(dāng)蒸汽發(fā)生器出口蒸汽壓強(qiáng)為0.6 MPa,溫度為158.86 ℃,機(jī)具旋耕行走速度為0.035 m/s,消毒毛管管徑15 mm,間距為180 mm時(shí),深度15 cm土壤消毒后溫度在58.9~70.6 ℃之間,可滿足土壤旋耕消毒的溫度要求。
[1] 郭軍,顧閩峰,祖艷俠,等. 設(shè)施栽培蔬菜連作障礙成因分析及其防治措施[J]. 江西農(nóng)業(yè)學(xué)報(bào),2009,21(11):51-54.
Guo Jun, Gu Minfeng, Zu Yanxia, et al. Causes and control measures of continuous cropping obstacle in facility vegetable cultivation[J]. Acta Agriculturae Jiangxi, 2009, 21(11): 51-54. (in Chinese with English abstract)
[2] 孫光聞,陳日遠(yuǎn),劉厚誠(chéng). 設(shè)施蔬菜連作障礙原因及防治措施[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(增刊2):184-188.
Sun Guangwen, Chen Riyuan, Liu Houcheng. Causes and control measures for continuous cropping obstacles in protected vegetable cultivation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(Supp.2): 184-188. (in Chinese with English abstract)
[3] 余海英,李廷軒,周健民. 設(shè)施栽培中逆境對(duì)園藝作物生長(zhǎng)發(fā)育及其病害的影響[J]. 土壤通報(bào),2006,37(5):1027-1032.
Yu Haiying, Li Tingxuan, Zhou Jianmin. Effects of adversities on the development and diseases of horticultural crops in greenhouse cropping systems[J]. Acta Pedologica Sinica, 2006, 37(5): 1027-1032. (in Chinese with English abstract)
[4] 葛曉穎,孫志剛,李濤,等. 設(shè)施番茄連作障礙與土壤芽孢桿菌和假單胞菌及微生物群落的關(guān)系分析[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(3):514-523.
Ge Xiaoying, Sun Zhigang, Li Tao, et al. Soil pseudomonas spp., bacillus spp., and microbial communities under tomato continuous cropping in greenhouse production[J]. Journal of Agro-Environment Science, 2016, 35(3): 514-523. (in Chinese with English abstract)
[5] 陳云林. 鹽城市鹽都區(qū)草莓連作障礙原因調(diào)查及防治技術(shù)[D]. 南京:南京農(nóng)業(yè)大學(xué),2015.
Chen Yunlin. The Causes Investigation and Corresponding Prevention & Control Technologies of Strawberry Continuous Cropping Obstacle in Yandu District Yancheng City[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract)
[6] 李萍萍. 設(shè)施園藝中的土壤生態(tài)問題分析及清潔生產(chǎn)對(duì)策[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(增刊2):346-351.
Li Pingping. Soil ecological problem and its resolvent in greenhouse horticulture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.2): 346-351. (in Chinese with English abstract)
[7] 李興龍,李彥忠. 土傳病害生物防治研究進(jìn)展[J]. 草業(yè)學(xué)報(bào),2015,24(3):204-212.
Li Xinglong, Li Yanzhong. Research advances in biological control of soil-borne disease[J]. Pratacultural Science, 2015, 24(3): 204-212. (in Chinese with English abstract)
[8] 孫雪婷,龍光強(qiáng),張廣輝,等. 基于三七連作障礙的土壤理化性狀及酶活性研究[J]. 生態(tài)環(huán)境學(xué)報(bào),2015,24(3):409-417.
Sun Xueting, Long Guangqiang, Zhang Guanghui, et al. Properties of soil physical-chemistry and activities of soil enzymes in context of continuous cropping obstacles for panax notoginseng[J]. Ecology and Environmental Sciences, 2015, 24(3): 409-417. (in Chinese with English abstract)
[9] 曹坳程,劉曉漫,郭美霞,等. 作物土傳病害的危害及防治技術(shù)[J]. 植物保護(hù),2017,43(2):6-16.
Cao Youcheng, Liu Xiaoman, Guo Meixia, et al. Incidences of soil-borne diseases and control measures[J]. Plant Protection, 2017, 43(2): 6-16. (in Chinese with English abstract)
[10] 朱加繁,張汝坤,楊陸強(qiáng),等. 自走式溫室育苗槽基質(zhì)蒸汽消毒機(jī)的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2017,39(4):78-82,87.
Zhu Jiafan, Zhang Rukun, Yang Luqiang, et al. Research design on a directional seeding mechanism for big seeds of grafting[J]. Journal of Agricultural Mechanization Research, 2017, 39(4): 78-82, 87. (in Chinese with English abstract)
[11] 辜松,王忠偉. 日本設(shè)施栽培土壤熱水消毒技術(shù)的發(fā)展現(xiàn)狀[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(11):167-171.
Gu Song, Wang Zhongwei. Soil disinfection with hot water in Japan[J]. Transactions of The Chinese Society for Agricultural Machinery, 2006, 37(11): 167-171. (in Chinese with English abstract)
[12] 喻自榮,朱加繁,彭繼文,等. 桁架式溫室育苗槽基質(zhì)蒸汽消毒機(jī)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2016,38(11):154-157,161.
Yu Zirong, Zhu Jiafan, Peng Jiwen, et al. Design of matrix steam sterilization machine for truss type greenhouse[J]. Journal of Agricultural Mechanization Research, 2016, 38(11): 154-157, 161. (in Chinese with English abstract)
[13] 喻自榮. 移動(dòng)式溫室育苗基質(zhì)蒸汽消毒機(jī)設(shè)計(jì)與研究[D]. 昆明:云南農(nóng)業(yè)大學(xué),2016.
Yu Zirong. The Design and Research on Mobile Steam Sterilizer of Greenhouse Seeding Substrate[D]. Kunming: Yunnan Agricultural University, 2016. (in Chinese with English abstract)
[14] 周雪青,張曉文,鄒嵐,等. 設(shè)施農(nóng)業(yè)土壤消毒方法比較[J]. 農(nóng)業(yè)工程,2016,6(3):109-112.
Zhou Xueqin, Zhan Xiaowen, Zou Lan, et al. Comparison of soil disinfection methods in facility agriculture[J]. Agricultural Engineering, 2016, 6(3): 109-112. (in Chinese with English abstract)
[15] 楊雅婷,胡檜,趙奇龍,等. 土壤物理消毒裝備研究進(jìn)展[J]. 農(nóng)業(yè)工程,2015,5(增刊1):43-48.
Yang Yating, Hu Hui, Zhao Qilong, et al. Research progress of soil physical disinfection equipment[J]. Agricultural Engineering, 2015, 5(Supp.1): 43-48. (in Chinese with English abstract)
[16] 蘇琦,黃歡. 從專利視角看全球土壤蒸汽消毒技術(shù)發(fā)展[J]. 安徽農(nóng)學(xué)通報(bào),2016,22(11):68-69.
Su Qi, Huang Huan. Technology development of global sterilizing soil by steam from the perspective of patent[J]. Anhui Agricultural Science Bulletin, 2016, 22(11): 68-69. (in Chinese with English abstract)
[17] 肖占山. 注水井井下溫度場(chǎng)數(shù)值模擬[D]. 大慶:東北石油大學(xué),2002.
Xiao Zhanshan. Numerical Simulation for Wellbore and Formation Temperature in Water Injection Wells[D]. Daqing: Northeast Petroleum University, 2002. (in Chinese with English abstract)
[18] 楊文哲. 蒸汽在油藏多孔介質(zhì)中的熱質(zhì)傳遞機(jī)理及數(shù)值模擬[D]. 大慶:東北石油大學(xué),2010.
Yang Wenzhe. Heat and Mass Transfer Mechanism and Numerical Simulation of Steam in Reservoir Porous Media[D]. Daqing: Northeast Petroleum University, 2010. (in Chinese with English abstract)
[19] 韓冰冰,程文龍,年永樂,等. 熱采井注蒸汽與注多元熱流體井筒流動(dòng)與傳熱對(duì)比分析[J]. 工程熱物理學(xué)報(bào),2016,37(9):1867-1874.
Han Bingbing, Cheng Wenlong, Nian Yongle, et al. Analysis for flow and heat transfer of thermal recovery well with steam and multiple thermal fluids injection[J]. Journal of Engineering Thermophysics, 2016, 37(9): 1867-1874. (in Chinese with English abstract)
[20] Rabiey L, Flick D, Duquenoy A.3D simulations of heat transfer and liquid flow during sterilisation of lark particles in a cylindrical vertical can[J]. Food Engineering, 2007, 82(4): 409-417.
[21] Dabbene F, Gay P, Tortia C. Modelling and control of steam soil disinfestation processes[J]. Biosystems Engineering, 2003, 84(3): 247-256.
[22] Berruto R, Gay P, Piccarolo P, et al. Grey-box models for steam soil disinfestation simulation[J]. Mathematics & Computers in Simulation, 2004, 65(1/2): 191-200.
[23] Fennimore S A, Miller T C, Broome J C, et al. Evaluation of a mobile steam applicator for soil disinfestation in california strawberry[J]. Hortscience a Publication of the American Society for Horticultural Science, 2014, 49(12): 1542-1549.
[24] Kokalis-Burelle N, Rosskopf E N, Hong J C, et al. Anaerobic soil disinfestation (ASD) and steam as alternatives for parasitic nematode control in florida floriculture[J]. Journal of Nematology, 2013, 45(4): 298-299.
[25] Gay P, Piccarolo P, Aimonino D R, et al. A high efficiency steam soil disinfestation system, part I: Physical background and steam supply optimisation[J]. Biosystems Engineering, 2010, 107(2): 74-85.
[26] Gay P, Piccarolo P, Aimonino D R, et al. A high efficacy steam soil disinfestation system, part II: Design and testing[J]. Biosystems Engineering, 2010, 107(3): 194-201.
[27] Gay P, Piccarolo P, Aimonino D R, et al. Soil parameters effects on steam disinfestation efficiency[C]//Agricultural and Biosystems Engineering for a Sustainable World. International Conference on Agricultural Engineering, Hersonissos, Crete, Greece, 23-25 June, 2008. European Society of Agricultural Engineers (AgEng), 2008.
[28] Minuto G, Gilardi G, Kejji S, et al. Effect of physical nature of soil and humidity on steam disinfestation[C]//VI International Symposium on Chemical and non-Chemical Soil and Substrate Disinfestation-SD2004 698. 2004: 257-262.
[29] Runia W T, Molendijk L P G, Gamliel A, et al. Physical methods for soil disinfestation in intensive agriculture: old methods and new approaches[C]//VII International Symposium on Chemical and Non-Chemical Soil and Substrate Disinfestation, Leuven, Belgium. 2010, 883: 249-258.
[30] 施印炎,李成光,汪小旵,等. 可移動(dòng)式土壤蒸汽消毒機(jī)的設(shè)計(jì)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2017,38(1):56-59.
Shi Yinyan, Li Chengguang, Wang Xiaochan, et al. Design of removable soil steam sterilization machine[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(1): 56-59. (in Chinese with English abstract)
[31] 劉曉宇,劉東,苗青,等. 上海石化蒸汽輸熱管道的實(shí)測(cè)與評(píng)價(jià)[J]. 節(jié)能技術(shù),2008,26(2):140-144. Liu Xiaoyu, Liu Dong, Miao Qing, et al. Test And evaluation of SPC's steam heat supply pipeline[J]. Energy Conservation Technology, 2008, 26(2): 140-144. (in Chinese with English abstract)
[32] Loenen M C A V, Mullins C E, Wilson M J. Low temperature/ short duration steaming as a sustainable method of soil disinfection[C/OL]//Archived at http://orgprints.org/8261, 2002.
[33] Rouxmichollet D, Czarnes S, Adam B, et al. Effects of steam disinfestation on community structure, abundance and activity of heterotrophic, denitrifying and nitrifying bacteria in an organic farming soil[J]. Soil Biology & Biochemistry, 2008, 40(7): 1836-1845.
Development of mobile soil rotary steam disinfection machine
Wang Xiaochan1,2, Li Chengguang1, Yang Zhenjie1, Sun Guoxiang1,2, Shi Yinyan1, Zhao Bo1
(1.,,210031,; 2.,210031,)
China has been a great producer and consumer of vegetables all the time, and with the continuous development of vegetable cultivation, a series of problems have appeared, which have caused the tremendous pressure on the soil. For example, a tremendous use of fertilizer has led to many terrible results, like soil nutrient imbalance, soil continuous cropping barriers, imbalance of soil physical and chemical properties, soil consolidation, and so on. Every issue would cause serious damages to vegetable growth, yield and quality. In order to deal with the problem of vegetable planting caused by soil continuous cropping obstacle, a kind of steam disinfection machine was designed. This machine combined the rotary tillage device with the steam sterilizer effectively, and made it possible to complete the disinfection work while doing the soil rotary tillage. It was mainly composed of 6 parts: the rotary tiller, the steam generator, the water supply device, the steam delivery system, the disinfection cover and the detachable disinfection capillary. Compared with chemical disinfection, soil steam disinfestation was an ecological technique used in intensive agriculture to reduce soil pests before planting crops, which had the advantages of safe operation. Soil steam disinfection made high temperature water vapor into the soil, and could kill most bacterias and weeds in the soil so as to achieve the effect of disinfection. Also, high temperature steam sent the residual nitrogen and phosphorus under the effective tillage layer through the pore of the soil; at this time, the pore of the soil would also be heated by the high temperature water vapor, and the pore of the soil was enlarged with the dredging of the water vapor simultaneously. Therefore, this soil vapor disinfection increased the permeability and drainage of the soil, which was beneficial to the improvement of soil texture. By the way, it could be learnt through the analysis of the heat balance that the steam power required for the soil disinfection at 60 ℃ was 87.78 kW when the soil body was 120 cm wide and 15 cm deep, while when the steam generator outlet pressure of the steam sterilizer was 0.6 MPa and the temperature was 158.86 ℃, the steam power of the steam generator was 97.35 kW and the system loss was 0.61 kW, which could meet the heat demand of soil disinfection. And through the plot experiments, the main parameters affecting the steam disinfection performance of soil, including steam pressure, speed of machine running, diameter of capillary tube and spacing between tubes were determined, and relevant theoretical analysis was performed at the same time. Plot experiments showed that under the steam pressure of 0.6 MPa, the temperature of 158.86 ℃,and the rotary working speed of 0.035 m/s, 15 cm depth of soil temperature can reach 58.9-70.6 ℃ under the condition of the capillary tube diameter of 15 mm and separation distance of 180 mm. This study provides not only a reference for further improving the performance of soil steam sterilizer, but also a choice for the farmers using the soil steam disinfection system.
soils; agricultural machinery; design; continuous cropping obstacle; mobile; rotary tillage; steam disinfection
10.11975/j.issn.1002-6819.2018.02.003
S225.92
A
1002-6819(2018)-02-0018-07
2017-09-04
2017-11-15
江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目CX(16)1002
汪小旵,男,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機(jī)械自動(dòng)控制方向的研究。Email:wangxiaochan@njau.edu.cn
汪小旵,李成光,楊振杰,孫國(guó)祥,施印炎,趙 博. 移動(dòng)式土壤旋耕蒸汽消毒機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):18-24. doi:10.11975/j.issn.1002-6819.2018.02.003 http://www.tcsae.org
Wang Xiaochan, Li Chengguang, Yang Zhenjie, Sun Guoxiang, Shi Yinyan, Zhao Bo. Development of mobile soil rotary steam disinfection machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 18-24. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.003 http://www.tcsae.org